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Abstract 

Closed-loop identification of multi-input multi-output (MIMO) systems in large-
scale plants has significant difficulties due to subsystem interactions. This complex-
ity is attributed to several input‒output variables, interactions such as recycling 
to improve or save material and energy, and disturbances such as heating or cool-
ing within the plant. One of the fundamental problems in closed-loop identification 
is the input perturbation of the interacting subsystems to capture the dynamics 
of the system for producing an informative dataset and consequently obtaining 
an accurate model. However, perturbing all the interacting subsystems in the plant 
increases the applied excitation signals, which makes the identification a nontrivial task. 
Thus, a precise and quantitative procedure to evaluate the significance and contribu-
tion of such interacting subsystems before applying these excitation signals is required 
to simplify the identification task. Conventional partial correlation analysis is one 
of the implemented techniques to measure the significance of these interacting sub-
systems. However, this technique is based on least square estimation. Thus, incorrect 
estimation of the model errors is produced due to the correlations amongst the pro-
cess inputs and unmeasured disturbances. Accordingly, this paper describes the imple-
mentation of a developed least mean square-based partial correlation algorithm 
for detecting and eliminating insignificant interacting subsystems of MIMO closed-
loop systems. The developed algorithm can discriminate the interacting subsystems 
that substantially influence the plant interaction from those that do not by minimizing 
the model regression errors produced due to the process input correlation, unmeas-
ured disturbances, and colored noise. The effectiveness of the proposed method 
is demonstrated through a case study.

Keywords: Closed-loop identification, Partial correlation, Least mean squares, 
Subsystem interaction, Decentralized control system
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Introduction
Several industrial systems and plants are multivariable by nature. The complex nature of 
identifying such processes arises from the embedded interactions amongst the process 
inputs and outputs. Thus, each control loop is necessarily affected by other loops, and 
thus, the control of such a process becomes challenging [1, 2]. Moreover, such processes 
generally suffer from perfectly correlated input signals, low signal-to-noise ratios (SNRs) 
[3], correlated noise signals, and colored noises.

Simultaneous perturbation of all external reference signals is adopted to enrich the 
identifiability of a model structure and deliver an informative dataset in multi-input 
multi-output (MIMO) systems [4]. However, perturbing only one or a few input signals 
leads to a simple implementation for the identification task [5]. Moreover, introducing 
such perturbing signals is usually unattractive or too costly because such signals typi-
cally interrupt plant operation and consequently disturb product quality [6].

Such complex simultaneous perturbations are often undesired, although they can 
excite any system. This situation can be attributed to random or large excitations that 
lead to excessive process variability and make the operation personnel anxious [7]. 
Therefore, defining appropriate settings that permit the design of the minimal signal 
properties that are essential for the reference signal and obtaining an accurate system 
model while reducing the effect of the perturbations are desirable [8].

The results in [5, 9, 10] revealed that signal perturbation is optional to accomplish the 
identification of a system. Noise sources, as an alternative, can deliver an informative 
dataset. In such cases, the selected controller has adequate complexity compared with 
the selected model structure in MIMO systems under closed-loop control [11]. How-
ever, a lengthy dataset must be acquired to fulfil the given accuracy levels. In [5], the 
results of not exciting all reference signals were validated by applying variance analysis.

In [12], the influence of reducing the sampling rate on discrete, routine operating 
closed-loop system identification was investigated. The data were collected without 
external excitation and were exclusively affected by natural disturbances. Recently, typi-
cal results for identifiability were determined by applying closed-loop data with or with-
out modifications in the reference input signal [8]. The study is an extension of the work 
presented in [12]. The sampling time and time delay are dominant factors that define the 
difficulty level of the applied reference signal.

All the abovementioned works show the necessity for simplifying the identification 
task by minimizing the reference signal perturbations. However, the possible reduction 
in input signal perturbation can be further investigated. The input variables of the inter-
action transfer functions are the most suitable candidates given that some of them hold 
very minimal dynamic information about large-scale plants. Thus, they can be left out 
from being perturbed according to correlation analysis and then let off from the identifi-
cation task [13].

In reality, exciting all the input signals, irrespective of their contribution to interaction, 
is impractical for the MIMO closed-loop system case because of process restrictions 
or economic reasons. Thus, the interacting subsystems that contribute to interaction 
should be eliminated in a primary stage to ensure that minimal input signals are per-
turbed. Subsequently, the MIMO system can be identified by using any identification 
method, such as the prediction error method (PEM).
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The determination of the null or less contributing input–output pairs in the multivari-
able system was investigated in many studies by determining the controllability based 
on the minimum singular value decomposition analysis in defined frequencies [14–17]. 
Although these methods have successful applications in open-loop systems, they gener-
ally provide misleading results when applied to detect and eliminate no-model pairs in 
MIMO closed-loop systems [18]. This issue is attributed to the feedback mechanism and 
the controller action [19]. Controller action commonly results in a decoupled situation 
that hides information regarding model existence for the input–output pair [20].

Recently, several studies have been conducted to overcome the controller action and 
inherent feedback in closed-loop systems using correlation-based methods. In [18, 19, 
21], the determination of input–output combinations in MIMO closed-loop systems 
with no-model pairs is presented based on a correlation analysis method. In [21], the 
low estimated values of the polynomial coefficients of the identified auto-regressive with 
eXogenous input (ARX) model are the key elements to deciding the no-model pairs. 
However, the associated limitation with this method is the requirement of prior knowl-
edge of the controller law of each subsystem, which is due to that the control law is part 
of the correlation analysis.

In [19, 21], Pearson’s correlation analysis between the set point and the controller 
output signals is implemented as part of the algorithm implementation. However, the 
implemented correlation analysis based on Pearson’s correlation certainly provides mis-
leading results in the MIMO closed-loop implementation due to the inherent and hid-
den input–output variables correlation due to the feedback nature. Thus, implementing 
the partial correlation analysis is effective compared with the regular Pearson’s correla-
tion due to the possibility of the input–output variables being correlated [13].

The partial correlation method can be applied to remove the effect of other correlative 
variables by keeping them untouched in the investigation. Thus, the correlation between 
the two variables of interest is known [22]. The partial correlation technique is trusted 
if one ensures that the regression error terms for conducting the analysis are unaffected 
by variable correlations or unmeasured disturbances, which is not the case in multivari-
able industrial practices. Another difficulty arises in the conventional partial correlation 
because of the perfect correlation between the process input signals from the neighbor 
subsystems. The aforementioned problems make the assessment of the dependency 
between these input signals using the conventional partial correlation analysis mislead-
ing due to the use of the least square (LS) method in calculating the model regression 
errors.

In [13], the differentiation between the interacting subsystems was achieved using con-
ventional partial correlation analysis where the LS method was adopted. Complications, 
such as bias estimation of the model regression error terms because of the unmeasured 
disturbances and correlations that occur amongst the process input signals from the 
other subsystems in the plant, constrain the success of the partial correlation-based LS 
method.

The least mean square (LMS) method is a popular adaptive algorithm that was pro-
posed in [23]. The algorithm was applied iteratively to overcome the local minima and 
slow learning problems associated with backpropagation in [24] and for other nonlinear 
applications [25, 26]. The LMS algorithm utilizes the unbiased instantaneous gradient 
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that is determined based on the most recent information. Thus, minimizing the instanta-
neous squared error criteria recursively using an LMS algorithm can be effective in par-
tially removing the effects of correlations between the disturbances and the manipulated 
variables and results in unbiased and consistent parameter estimates [11]. In addition, 
this instantaneous parameter estimate avoids the necessity for the prefiltering process of 
the experimental data. Thus, it evades the possible loss of some of the system dynamics 
due to the improper selection of frequency ranges.

In this study, the LMS-based partial correlation algorithm is developed to avoid the 
restriction of the conventional partial correlation. The LMS method combines the sim-
plicity of LS and the effectiveness of the PEM.

The algorithm guarantees accurate results, while the conventional partial correlation 
probably delivers misleading results in particular cases. Thus, in this study, determining 
which subsystems are unimportant and thus left out of the identification process at a 
prior stage makes the task of selecting the input signals to be perturbed straightforward.

Methods
A multivariable process under decentralized control is considered, as shown in Fig. 1.

For the closed-loop setting in Fig. 1, the case of three decentralized loops is con-
sidered, and the aim is to assess the importance of the individual interacting dynam-
ics and their contribution to the subsystem interaction under closed-loop conditions. 
In this case, the interacting subsystems (in the red rectangle) affecting loop 2 are 
examined for example. Thus, the interaction from neighbor subsystems (g21 and 
g23 in this case) has to be investigated. The question now is whether both of these 

Fig. 1 Decentralized closed-loop control structure of a 3-by-3 MIMO system
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interaction transfer functions directly affect the closed-loop identification in loop 2 or 
whether one of these interaction transfer functions depends on the other due to some 
correlation.

Conventional partial correlation analysis can be applied to examine the depend-
ency relationship amongst u1, u2, and u3 for answering the abovementioned question. 
Firstly, the computed error terms from the solution of the linear regression prob-
lem between these inputs represent the independent component for each input sig-
nal. Secondly, another linear regression problem is to be solved between (y2) and the 
inputs (u1, u2, and u3) to compute the output error. The computed errors in the first 
and second stages are lastly used to compute the partial correlation coefficients fol-
lowing Eq.  (1). If the test shows any dependency, then the specific transfer function 
has less influence on the interaction and could be eliminated. Consequently, the iden-
tification task is reduced, and the identification precision is enhanced by eliminating 
the interacting subsystems to be dithered.

The partial correlation can be represented as a correlation between (u1, y1):

where n is the number of data points and σ is the variance of the analogous subscript.

Development of the LMS algorithm for MIMO systems

The linear regression form for the information vector and the parameter matrix is 
regarded as follows:

The parameter matrix is defined as follows:

where n = q × na + p× nb and the corresponding information vector is as follows:

where u(t) = u1(t),u2(t), . . . ,up(t)
T
∈ R

p and y(t) =
[
y1(t), y2(t), . . . , yq(t)

]T
∈ R

q  
are the process input and output vectors, respectively.

Recursive LMS algorithms are commonly used online to update the parameter 
estimate vectors as time t increases as illustrated in Fig. 2. The algorithm applies the 
mean square error (MSE) criterion to minimize the cost function while estimating the 
parameter vector.

For the sake of compactness, ε(t, θ) is denoted as ε̂ hereinafter. Then, the MSE crite-
rion function in Eq. (5) above can be defined as follows:

(1)prui ,yi =
eTui eyi

(n− 1)σeuiσeyi

(2)y(t) = θ
Tϕ(t)+ ε(t, θ)

(3)θ =
[
A1,A2, . . . ,Ana ,B1,B2, . . . ,Bnb

]T
∈ R

n×q

(4)
ϕ(t) = [−y(t − 1),−y(t − 2), . . . ,−y(t − na),u(t − 1),u(t − 2), . . . ,u(t − nb)]

T ∈ R
n

(5)J [θ(t)] = E� ε(t, θ)�2 = E
∥∥∥ y(t)− θ

T (t)ϕ(t)
∥∥∥
2
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The algorithm uses the gradient descent technique to attain the optimal Wiener solu-
tion θ∗(t) by minimizing an instantaneous squared error that is quadratic in the param-
eter vector. Thus, it guarantees the existence of a single minimum in the error surface. 
Accordingly, the algorithm converges to this single minimum.

Minimizing J [θ(t)] in Eq.  (6) delivers the LMS estimate of θ(t) , with the assumption 
that ϕ(t) is persistently excited using a perturbation signal. The recursive equation to 
compute the parameter update θ̂(t − 1) is given by [27, 28].

where µ > 0 is the step size parameter that controls the convergence rate and stability of 
the algorithm. The new estimate of θ̂(t + 1) is determined by the gradient of J

[
θ̂(t)

]
 

according to θ̂(t):

Equation  (8) will be used to drive the LMS updating equation, with the assumption 
that the noise vector v(t) is an independent identically distributed (i.i.d.) sequence and 
the information vectors ϕ(t) are independent over time. The first assumption is wide-
spread, but the second assumption is far from being realistic and appears to be difficult 
to hold in most of the applications [29] and not even true for the input–output pairs in 
ϕ(t) for t = 1 to N, where N is the number of data points [30].

The reason is that a large part of the data are shared between two successive infor-
mation vectors, and therefore, they are strongly correlated. Accordingly, the con-
vergence analysis for the case where the assumption is invalid, and the correlated 
observations used in ϕ(t) were investigated in several works. In [29], the convergence 
analysis was conducted under assumptions close to practical applications, where a 

(6)J [θ(t)] = E�ε̂�2 = trace
(
E
∥∥∥ε̂ε̂T

∥∥∥
)
=

q∑

j=1

1

N

N∑

i=1

ε̂j(1)
2

(7)θ̂(t = 1) = θ̂(t)− µ∇J
[
θ̂(t)

]

(8)∇J
[
θ̂(t)

]
=

∂�ε̂�
2

∂θ(t)

Fig. 2 LMS setup for MIMO system
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strong correlation in ϕ(t) was considered. The authors showed that the mean square 
difference between the optimal and true parameter estimate vectors leans towards 
zero with the decrease in the step size parameter µ.

This result is similar to that in [24, 31], where the analysis shows that the LMS 
solution converges to a stable range when the step size approaches zero. In [32], the 
convergence under the common assumption of correlated observations was also 
investigated. The author proved that when µ approaches zero, the convergence of an 
algorithm is nearly sure.

To compute θ̂(t + 1) , the parameter update equation is derived by substituting 
Eq. (8) in Eq. (7) [27, 28].

Thus, the cost function J
[
θ̂(t)

]
 is minimized based on the instantaneous estimate of 

ε̂ computed by the following:

By replacing θ̂(t) in Eq.  (11) with its iterative parameter estimates, θ̂k(t) , the esti-
mate of ε̂ can be iteratively computed at iteration k by the following:

In the iterative LMS algorithm, the parameter estimate equation updates are itera-
tively computed as follows:

The gradient of the iterative LMS cost function will be as follows:

Equation  (15) is the MIMO counterpart of the LMS for the single output case in 
[31, 33]. This equation shows that the LMS algorithm can improve the parameter esti-
mate accuracy due to the implementation of the iterative procedure.

(9)

�θ(t + 1) = �θ(t)− µ
∂��ε�2

∂�ε
·

∂�ε
∂�θ(t)

= �θ(t)− 2µ

�
y(t)− �θ

T
(t)ϕ(t)

�



∂

�
y(t)− �θ

T
(t)ϕ(t)

�

∂�θ(t)





(10)θ̂(t + 1) = θ̂(t)+ 2µ

[
y(t)− θ̂

T
(t)ϕ(t)

]
ϕ(t)

(11)ε̂(t) = y(t)− θ̂
T
(t)ϕ(t)

(12)ε̂k = y(t)− θ̂
T

k (t)ϕk(t)

(13)θ̂k(t − 1) = θ̂k(t)− µ∇

[
J (θ̂k(t)

]

(14)∇J
�
�θk(t)

�
=




∂

���y(t)− �θ
T

k (t)ϕk(t)
���
2

∂�θk(t)





(15)θ̂k(t + 1) = θ̂k(t)+ 2µ

[
y(t)− θ̂

T

k (t)ϕk(t)
]
ϕk(t)
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Elimination procedure of the interacting subsystem using the LMS‑based partial 

correlation algorithm

Step 1: The effect of all other variables in U1 on ui is eliminated.

The linear regression is written as follows:

where U is an n × p matrix of causal variables, θu1 is a p × 1 vector of the parameters 
to be estimated, and ui and ei are the p × 1 vectors of the effect variable and regression 
errors, respectively.

Given that U contains all other subsystem input variables uj (j ≠ i), the LMS expres-
sion to minimize the cost function is obtained by applying Eq. (15) for the U matrix:

The regression errors for the abovementioned equation are estimated as follows:

eui is a vector of the independent components of ui that neglects the effects of all other 
variables.

Step 2: The impact of U on yi is estimated by a regression model:

 

where yi is the output of the main subsystem from which θyi can be estimated as follows:

The regression errors for yi can then be estimated as follows:

Step 3: The regression error terms are assumed to involve those elements of ui 
and yi that are independent of U. Therefore, the partial correlation can be repre-
sented as a regular correlation between (ui,yi):

where N is the number of data points and σ is the standard deviation of the correspond-
ing subscript.

(16)ui = U θui + ei

(17)θ̂uik (t + 1) = θ̂uik (t)+ 2µ

[
ui(t)− θ̂

T

uik
(t)Uk(t)

]
Uk(t)

(18)eui = ui −Uk(t)
[
θ̂uik (t)+ 2µ

[
ui(t)− θ̂

T

uik
(t)Uk(t)

]
Uk(t)

]

(19)yi = U θyi + eyi

(20)θ̂yik (t + 1) = θ̂yik (t)+ 2µ

[
yi(t)− θ̂

T

yik
(t)Uk(t)

]
Uk(t)

(21)eyi = yi −Uk(t)
[
θ̂yik (t)+ 2µ

[
yi(t)− θ̂

T

yik
(t)Uk(t)

]
Uk(t)

]

(22)partial correlationui ,yi =
eTuieyi

(N − 1)σeuiσeyi



Page 9 of 22Rahim  Journal of Engineering and Applied Science          (2023) 70:116  

Given that the tests will be conducted in a dynamic sense, the value of N can be 
selected to be adequately large based on the process knowledge to consider the pres-
ence of the time delay in the signals under analysis.

For conventional partial correlation analysis, if the true regression model is given by 
the LS method as follows:

Then, the parameter estimate errors can be computed as follows:

If N approaches infinity:

In LS estimates to maintain θ̂− θ
0
LS = 0 , one has to keep E

[
UTei

]
= 0 , and this 

condition is only satisfied if ei is white noise. Therefore, the LS usually has nonzero 
asymptotic bias and is not consistent with the case of colored noise, as the case in real 
MIMO systems operates under closed-loop control. However, estimating the regres-
sion error on the basis of LMS in this case is certainly more accurate.

The key difference between the conventional partial correlation method and the 
LMS-based partial correlation algorithm is the way to calculate the regression error 
vectors eui and eyi that contain the cancellation of the impact of all other variables on 
ui and yi. In the conventional partial correlation method, a simple linear regression 
problem is firstly solved to calculate the parameter estimates θ̂uik and θ̂yik . Then, the 
regression error vectors eui and eyi are obtained by solving two different regression 
models. Lastly, Eq. (22) is applied to calculate the partial correlation coefficients. This 
case is different from that of the proposed LMS-based partial correlation algorithm 
in this study, where the LMS algorithm is used to accurately determine the regression 
errors. The accurate calculation of the regression errors will obviously lead to more 
accurate partial correlation coefficients given that Eq.  (22) heavily depends on these 
regression errors.

LMS‑based partial correlation algorithm

 i. Collect input–output data from the closed-loop experiment.
 ii. Solve the linear regression problem between ui and the input matrix U.
 iii. Solve the linear regression problem between yi and the input matrix U.
 iv. Compare θ̂uik (N ) and θ̂yik (N ) with θ̂uik−1

(N ) and θ̂yik−1
(N ) , respectively: if they 

are appropriately close to the predetermined small ε, then terminate the procedure 
and obtain the iterative estimates at k; otherwise, increase k by 1.

 v. Determine the regression errors for the two regressions eui and eyi above.
 vi. Calculate the partial correlation coefficients using Eq. (22).
 vii. Apply the t-test for significance.

(23)ui = U θ
0
LS + ei

(24)θ̂− θ
0
LS =

[
UTU

]−1

UTei

(25)θ̂− θ
0
LS =

[
E
[
UTU

]−1
]
E
[
UTei

]
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Case study description

This case study considers two different simulation scenarios of white and colored 
noises affecting the plants. The case study is applied to demonstrate the power of the 
developed LMS-based partial correlation algorithm for interacting subsystems elimi-
nation in strongly interacting MIMO closed-loop systems compared with that of the 
conventional partial correlation method.

Copolymerization process

The transfer function model in Eq.  (26) of a copolymerization process of methyl 
methacrylate and vinyl acetate in a continuous stirred tank reactor (CSTR) reported 
in [34] has been considered in this study.

The best pairing is determined by the RGA analysis. The system was divided into 
three decentralized control loops. In the first decentralized loop, the pairing was y1, y2 
with u2, u3. The suggested pairing for the second loop was y3 with u4, and for the third 
loop, it was y4 with u5, while u1 was kept constant. Proportional controllers kc1, kc2, 
kc3, and kc4 with the values 0.1, − 0.3, 0.5, and − 0.5 were used respectively to stabilize 
the control system. To compare the conventional partial correlation against the LMS-
based partial correlation, the process model in Eq. (26) was simulated in Simulink for 
data collection.

where

y1: Polymer production rate, kg/h
y2: Mole fraction of monomer A (methacrylate)
y3: Weight average molecular weight
y4: Reactor temperature, °K
u1: Monomer A flow rate, kg/h
u2: Monomer B (vinyl acetate) flow rate, kg/h
u3: Initiator flow rate, kg/h
u4: Chain transfer agent flow rate, kg/h
u5: Temperature of the jacket, °K

Results and discussion
Two simulation cases are illustrated to demonstrate the cases in which the LMS-based 
partial correlation is superior compared to the conventional partial correlation. In the 
first simulation case (referred to as case A), the process is affected by white noise, assum-
ing smooth plant operation. While in the second simulation case (referred to as case B), 
a more complex case that represents the real disturbances in large-scale plants is consid-
ered; hence, a colored noise was added. The colored noise was produced by filtering the 

(26)





y1
y2
y3
y4



 =





0.34

0.85s+1

0.21

0.42s+1

0.50(0.50s+1)

0.12s2+0.40s+1
0

6.46(0.90s+1)

0.07s2+0.30s+1
−0.41

2.41s+1

0.66

1.51s+1

−0.3

2.71s+1
0

−3.72

0.802s+1
0.30

2.54s+1

0.49

1.54s+1

−0.71

1.35s+1

−0.20

2.71s+1

−4.71

0.08s2+0.41s+1

0 0 0 0
1.03(0.23s+1)

0.07s2+0.31s+1









u1
u2
u3
u4
u5
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added white noise sequences to the process outputs and simulated by the following first-
order filter described in Eq. (27).

where w1(t) to w4(t) are assumed to be produced by filtering the white noise sequences 
v1(t) to v4(t), respectively. The white noise has zero mean and variances σ2 equal to 0.086, 
0.066, 0.043, and 0.072 for v1(t) to v4(t), respectively. The SNR values for the process 
outputs in the two simulation cases are reported in Table 1. In this analysis, 3500 data 
points were generated with a sampling interval of 1 min to conduct the partial correla-
tion analysis for the conventional and the proposed algorithm.

In case A, white noise is introduced to the process. The effect of the white noises on 
the process outputs in case A is shown in Fig. 3, whereas Fig. 4 shows the sequential set-
point step changes applied to the process outputs of cases A and B.

While in case B, a colored noise was introduced to reflect a similar situation in large-
scale plant affected by several disturbance sources. Figure  5 demonstrates the charac-
teristic of the added colored noise to the process outputs. The figure shows the power 

(27)





w1(t)
w(t)2

w3(t)

w4(t)



 =





3
11s+1

0 0 0

0 2.5
9s+1

0 0

0 0 2
6s+1

0

0 0 0 3.5
13s+1









v1(t)
v2(t)
v3(t)
v4(t)





Table 1 SNR values for the process outputs in the two simulation cases

SNR values

Case A Case B

y1 14.78 10.34

y2 13.22 10.95

y3 13.92 15.20

y4 12.47 14.95

Fig. 3 Process outputs of case A with the addition of white noise



Page 12 of 22Rahim  Journal of Engineering and Applied Science          (2023) 70:116 

Fig. 4 Setpoint changes applied to the process outputs for cases A and B 

Fig. 5 Colored noise characteristics of the process outputs
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spectral density (PSD) in dB/Hz and the autocorrelation of colored noise for all process 
outputs. The effects of the colored noises on the process outputs in case B are shown in 
Fig. 6.

To retain the real case of plants operated under closed loop, the sequential step 
changes in Fig.  4 were applied to all process outputs in the two simulations cases A 
and B in Figs.  3 and 6, respectively. These changes were applied to each output sepa-
rately, starting from y1 and moving to the other outputs after a pre-specified period. The 
sequential step change might be necessary in this case to avoid any possible correlation 
in the reference signals and subsequently adding more bias to the regression error terms, 
which negatively affect the accuracy of the estimated partial correlation coefficients.

In this paper, the effect of different characteristics of white and colored noises on the 
concerned plants has been investigated. Hence, the PSD is a crucial tool adopted in sig-
nal frequency analysis to define the signal power distribution over the frequency and 
is generally applied in the identification theory to distinguish between different noises 
characteristics.

The white noise is regarded as an ideal stationary random signal and has a constant 
power spectral density across the entire frequency spectrum. For the white noise case, 
it is known that a flat profile is generally obtained since no signal frequency contributes 
extensively to comparison with another one. Hence, the correlation or autocovariance 
between the samples is zero through all the sampling instances.

In the least square estimation method, the best parameter estimates can be found 
conditioned on an existing noisy dataset. Consequently, when random noise is in the 
measurements, as shown in Fig. 3, this conditioning removes the randomness from the 
concerned problem. It considers independent and identically distributed (i.i.d) noise. 

Fig. 6 Process outputs of case B with the addition of colored noise
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Therefore, the performance of the LS method is satisfactory in such cases, and subse-
quently, a reliable partial correlation coefficient can be produced by the conventional 
method. However, when the plant is affected by low SNRs, the performance of the LS 
method is certainly degraded [2, 3, 35], and therefore, the conventional partial correla-
tion coefficients will be misleading.

The system in this case study is strongly interacting, and this can be observed from 
the set point applied to y2 and y4, as shown in Fig.  4. Although the set point for this 
particular output is applied with positive magnitude, however, the output response is in 
the opposite direction, as illustrated in Fig. 3 (downward). This is attributed to the fact 
that the second decentralized loop in this plant has the lowest dynamics according to 
the low-order transfer functions in this loop. This makes the contribution of other inter-
acting subsystems more dominant compared to the dynamics of the loop itself. On the 
other hand, loop 4 has no interaction effect from other subsystems; therefore, the cor-
responding output y4 has immediately responded to the applied setpoint change at 2750 
(upward) since the process does not incorporate a process time delay.

In case B, Fig. 5 shows a colored noise without uniform power spectral density across 
the entire frequency spectrum, which reflects a similar situation in large-scale plants 
affected with several disturbance sources. Therefore, the correlation or the autocovari-
ance between the samples is non-zero through all the sampling instances.

Adopting the LMS algorithm to the outputs affected with colored noise as illustrated 
in Fig.  6 overcomes the issue of the correlation between the colored noise samples as 
it minimizes an instantaneous squared error criterion and does not rely on cross or 
autocorrelations between the samples. Moreover, the LMS algorithm assumes that the 
measures in the cost function are affected with random noise. Thus, a noise-generating 
process is applied through the parameter estimation process using an unbiased instan-
taneous gradient at each instant, and subsequently produces more accurate regression 
errors, which are the key component in computing the partial correlation coefficients.

This situation differs from the white noise case where an ideal stationary random sig-
nal is assumed with a zero correlation between the samples through all the sampling 
instances affecting the plant. Therefore, in case B, biased and inconsistent estimates 
can be produced by the LS method and, consequently, incorrect partial correlation 
coefficients.

On the case study considered in this section, the cause and effect relationship was ana-
lyzed using conventional partial correlation and LMS-based partial correlation methods. 
The analysis was applied to full plant dynamics for the normal operation case in case A 
and to a more complex scenario in case B due to the addition of the colored noise, and 
the results are illustrated in Figs. 7 and 8, respectively.

The results in Figs.  7 and 8 show significant contribution of all the interacting sub-
systems, and none of them can be isolated prior to the identification stage; thus, an 
assumption is made to intentionally remove one of these interacting subsystems from 
the process transfer function model to assess the performance of the two partial cor-
relation algorithms when different types of noise are added to replace the intentionally 
removed interacting subsystem. However, the interaction transfer function (y3-u2) is 
removed (assumed to be zero), and new data are collected while replacing the removed 
interacting subsystems with white and colored noise in cases A and B, respectively. This 
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Fig. 7 Conventional and LMS-based partial correlation analysis for full plant analysis (A)

Fig. 8 Conventional and LMS-based partial correlation analysis for full plant analysis (B)
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assumption can also demonstrate to what extent the LMS-based partial correlation is 
able to differentiate between the actual correlation between (y3-u2) and that between y3 
and the white and colored noises after the interacting subsystem is removed. The corre-
sponding results are presented in Figs. 9 and 10 for cases A and B, respectively.

The significance of the partial correlation coefficients for the full plant analysis in 
Figs. 7 and 8 has been verified by applying the t-test, and Tables 2 and 3 reflect the t-test 
results. Similarly, Tables 4 and 5 reflect the t-test results of the partial correlation coef-
ficients in Figs. 9 and 10 for the plant with isolated interacting subsystems analysis.

A value of zero was produced by the t-test when the LMS-based partial correlation 
algorithm for the removed transfer function (y3-u2) was applied, as it no longer existed 
in the two simulation cases, while the t-test shows a value of one for the conventional 
partial correlation in case B. This indicates that the conventional partial correlation can 
produce correct results in normal operating conditions while not under colored noise 
conditions.

In case A, at less disturbed conditions for the full plant case, comparable results were 
obtained, and small partial correlation coefficients for the interaction transfer functions 
were reported for both the conventional partial correlation and the LMS-based partial 
correlation algorithm, as shown in Fig. 7. Nevertheless, under colored noise conditions 
in case B for the same full plant analysis, both partial correlation methods reported 
slightly higher partial correlation coefficients as shown in Fig. 8.

For the input–output control pairing (within the dash-dot lines in the figures), small 
partial correlation coefficients were obtained by the conventional partial correlation 

Fig. 9 Conventional and LMS-based partial correlation analysis for plant with isolated interacting subsystem 
(A)
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Fig. 10 Conventional and LMS-based partial correlation analysis for plant with isolated interacting 
subsystem (B)

Table 2 t-test results of conventional and LMS-based partial correlation for full plant analysis (A)

t‑test coefficients

Conventional partial correlation LMS‑based partial correlation

u1 u2 u3 u4 u5 u1 u2 u3 u4 u5

y1 1 1 1 0 1 1 1 1 0 1

y2 1 1 1 0 1 1 1 1 0 1

y3 1 1 1 1 1 1 1 1 1 1

y4 0 0 0 0 1 0 0 0 0 1

Table 3 t-test results of conventional and LMS-based partial correlation for full plant analysis (B)

t‑test coefficients

Conventional partial correlation LMS‑based partial correlation

u1 u2 u3 u4 u5 u1 u2 u3 u4 u5

y1 1 1 1 0 1 1 1 1 0 1

y2 1 1 1 0 1 1 1 1 0 1

y3 1 1 1 1 1 1 1 1 1 1

y4 0 0 0 0 1 0 0 0 0 1
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method compared with that obtained by the LMS-based partial correlation algorithm 
except in the pairing (y4-u5). This can be observed in cases A and B of the full plant, as 
shown in Figs. 7 and 8, respectively. This is in contrast to the expected partial correlation 
coefficient values for these input–output pairs, since they are highly correlated through 
the feedback mechanism. Therefore, they are expected to have high partial correlation 
coefficients that approach unity. Regardless of the slightly inaccurate results obtained 
with the conventional method in case A, the method was able to detect the removed 
transfer function (y3-u2) as the LMS-based partial correlation algorithm did as shown in 
Fig. 9.

On the other hand, in case B, the conventional partial correlation method gave higher 
values for the interaction transfer functions in most cases compared with that of the 
LMS-based partial correlation algorithm, as shown in Figs. 8 and 10 for the full plant 
case and the plant with isolated interacting subsystem case, respectively. Again, the 
conventional partial correlation analysis returned small partial correlation coefficients 
for the input–output pairs compared with that obtained by the LMS-based partial cor-
relation algorithm except in the pairing (y4-u5), even though these paired variables are 
highly correlated. However, one can conclude that the conventional partial correlation 
method is very effective and competitive with the LMS-based partial correlation algo-
rithm when the number of interacting subsystems is less. This is attributed to the fact 
that the fourth decentralized loop has the pairing (y4-u5) and has no any interaction with 
other subsystem.

In case B, the conventional partial correlation failed to detect the removed correla-
tion of u2-y3 as shown in Fig. 10; instead, a misleading partial correlation coefficient is 
computed which is actually reflects the correlation between y3 and the added colored 

Table 4 t-test results of conventional and LMS-based partial correlation for plant with isolated 
interacting subsystem (A)

t‑test coefficients

Conventional partial correlation LMS‑based partial correlation

u1 u2 u3 u4 u5 u1 u2 u3 u4 u5

y1 1 1 1 0 1 1 1 1 0 1

y2 1 1 1 0 1 1 1 1 0 1

y3 1 0 1 1 1 1 0 1 1 1

y4 0 0 0 0 1 0 0 0 0 1

Table 5 t-test results of conventional and LMS-based partial correlation with isolated interacting 
subsystem (B)

t‑test coefficients

Conventional partial correlation LMS‑based partial correlation

u1 u2 u3 u4 u5 u1 u2 u3 u4 u5

y1 1 1 1 0 1 1 1 1 0 1

y2 1 1 1 0 1 1 1 1 0 1

y3 1 1 1 1 1 1 0 1 1 1

y4 0 0 0 0 1 0 0 0 0 1
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noise. In contrast, the LMS-based partial correlation algorithm was able to differentiate 
between the removed correlation between u2 and y3 and between the one that is due to 
the colored noise as shown in the same figure.

On the other hand, the LMS-based partial correlation algorithm shows less partial 
correlation coefficient values for most of the interaction transfer functions in both sim-
ulation cases compared with the conventional partial correlation, which demonstrated 
high partial correlation values mainly in case B. This indicates that the LMS-based par-
tial correlation algorithm is able to estimate the regression errors more accurately by 
eliminating the error due to the correlation between y3 and the added colored noise and, 
consequently, resulted in a partial correlation coefficient that only reflects the causality 
relation.

Figure  11 shows the average regression errors that were calculated by the proposed 
LMS-based partial correlation algorithm for the process outputs for the full plant anal-
ysis. For case A, the algorithm required 3 iterations for error convergence (except y4), 
while more iterations were required for the error convergence for all the outputs in case 
B. Moreover, the final regression errors after the last iteration in case B are higher than 
that in case A. This is attributed to the fact that when the plant is affected with white 
noises, the algorithm can easily compute the regression errors, while the algorithm is 
encountering some numerical difficulties when colored noise or low SNR affect the 
plant.

Finally, Fig. 12 shows higher regression errors for the conventional partial correlation 
method compared to that of the LMS-based partial correlation algorithm with the iso-
lated interacting subsystem. Usually, the regression errors only represent the unmodeled 

Fig. 11 Average regression errors for cases A and B 
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part that comes with no information about the cause and effect relationship in the sys-
tem under investigation. However, when the LS method is used, the regression errors 
may contain an additional component that represents the correlation between the 
dependent variables and some colored noise dynamics, and thus, the actual regression 
error values increase in an incorrect way.

Recall Eq.  (28), the partial correlation coefficients heavily depend on the accurately 
estimating the regression errors eui and eyi. Thus, when significant regression errors are 
misestimated, as in the case when the system is highly correlated or affected by colored 
noise, the numerator value of Eq.  (28) becomes much bigger, and consequently, the 
partial correlation coefficients increase, providing misleading and confounding partial 
correlation results. However, the main difference between the conventional partial cor-
relation method and the LMS-based partial correlation algorithm is in calculating these 
regression errors more accurately using the LMS algorithm.

Conclusions
The work presented in this paper has shown that the proposed LMS-based partial cor-
relation algorithm resulted in a notable improvement in the discrimination between 
the weak and strong interacting subsystems compared with the conventional partial 

(28)prui ,yi =
eTuieyi

(N − 1)σeuiσeyi

Fig. 12 Regression errors of different outputs of the full plant case B
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correlation method in MIMO closed-loop systems. The proposed LMS-based partial 
correlation algorithm has been shown to be more efficient despite its simplicity. The 
algorithm also overcomes two major problems in the literature: one is the necessity of 
prior knowledge of the controller algorithm; the other is the implementation of conven-
tional correlation analysis that leads to bias estimation of the model regression errors 
and thus inaccurate detection of the weak interacting subsystems. Our findings show 
that the conventional partial correlation is effective in normal operating conditions and 
when no unmeasured disturbances regularly upset the closed-loop processes. The accu-
racy of LMS-based partial correlation in detecting the subsystems that contribute less to 
the plant interaction is demonstrated in a case study. The simulated case study revealed 
that the interpreted results from the conventional partial correlation are biased when 
disturbances and colored noise exist. Nevertheless, the MIMO closed-loop simulation 
studies have demonstrated that the proposed LMS-based partial correlation algorithm 
can detect insignificant interacting subsystems and retain satisfactory performance 
when applied in complex operation conditions where the collected data involve strongly 
interacting subsystems and colored noises.
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