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Introduction
Insects exhibit remarkable levels of diversity, abundance, distribution, and adaptability, 
rendering them a subject of significant interest within the field of biology. Insect rec-
ognition forms the fundamental basis for the study of insects and the management of 
pest populations. Nevertheless, existing research on insect recognition predominantly 
relies on the expertise of a limited number of taxonomic specialists to identify insects 
accurately based on morphological characteristics. Given the rapid progress in com-
puter technology, there is a promising opportunity to employ computational methods 
for precise insect differentiation, thereby potentially supplanting the need for human 
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vision tasks that have significant applications in zoology and agriculture. Fortunately, 
biologists and taxonomists have developed a systematic approach to organizing 
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professionals in this domain. Arthropods play a pivotal ecological role and offer various 
advantages to humanity, encompassing their use in weed, harmful fungi, and bacteria 
control. Essential arthropod species such as bees, wasps, ants, butterflies, moths, flies, 
and beetles facilitate pollination, enabling the reproduction of numerous plant species. 
Pests, in turn, contribute vital nutrients to the soil and plants, which are subsequently 
transferred to humans and animals upon consuming these plants. Moreover, arthropods 
provide a multitude of human-produced goods. Bees produce honey and beeswax, cat-
erpillars generate silk for cocoon protection, and spider webs are utilized in the produc-
tion of fishing nets and surgical sutures. Additionally, many arthropods, including crabs, 
lobsters, shrimp, prawns, and crayfish, serve as food sources for human consumption. 
Consequently, the automated detection and classification of arthropods in their natural 
habitats hold significant importance for effective pest management, yielding profound 
economic implications. The scientific classification system employed by researchers 
follows a hierarchical structure, beginning with a broad category and progressing to 
increasingly specific categories. In the realm of biology, organisms are classified based 
on their kingdom, family, phylum, class, order, genus, and species. Notably, the phylum 
Arthropoda encompasses approximately 80% of all known animal species, making it the 
largest phylum within the animal kingdom [1].

Arthropods, being the only invertebrates capable of flight, represent the most abun-
dant and diverse group of animals. They comprise over 1.3 million described species 
[1]. However, detecting and classifying arthropods at the order level presents challenges 
due to the varying sizes, shapes, and colors exhibited by objects within the same class. 
Object detection, a fundamental task in computer vision, involves localizing and clas-
sifying regions of interest (ROIs) by assigning them rectangular bounding boxes that 
indicate the confidence of their presence. Object detection serves as a cornerstone for 
applications such as object tracking, landmark detection, autonomous driving, and 
image segmentation. Over time, object detection has become a widely researched field, 
categorized broadly into two types: single-stage detectors and two-stage detectors.

Two-stage detectors, exemplified by the region-based convolutional neural network 
(R-CNN), employ an initial stage known as the region proposal network (RPN) to iden-
tify potential areas of interest and approximate bounding boxes within the image. The 
subsequent stage network then determines the class and refines the bounding box using 
the local features proposed by the RPN. In contrast, single-stage detectors like YOLO 
[2] perform object detection through fixed-grid regression. However, such detectors 
often struggle as a significant portion of grid cells and anchors tend to focus on the back-
ground rather than the actual objects of interest, thereby limiting the learning capabili-
ties of the convolutional neural network (CNN).

To address the limitations of previous YOLO versions, YOLOX [3] introduces 
improvements such as the elimination of box anchors, resulting in enhanced inference 
speed and reduced computational cost. Furthermore, the YOLOX algorithm adopts a 
technique that separates the YOLO detection head into disassociated feature chan-
nels, enabling independent regression of box coordinates and object classification. This 
approach facilitates faster convergence rates and improved model accuracy.

The subsequent sections of the paper are organized as follows: the “Related work” sec-
tion provides an overview of related work concerning the detection and classification of 
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insect species. The “The dataset” section introduces the Arthropod Taxonomy Orders 
Object Detection dataset. The “Methods” section presents the proposed YOLOX-based 
model as a methodology for object detection encompassing both localization and classi-
fication. Detailed experimental results and discussions are presented in the “Results and 
discussion” section. Finally, the “Conclusions” section concludes the paper by summariz-
ing the study and highlighting potential directions for future research.

Related work
The field of object detection has seen significant advancements in various domains such as 
medical, industrial, and agricultural fields. Several models have been developed by com-
puter architecture engineers, including YOLOv3 [4], Mask R-CNN [5, 6], YOLOv4 [7], 
YOLOv5 [8], and YOLOX [3].In their study, Zhong, Gao, Lei, and Zhou [9] implemented an 
insect counting and recognition system using Raspberry PI as the platform. To capture real-
time images of flying insects, a yellow sticky trap was installed, and a camera was utilized 
for data collection. The YOLO architecture was employed for object detection, while sup-
port vector machine (SVM) was used for classification purposes. The researchers evaluated 
the performance of their system by identifying six species of flying insects, namely chafer, 
mosquito, bee, fly, fruit fly, and moth. The obtained results exhibited an average counting 
accuracy of 92.50% and an average classification accuracy of 90.18% on the Raspberry PI 
platform, which is a promising outcome. In a separate study conducted by Cho et al. [10], 
an automatic identification system was developed for selected pest insects found in a green-
house environment, specifically Aphids, Whiteflies, and Thrips. The researchers utilized a 
yellow sticky trap as a means to gather relevant data for analysis. Size and color compo-
nents were employed as distinguishing features to classify the different insect classes. The 
experimental results demonstrated an average accuracy rate of 90.54% for Whitefly, 92.73% 
for Aphid, and 88.9% for Thrips, indicating the effectiveness of the proposed system in 
accurately identifying these pest insects in the greenhouse setting. In the study conducted 
by Kaya Y and Kayci L [11], an automated system for identifying butterfly species was pre-
sented. The system relied on the utilization of artificial neural networks (ANN). The 
researchers employed the grey level co-occurrence matrix (GLCM) technique to extract 
texture features using different angles and distances. The results of their experiment indi-
cated a high accuracy rate of 92.85%. In their research paper, K. Li, J. Zhu, and N. Li [12] 
introduced a refined iteration of the YOLOv3 model to develop an automated system for 
insect detection and counting. They employed CSPDarkenet-53 as the primary feature 
extraction network. Furthermore, to enhance the precision of network predictions, they 
employed the combined intersection ratio (CIOU) as the regression loss function. The 
enhanced YOLOv3 model demonstrated a notable accuracy rate of 90.62%, surpassing the 
original YOLOv3 model by a margin of 3%. Takimoto et  al. [13] proposed a two-stage 
methodology to effectively detect and classify two specific species of flea beetles, namely P. 
striolata and P. atra, along with background objects in the field. Initially, they applied data 
augmentation techniques to expand the training dataset, encompassing rotational transfor-
mations, the addition of noise, cropping, flipping, scaling, and color transformations. Sub-
sequently, they employed the YOLOv4 model as a single-stage approach for detection, 
yielding a precision score of 0.55. To further enhance model performance while maintain-
ing efficiency, they integrated the YOLOv4 model as a region proposal network coupled 
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with EfficientNet as a classifier. As a result of this hybrid approach, they achieved a signifi-
cantly improved precision rate of 89%. The research conducted by [14] focused on the intri-
cate task of insect identification and detection in outdoor images characterized by intricate 
backgrounds. In order to address the challenges posed by these backgrounds, the research-
ers employed a deep learning-based model to achieve multi-class object detection. Addi-
tionally, they introduced a novel approach that utilized a clustering algorithm for anchor 
box estimation, as opposed to relying on pre-defined anchor boxes. This approach resulted 
in improved precision and speed of the model. The effectiveness of the proposed method 
was successfully demonstrated through rigorous evaluation of a dataset consisting of insect 
images captured in natural environments. The authors of [15] conducted an extensive 
review that encompassed a wide array of techniques and the present state-of-the-art imple-
mentation of sensors employed for the purpose of automatic detection and monitoring of 
insect pests. Their scholarly publication placed particular emphasis on techniques that have 
proven to be effective in pest identification through the utilization of automatic traps, infra-
red sensors, audio sensors, and image-based classification. The review shed light on the 
diverse spectrum of available systems, showcased illustrative applications, and highlighted 
recent advancements such as machine learning and the Internet of Things, thereby provid-
ing a comprehensive overview of the subject matter. In the domain of security and surveil-
lance, Rajagopal, B.G. [16] devised an Intelligent Surveillance system specifically designed 
for the purpose of vehicle detection and classification using real-time video recordings from 
road traffic. The primary objective of this system was to enhance vehicle safety and moni-
toring in challenging nighttime conditions and various weather scenarios such as rain, day-
time, and nighttime. Additionally, the proposed system exhibits the capability to 
dynamically select the appropriate algorithm based on the prevailing weather conditions. 
The vehicle count and classification algorithm employed in this system incorporates image 
segmentation using a Laplacian of Gaussian edge detector (LoG), morphological filtering of 
edge map objects, and the categorization of vehicles into small, medium, and large sizes. A 
noteworthy advantage of this approach, in comparison to motion detection-based meth-
ods, is its applicability to both rapidly changing and static traffic scenarios. The proposed 
system achieved average classification and detection accuracies of 89.4% and 96.0% respec-
tively, for rapidly changing traffic, while achieving accuracies of 83.8% and 82.1% respec-
tively, for slow-moving traffic. In the realm of the manufacturing industry, the monitoring 
of industrial components holds immense significance. Sureshkumar, S., Mathan, G., RI, P. 
et al. [17] devised a computer vision-based system with the objective of detecting and clas-
sifying industrial components in an assembly line. The researchers conducted a thorough 
performance evaluation of three distinct object detection models, namely the faster 
R-CNN, single-shot detector (SSD), and YOLO. The experimental findings showcased the 
effectiveness of employing pre-processing techniques such as contrast enhancement, 
gamma correction, and canny-edge detection in augmenting the detection accuracy of the 
model. Leveraging the YOLOv4 model, the researchers achieved a commendable mean 
average precision (mAP) value of 0.95. Magnetic resonance imaging (MRI) has emerged as 
the preferred modality within the medical imaging domain for accurately assessing the 
severity of knee injuries. Nonetheless, the process of evaluating knee MRIs is time-consum-
ing and susceptible to diagnostic errors, leading to an excessive number of unnecessary sur-
gical interventions. In an endeavor to mitigate these challenges, Gupta, S., Pawar, P.M., and 
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Tamizharasan, P.S. [18] devised a deep learning-based framework for effectively classifying 
knee injuries into three distinct categories: meniscal tear, anterior cruciate ligament (ACL) 
tear, and abnormality. The researchers evaluated multiple deep learning models, including 
VGG19, VGG16, ResNet152V2, InceptionV3, and DenseNet201, and determined that the 
ResNet152V2-based model exhibited the highest accuracy rate of 78.33%. In a separate 
study [19], Sachar, S., and Kumar, A. developed a system grounded in transfer learning 
principles, with the aim of automating the classification of medical leaf images. The 
researchers conducted extensive training and evaluation procedures on the medicinal leaf 
dataset, which encompasses a comprehensive array of 30 distinct classes. To enhance the 
classification performance, the researchers proposed an ensemble learning approach that 
combines the predictive outputs of three component models, namely InceptionV3, Mobile-
NetV2, and ResNet50. Employing threefold and fivefold cross-validation techniques, the 
Ensemble Deep Learning- Automatic Medicinal Leaf Identification (EDL-AMLI) classifier 
attained an exceptional accuracy of 99.66% on the test set, with an overall accuracy of 
99.9%.

The dataset
This research paper utilizes the ArTaxOr dataset [20], which comprises arthropod images in 
JPEG format accompanied by object bounding boxes in JSON format. To prepare the data-
set for analysis, the researchers employed Roboflow [21] to convert the annotations into the 
PASCAL Visual Object Classes (Pascal VOC) format and resize all images to a standardized 
resolution of 640 × 640 pixels. Each image contains between one and fifty objects, and the 
dataset is continuously updated with the addition of new orders on a regular basis. In the 
current version, the dataset covers seven orders, each containing a minimum of two thou-
sand objects per order, as depicted in Fig. 1. Figure 2 further visualizes the class distribution 
and the corresponding number of images per class in the initial version of the ArTaxOr 
dataset, which encompasses a total of 15,374 images. Additionally, Fig. 3 provides insights 
into the size and aspect ratio distribution of the dataset images, with the purple box indicat-
ing the median width and height of an image (2048×1536 pixels).

To enhance the variability of the input data, the researchers propose the use of mosaic 
augmentation [8]. Figure 4 showcases samples of the mosaic data augmentation strategy, 
which involves combining multiple training images in specific ratios to enable the model to 
detect tiny objects effectively. The researchers applied mosaic augmentation to the dataset 
using Roboflow, resulting in a doubling of the number of dataset images. The augmented 
dataset, which incorporates mosaic augmentation techniques, consists of a total of 30,736 
images. It was subsequently divided into a training set comprising 90% of the images and a 
validation set comprising the remaining 10%.

Methods
The proposed methodology’s flow diagram is illustrated in Fig.  5. It consists of three 
stages: dataset preprocessing, model training with the ArTaxOr dataset, and model 
evaluation with the test set. This paper proposes an exceeding YOLOX, one of the most 
advanced deep learning models for object detection. YOLOX is an anchor-free single-
stage object detector that significantly improves training convergence time and model 
accuracy. YOLOX has eliminated the limitations of earlier YOLO versions through 
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dropping box anchors, which improve inference speed and computation cost. It also 
breaks down the YOLO detection head into separate feature channels for box coordinate 
regression and object classification, leading to faster convergence and higher accuracy, 
as shown in Fig. 6. The depicted figure serves as a visual representation of the contrast-
ing attributes between the YOLOv3 head and the proposed decoupled head. Notably, 
for each level of FPN feature, the researchers initially employed a 1 × 1 convolutional 
layer to diminish the feature channel to 256. Subsequently, two parallel branches were 
introduced, with each branch comprising two 3 × 3 convolutional layers dedicated to the 
classification and regression tasks, respectively. Additionally, an IoU branch was incor-
porated within the regression branch. This IoU branch functions to capture Intersection 
over Union values, a metric central to evaluating the alignment between predicted and 
ground-truth bounding boxes. The key features of the YOLOX model are as follows:

Fig. 1 Seven arthropod orders covered in the dataset. a Araneae (spiders), adults, juveniles. b Coleoptera 
(beetles), adults. c Diptera (true flies, including mosquitoes, midges, crane file, etc.), adults. d Hemiptera (true 
bugs, including aphids, cicadas, planthoppers, shield bugs, etc.), adults and nymphs. e Hymenoptera (ants, 
bees, wasps), adults. f Lepidoptera (butterflies, moths), adults. g Odonata (dragonflies, damselflies), adults

Fig. 2 Class distribution of the ArTaxOr dataset
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1. Anchor-free design: YOLOX adopts a center-based approach, which eliminates the 
need for pre-defined boxes as object proposals. Instead, it directly localizes objects 
using centers or key points. This reduces the number of hyper-parameters and com-
putational requirements associated with anchor-based detectors.

2. Decoupled head: YOLOX implements a decoupled head architecture for classifica-
tion and regression tasks. This approach uses separate branches with convolutional 

Fig. 3 Size and aspect ratio distribution of dataset images

Fig. 4 Samples of mosaic augmentation
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layers to improve performance by addressing the misalignment of features between 
regression and classification as demonstrated in [22].

3. SimOTA label assignment strategy: YOLOX introduces a redesigned optimal trans-
port assignment (OTA) strategy [23] called simOTA. It employs a Dynamic Top K 
strategy to estimate the number of positive anchors for each ground truth, reducing 
the number of iterations. This strategy improves the average precision (AP) without 
increasing training.

4. Advanced augmentations: YOLOX incorporates two advanced augmentation tech-
niques, Mixup and Mosaic. Mixup augmentation involves the weighted addition of 
two images, while Mosaic augmentation combines four training images into one and 
crops them in a specific ratio. These augmentations enhance the network’s ability to 
detect smaller objects.

Fig. 5 Flow diagram of the proposed approach

Fig. 6 Difference between YOLOv3 head and the proposed YOLOX decoupled head
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Overall, YOLOX’s salient features include its anchor-free design, decoupled head archi-
tecture, simOTA label assignment strategy, and the use of advanced augmentations like 
Mixup and Mosaic. These design choices and techniques improve the performance and 
efficiency of object detection models. Due to memory limitations, the YOLOX model 
has been trained only for fifteen epochs with the mosaic-augmented dataset on the Kag-
gle NVIDIA TESLA P100 GPU. Training is based on the YOLOX repository by the Meg-
vii Team [24]. The mosaic-augmented dataset includes 30736 images in total. The size of 
the input image is 640×640. Table 1 summarizes the training details of YOLOX.

Results and discussion
The trained model is applied to perform inference on the Arthropod Taxonomy Orders 
Object Detection Testset [25]. Figures 7, 8, 9, 10, 11, and 12 present a series of testing 
images (IMG01-IMG06) alongside the ground truth bounding boxes and class labels on 
the left-hand side and the predicted bounding boxes and class labels on the right-hand 
side. These visualizations demonstrate the robustness and substantial classification accu-
racy achieved by the proposed model. Notably, even though the second object in the 
IMG05 test image appears blurry, the model successfully detects both objects. Similarly, 
despite the similar texture and color properties of the two target objects in the IMG06 
test image, the model effectively detects and classifies both, despite their close proximity.

Moving on to the “IMG07” test image (Fig. 13), which features five objects of varying 
sizes, colors, shapes, and classes against a flower-like background, our model success-
fully detects and assigns appropriate classes to four of them.

In Fig. 14, we encounter the only failure scenario where the suggested model fails to 
detect the target object. The target item possesses the same color and texture features 
as the background tree, making it challenging to distinguish. It is important to note 
that due to hardware limitations, the proposed model has only been trained for fifteen 
epochs. Further training with additional data and epochs would likely improve the detec-
tion performance in such challenging scenarios, leading to a higher classification rate.

To evaluate the quality of the object detection model, mean average precision 
(mAP) is employed. This metric measures the correspondence between the actual 

Table 1 Values of YOLOX training parameters

Parameter Value

num_classes 7

max_epoch 15

depth 0.33

width 0.5

batch size 16

data_num_workers 4

input_size (640, 640)

scheduler ’yoloxwarmcos’

basic_lr_per_img 0.00015625

weight_decay 0.0005

momentum 0.9

min_lr_ratio 0.05
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Fig. 7 The ground truth and the predicted bounding boxes and class labels for the IMG01 test image. a 
Ground truth. b Predicted

Fig. 8 The ground truth and the predicted bounding boxes and class labels for the IMG02 test image. a 
Ground truth. b Predicted

Fig. 9 The ground truth and the predicted bounding boxes and class labels for the IMG03 test image. a 
Ground truth. b Predicted
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Fig. 10 The ground truth and the predicted bounding boxes and class labels for the IMG04 test image. a 
Ground truth. b Predicted

Fig. 11 The ground truth and the predicted bounding boxes and class labels for the IMG05 test image. a 
Ground truth. b Predicted

Fig. 12 The ground truth and the predicted bounding boxes and class labels for the IMG06 test image. a 
Ground truth. b Predicted
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bounding boxes and the predicted bounding boxes, yielding a score that indicates the 
model’s accuracy in detecting objects. Intersection over Union (IoU) is a quantitative 
measure utilized to determine if a region contains an object or not. IoU is computed 
based on the formulation specified in Eq. 1.

[[The IoU value spans from zero, indicating no overlap between the actual bounding 
box and the predicted bounding box, to one, indicating that the actual bounding box 
and the predicted bounding box precisely coincide in terms of their coordinates.

To compute the mAP, the average precision (AP) is initially calculated for each indi-
vidual class. Subsequently, the mAP is obtained by taking the mean of the AP values 

(1)IoU =

IntersectionArea

UnionArea

Fig. 13 The ground truth and the predicted bounding boxes and class labels for the IMG07 test image. a 
Ground truth. b Predicted

Fig. 14 The ground truth and the predicted bounding boxes and class labels for the IMG08 test image. a 
Ground truth. b Predicted
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across all seven classes. The mathematical expression for mAP in the context of “n” 
classes is defined by Eq. 2.

where APk is the AP of class “k” and “n” is the number of classes. To evaluate our object 
detector, the AP is computed for each of the seven classes and then averaged across all 
classes. This provides a comprehensive assessment of the detector’s performance.

In the Pascal VOC challenge, the AP is calculated at a single IoU threshold of 0.5, 
resulting in the mean average precision at 0.5 IoU (mAP@50).

In contrast, the Common Object Context (COCO) challenge considers a range of IoU 
threshold values. The AP is computed for each IoU threshold within the range of 0.5 to 
0.95, with a step size of 0.05. The individual AP values are then averaged to obtain the 
final mean Average Precision (mAP@50 : 95). This approach provides a more compre-
hensive evaluation by considering varying levels of overlap between the predicted and 
ground truth bounding boxes. The results of the mAP@50 and mAP@50  :  95 metrics 
across epochs are depicted in Fig. 15. The mAP@50 metric exhibited an initial value of 
61.1% in the first epoch and steadily increased to reach a superior performance of 90% in 
the final epoch. This achievement of 90% mAP@50 is particularly noteworthy consider-
ing the challenging nature of the task. On the other hand, the mAP@50 : 95 metric com-
menced with a value of 44.99% in the first epoch and concluded at 75.41%.

The total number of epochs conducted was 15, with each epoch consisting of 3150 
steps. Figure 16 illustrates the loss curves in relation to the number of steps. The total 
loss encompasses the summation of iou_loss, l1_loss, conf_loss, and cls_loss. For 
instance, after ten steps, the total_loss amounted to eleven and ultimately converged to a 
value of 2.1 at the final step.

For improved visualization, Fig. 17 presents the loss curves across epochs. The total_
loss decreased to 5.5 after the initial epoch, followed by numerous fluctuations over 
time. The final value of the total_loss across the last fifteen epochs was 2.1.

(2)mAP =

1

n

n

k=1

APk

Fig. 15 mAP@50 and mAP@50:95 vs epochs
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Conclusions
This research paper introduces an automated system designed to detect and classify 
Arthropods against complex backgrounds. A modified version of the ArTaxOr dataset, 
referred to as “Pascal VOC” ArTaxOr, was created using Roboflow to serve as the input 
dataset for training the YOLOX model. The model was trained on a Kaggle NVIDIA 
TESLA P100 GPU for fifteen epochs, enabling it to effectively detect Arthropods and 
classify them into seven distinct classes: Araneae, Coleoptera, Diptera, Hemiptera, 
Hymenoptera, Lepidoptera, and Odonata.

Experimental results demonstrate that the model achieves a high level of accuracy in 
recognizing Arthropods within complex environments. The implementation of mosaic 
data augmentation significantly enhances the model’s recognition performance. It is 
capable of accurately identifying Arthropods in images captured under diverse and intri-
cate environmental conditions, successfully classifying multiple insect species in a single 
instance. The performance evaluation of the model is based on the mAP, which is calcu-
lated as the average precision across all seven classes. The developed model achieves an 

Fig. 16 Loss curves vs. steps

Fig. 17 Loss curves vs epochs
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outstanding mAP of 90% at an IoU threshold of 0.5 and an mAP of 75% when consider-
ing IoU values ranging from 0.5 to 0.95. In the future, the proposed model holds the 
potential for deployment as a real-time mobile application for Arthropod identification 
and categorization. Its simplicity and accurate recognition capabilities make it a valuable 
asset for the development of a productive and commercially viable mobile application. 
This study serves as a significant contribution, showcasing the potential of automated 
Arthropod detection and classification systems to enhance and streamline the taxonomy 
process. Additionally, the developed model has the potential to be utilized for effective 
training on datasets containing harmful insects in insect monitoring devices, thereby 
mitigating the reliance on pesticides and other potentially hazardous methods of insect 
control. By leveraging the model’s capabilities, alternative and more environmentally 
friendly approaches can be explored to address the challenges associated with insect 
management. The findings of this study serve as a benchmark against which future 
research in this domain can be compared and evaluated.
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