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Abstract 

Monitoring of water intake is critical for managing the health and wellness of individu-
als with various health conditions, including young children, sick adults, the elderly, 
and individuals seeking better weight control. The research presented in this paper 
studies the use of different regression methods to estimate water intake using wire-
less surface electromyography (sEMG). The advantage of using regression is that it can 
provide more consistent values for different swallow volumes. In addition, the setup 
reported in this research employs a less controlled environment, providing stronger 
evidence of the practical feasibility of the used setup. Neural networks-based regres-
sion achieved an R2 of 0.99 and a root-mean-squared error of 0.14 and 0.08 after feature 
selection. The relative immunity of sEMG as a sensing technique and the accuracy 
levels achieved with the used mobile sEMG device can provide a robust system for vol-
ume estimation of fluid intake in real-world situations.
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Introduction
Water is the most important nutrient for human health. Its health advantages are 
numerous [1], as it helps regulate blood pressure, lubricate the joints, regulate body tem-
perature, and deliver oxygen throughout the body by forming 90% of blood constituency, 
just to name a few. Fluids in general and water in particular are essential for body hydra-
tion. Diseases of the mind and body can develop if the usual body fluids are depleted due 
to dehydration. Breath, urine, and the skin all contribute to the ongoing loss of bodily 
fluids [2]. Most healthy individuals control their body fluid levels by drinking accord-
ing to their feeling of thirst [3]. However, this is more challenging for young children, 
sick adults, and the elderly. The ability to quantify fluid intake can thus prove critical to 
ensure health for individuals who need help with managing their hydration levels. Vari-
ous smart bottles for tracking water intake have lately been introduced in the market 
[4, 5]. Using a phone app connected to the bottle via Bluetooth, these bottles can alert 
the user to drink more fluids in order to meet her daily hydration goals. This solution 
has obvious practical constraints. Nevertheless, these products are yet to gain mass 
adoption.
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There are numerous methods for monitoring fluid intake. Cohen et  al. provides 
a summary of various strategies [6]. Some of these strategies rely on swallowing 
activity signals. Other methods made use of wrist movement or vision-based tech-
nologies. To detect drinking activities, vision-based techniques used cameras and 
computer vision algorithms or deep learning [7–10]. Many studies in this area have 
made use of Microsoft Kinect, which calculates depth and captures RGB images. 
Tham et  al. detected numerous hand positions throughout the drinking activity 
using a Microsoft Kinect placed in front of the individual [7]. They concentrated 
solely on exploiting the detailed information to eliminate privacy concerns. Using 
dynamic time warping (DTW), drinking events were categorized with 89% accuracy 
[7]. Several studies [11–15] employed wrist-mounted inertial measurement units 
(IMUs) with threshold-based algorithms to measure liquid consumption. Shen et al., 
for example, used thresholding to segment events depending on wrist roll values. In 
an unconstrained situation, they reported a low sensitivity of 66–75% for drinking 
detection [16].

Liquids are moved from the oral cavity to the stomach via the swallowing process 
[17]. In order to observe and quantify someone’s fluid intake, monitoring their swal-
lowing activities can provide an accurate and fairly seamless surrogate [18, 19].

Textile applications can provide more information including chewing and swallow-
ing detection. However, they are less practical and are often incorporated into shirts 
in the form of a turtleneck. It takes the form of bands around the neck, containing 
electrodes detecting swallows.

Cheng et  al. initially measured variations in capacitance in the pharynx using 
textile-based electrodes inserted into a turtleneck shirt [20]. This technique was 
utilized to detect eating, swallowing, speaking, and sighing in various head orien-
tations while sitting or walking [20]. Despite the authors’ claims that the proposed 
textile technique did not require direct skin contact or significant body fixation, a 
large quantity of data was lost in their preliminary tests. Overall classification accu-
racy was 77% when sitting and 69% when walking when utilizing a threshold-based 
method [20].

It was reported that fluid intake could be automatically monitored using a throat 
microphone or mechanical sensors, but the volume of fluid consumed was not calcu-
lated in that study [19]. In another study, a throat microphone was used to estimate 
the amount of fluid a person consumed, with an accuracy rate of 80% for amounts 
between 5 and 15 ml per subject [21].

Another investigation employing a microphone and two surface electromyogra-
phy (sEMG) channels focused on the behavior of swallowing and chewing as well 
as bolus volume and material consistency [22]. Fluid intake estimation accuracy 
increased from 73 to 84% when sEMG and a microphone were used together. Pre-
viously reported study focused on estimating fluid volume intake using sEMG [23]. 
This previous study focused on modeling the water sip swallows. Swallows were mod-
elled as either one sip or two sips. The results were promising for many data points 
(accuracy above 99.5%), but this approach was not enough to model all possible sip 
swallows. Regression techniques are among the most popular statistical techniques 
used for predictive modeling. The main idea of regression is to minimize a predefined 
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error according to the regression model type. Decision tree (DT), extra trees (ET), 
ada boost (AB), gradient boosting (GB), support vector regression (SVR), and Gauss-
ian regressors (GBR) are well-known types of regression [24, 25].

•	 DT regression: A decision tree constructs regression as a tree structure. It incre-
mentally develops an associated decision tree while breaking down a dataset into 
smaller and smaller sections. Regression tree is also a binary tree where each 
branching node is split based on the values of input and output [24, 25].

•	 ET regression: It employs averaging to increase predicted accuracy and control 
over-fitting by fitting a number of randomized decision trees on various subsam-
ples of the dataset [24, 25].

•	 AB regression: A meta-estimator that starts by fitting a regressor on the original 
dataset and then fits more copies of the regressor on the same dataset but where 
the weights of instances are altered dependent on the error of the current predic-
tion [24].

•	 GB regression: It constructs an additive model in a forward stage-wise manner and 
can optimize any differentiable loss functions. At each level, a regression tree is 
fitted using the negative gradient of the specified loss function [24].

•	 SVR: Used to find a function (hyperplane) that approximates the relationship 
between two continuous input variables while minimizing prediction error [25].

This study employs the mentioned regression schemes for the purpose of more 
accurately and more generally estimate various sip sizes as can occur in real-world 
situations. Another contribution of this study is using an experimental setup that 
more closely mimics real-life, less-controlled environments.

Methods
Experiment protocol and signal acquisition

Twenty healthy individuals (age: 25 ± 1.8 years, BMI: 25.7 ± 4.5 kg/m2) participated 
in the experiment. All participants provided informed written consents prior enroll-
ment to the study including consent to publish. Participants did not present any 
medical condition that may interfere with the normal swallowing process. Each par-
ticipant performed the experiment in one 20-min session, where drinking activities 
were investigated. Drinking activities included 40 water sips equally split among 4 
fixed volumes (10, 20, 30, and 40 ml), for a total volume of 1 l per participant in each 
experiment. Sip volumes were controlled and verified through using graded cups 
prior to starting each experiment session. For the first 10 s, the participant did not 
have any water intake activity. Within the next 10 s, the participant raised the water 
cup and sipped the water in it without swallowing it. Then, the participant swal-
lowed the water during the last 10 s. The experiment protocol is shown in Fig. 1. A 
total of 800 water swallows were collected. Swallowing signals were collected via a 
wearable sensor (a mobile BITalino single electrode sEMG). The BITalino revolu-
tion kit is a Bluetooth compact bio-signals platform designed for research purposes 
[26]. The sEMG electrode (Fig. 2) was placed on the left sternocleidomastoid muscle, 
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and signals were acquired using the BITalino open-source software. The left sterno-
cleidomastoid was chosen as it is considered the least uncomfortable neck location 
to place the electrodes during swallowing. This muscle has also been proven in pre-
vious studies to produce swallowing signals of better quality [27].

Volume prediction

The research problem was divided into two stages: swallow detection (preprocessing) 
and volume estimation (feature extraction, feature selection, and regression models), as 
illustrated in Fig. 3.

Swallow detection (preprocessing)

The collected EMG signals (phase S3 in Fig. 1) were processed using MATLAB R2020a 
version. The segments of interest for each signal record were divided into drink swallows. 
These swallow events appeared as sudden changes in each record. There are many algo-
rithms that can be used to detect sudden changes in bio-signals. One of these algorithms 

Fig. 1  Experiment protocol

Fig. 2  Subject wearing sEMG
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is memory-based graph theoretic technique (MB-GT). This is a rapid adaptive technique 
for detecting sudden changes. It may operate on arbitrary unknown data distributions 
before and after a change. It computes the average Euclidean distance between all pairs 
of data points prior to and following the hypothesized change [28]. The algorithm oper-
ates on two windows of varying sizes, taking into account all conceivable partitions of 
a memory buffer of size N containing previous data readings. The algorithm computes 
Euclidean distance in proportion to the likelihood that a change happened within the 
current buffer’s memory span. MB-GT shows more accurate detection than other detec-
tion algorithms when applied to a single sudden change in the record (one sip swallow) 
[25]. We applied MB-GT on the S3 segment of records shown in Fig. 1. This segment 
corresponded to one sip event.

Volume estimation

Forty features calculated in time domain and commonly used with EMG signals in 
the literature were used in this study [29–31]. These features are selected due to their 
simplicity and promising performances in previous work [30, 31]. These features are 
described in Table  2 (in the Appendix). We used chi-square test as feature selection 
technique.

The sips dataset was split into two groups (75–25%): 600 sips were used for training, 
and 200 sips were used for testing. Since sEMG data usually suffers from intersubject 
variability, we used among-subjects validation as a validation method. This means that 
both training and testing data were sampled evenly from all subjects. The regression 
approach was used to generate direct estimates of sip volumes using the forty features 
described before. DT regression with squared error was used to measure the quality of 
a split, as well as all features. Nodes were expanded until all leaves were pure. Moreover, 
ET regression with 100 trees in the forest were used in the proposed study with squared 
error loss function. Also, in AB regression with learning rate value 1, 50 estimators were 
used. When updating the weights after each boosting step, a linear loss function is uti-
lized. GB regression with a squared error loss function, a learning rate of 0.1, and 100 
estimators were used.

Furthermore, SVR using RBF kernel with degree 3 and C = 1 was employed in this 
study. Also, GBR were used for this purpose and validated in a 5-fold cross-validation 

Fig. 3  A block diagram of the proposed fluid intake volume prediction method
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manner. Furthermore, a two-layer feed-forward neural network was tested with both 
Levenberg Marquardt (NN-LM) and Bayesian regularization (NN-BR), along with 50 
hidden layers and using 100 epochs [23].

The main evaluation parameters in regression models are root-mean-square error 
(RMSE) and a coefficient of determination (R2). RMSE measures how far predictions 
deviate from measured true values using Euclidean distance. To compute RMSE, com-
pute the residual (difference between prediction and truth) for each data point, the norm 
of residual for each data point, the mean of residuals, and the square root of that mean 
[32]. R2 determines how effectively a statistical model predicts an outcome. The model’s 
dependent variable represents the outcome. R2 can have any value between 0 and 1, with 
0 being the lowest and 1 being the highest. The better a model predicts, the closer its R2 
will be near 1 [32].

Results
Swallow detection

A swallow detection window using MBGT is shown in Fig. 4. As shown, the MBGT pro-
vides a window that delineates the start and end points of each swallow signal.

Volume estimation

The RMSE and R2 values for each of the training regression models using 5-fold valida-
tion are shown in Figs. 5 and 6. GPR, NN-LM, and NN-BR are the best training models 
(lowest RMSE and highest R2). Table 1 shows the RMSE and R2 values for testing with 
the best training models. The most accurate outcomes are produced by NN-BR. Figure 7 
depicts the relationship between predicted (output) and observed (target) swallow vol-
umes using NN-BR using all features.

Fig. 4  MBGT detection window
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Figure 8 shows a bar plot with the chi-square test scores for the forty features. After 
removing the fourteen features with low scores (P-value > 5%), twenty-six features 
remained. Figure 9 shows the final results for the best three regression models with all 
features and with the remaining twenty-six features after using chi-square test.

Fig. 5  A bar plot that summarizes the RMSE for the seven regressors

Fig. 6  A bar plot of R2 for the seven regressors
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Discussion
In this study, we proposed a method for fluid intake volume estimation using sEMG. 
The method was evaluated using a dataset of 800 water swallows collected from 10 
healthy individuals. The results of this study show that the proposed method was 
able to estimate the volume of water intake with a high degree of accuracy with a 
root-mean-square error (RMSE) of 0.14 and 0.08 after feature selection and a coef-
ficient of determination (R2) of 0.99. There have been very few studies that attempt 
to estimate fluid volume using sEMG. Malvuccio et al. and Ismail et al. used sEMG 
recordings of both individual and continuous swallows to estimate the amount of 
fluid consumed; however, their study had a higher RMSE than ours [33, 34]. The 

Table 1  RMSE and R2 for testing using the best training models

Regression model RMSE R2

GPR 1.43 0.98

NN-LM 2.45 0.97

NN-BR 0.14 0.99

Fig. 7  Predicted (output) vs observed (target) swallow volumes using NN-BR
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incorporation of more features and different regressors results in a lower average 
RMSE for the system than other studies [33, 34]. As seen in Fig.  9, using the chi-
square test improves the RMSE.

Fig. 8  Scores % of the features using chi-square test

Fig. 9  RMSE for the best three regressors with/without feature selection
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This is important for a number of applications related to maintaining or restoring the 
state of health for individuals with certain conditions. These applications include those 
for young children with type II diabetes and those for the elderly with dementia [35]. 
Such circumstances could benefit from a technology that can estimate fluid or water 
intake in real time. For example, hydration of an elderly living independently can be 
monitored remotely using a device utilizing the methods reported in this paper. Another 
example is the ability to give a dietician follow-up on his or her patients to remotely 
monitor their fluid intake patterns.

The proposed method has a number of advantages over other methods for fluid intake 
volume assessment. First, the method is able to accurately estimate the volume of water 
swallowed even in the presence of external audible noise — a disadvantage attributed 
to microphone-based methods. Second, the method is able to work with good accuracy 
in real time. Third, the method is non-invasive and does not require any sophisticated 
equipment. Finally, the method lends itself to being implemented using flexible electron-
ics utilizing the edge-computing paradigm.

The presented study, however, has a number of limitations. First, the tested method 
was only evaluated using a small dataset of water swallows collected from healthy indi-
viduals. Further research is needed to evaluate the performance of the method in a larger 
and more diverse population with sufficient representation of various health conditions. 
Second, the method is only able to assess the volume of water swallowed in a single sip. 
Further research is needed to develop a method that can predict the volume of water 
swallowed over multiple sips.

The implementation of among-subject validation scheme can be explained by the 
well-known high intersubject variability in sEMG. One direction for the future of this 
platform could be to investigate various pre-processing techniques for the sEMG sig-
nals and use a range of features to cut down on variability with different validation 
schmemes.

Overall, the results of this study show that the proposed method is a promising new 
approach for fluid intake volume estimation. For example, the study reported in [25] 
showed that sEMG could be used to estimate water intake volume with an RMSE of 0.25. 
However, that study was conducted in a lab-controlled environment, while the current 
study was conducted in a more natural setting. The results of the current study suggest 
that sEMG can be used to quantify fluid volume intake in a more natural setting with 
more practical regression models.

Conclusion
In this work, we were able to estimate the fluid volume intake using a mobile, single-
channel sEMG. For the more difficult task of estimating sip amounts that correspond 
to actual swallows in a less controlled environment, regression models demonstrated 
the ability to estimate water volume intake with RMSE of about 0.14. In the future, 
we plan to use a wearable sEMG and employ more subjects. In addition, we plan 
to compile data on typical water volumes consumed by individuals each day in a 
free setting and take that into consideration when designing setups for longer-term 
experiments.
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Appendix

Table 2  Mathematical definition of EMG selected features

No Feature Equation

1 Absolute value of summation of exp. 
root (ASM) [16, 17] ASM =

L
∑

i=1

|(xi)
P |

P =

0.5, if i > 0.25 L and i < 0.75 L

0.75 otherwise

2 Absolute value of the summation of 
square root (ASR) [16, 17]

ASR = |
∑L

i=1 (xi)
1/2|

3 Auto-regressive model (AR) [16, 18]
Xn =

p
∑

i=1

ai(Xn−1)+Wn

Where Xn a sample of the model signal is, ai is the AR coefficients, 
wn is the white noise error term, and P is the order of the AR 
model

4 Average amplitude change (AAC) [16]
AAC = 1

L

L−1
∑

i=1

|Xi+1 − Xi |

5 Average power (AP) [17]
AP = 1

L

1
∑

i=L

(Xi)
2

6 Cardinality (CARD) [16]
CARD =

L−1
∑

i=1

F(xi)

Y = sort (x)

F
�

xi
�

=











1, if
�

|yi − yi+1| > T
�

0, otherwise

7 Coefficient of variation (COV) [18]
COV =

√

1
L−1

∑L
i=1 (Xi )

2

1
L

∑L
i=1 |Xi |

8 Difference mean absolute value 
(DAMV) [17] DAMV =

√

∑L−1
i=1 |Xi−Xi+1|

L

9 Difference absolute standard deviation 
value (DASDV) [17] DASDV =

√

∑L−1
i=1 (Xi−Xi+1)

2

L−1

10 Difference variance value (DVARV) [18]
DVARV = 1

L−2

L−1
∑

i=1

(Xi+1 − Xi)
2

11 Enhanced mean absolute value 
(EMAV) [18] EMAV = 1

L

L
∑

i=1

|(xi)
P |

P =







1, if i > 0.2 L and i < 0.8 L

0.5 otherwise

12 Enhanced wavelength (EWL) [17]
EWL = 1

L

L
∑

i=2

|(xi − xi−1)
P |

P =







1, if i > 0.2 L and i < 0.8 L

0.5 otherwise

13 Integrated EMG (IEMG) [16]
IEMG =

L
∑

i=1

|Xi |

14 Interquartile range (IQR) [16] IQR = Q3–Q1
First quartile Q1 = median of the n smallest values
Third quartile Q3 = median of the n largest values
The second quartile Q2 is the same as the ordinary median

15 Kurtosis (KURT) [16]
KURT = L

∑L
i=1 (xi−x̄)4

(

∑L
i=1 (xi−x̄)2

)2



Page 12 of 15Hassan and Morsy ﻿Journal of Engineering and Applied Science          (2023) 70:118 

No Feature Equation

16 Log detector (LD) [16]
LD = exp( 1

L

L
∑

i=1

Log(|Xi |))

17 Log coefficient of variation (LCOV) [16]
LCOV = log

√

1
L−1

∑1
L (Xi )

2

1
L

∑1
L |Xi |

19 Log difference mean absolute value 
(LDAMV) [16] LDAMV = log

√

∑L−1
i=1 |Xi−Xi+1|

L

20 Log difference absolute standard devia-
tion value (LDASDV) [17] LDASDV = log

√

∑L−1
i=1 (Xi−Xi+1)

2

L−1

21 Log Teager-Kaiser energy operator 
(LTKEO) [16] LTKEO = log

L−1
∑

i=2

(Xi)
2 − Xi−1 × Xi+1)

22 Maximum fractal length (MFL) [16]
MFL = log

√

L−1
∑

i=1

(Xi+1 − Xi)
2

23 Mean absolute value (MAV) [17]
MAV = 1

L

L
∑

i=1

|Xi |

24 Mean absolute deviation (MAD) [16]
MAD = 1

L

L
∑

i=1

|(xi − x̄)|

25 Mean value of the square root 
(MSR) [16] MSR = 1

L

√

L
∑

i=1

(Xi)
2

26 Modified mean absolute value 
(MMAV) [16] MMAV = 1

L

L
∑

i=1

Wi |xi |

(Wi) =







1, if 0.25 L < i < 0.75 L

0.5 otherwise

27 Modified mean absolute value 2 
(MMAV2) [18] MMAV2 = 1

L

L
∑

i=1

Wi |xi |

Wi =















1, if 0.25 L < i < 0.75 L

4i
L
, if i < 0.25

4(i−L)
L

otherwise

28 Myopulse percentage rate (MYOP) [18]
MYOP = 1

L

L
∑

i=1

F(xi)

F(xi) =







1, if (xi > T )

0, otherwise

29 New zero crossing (FZC) [16]
FZC =

L−1
∑

i=1

F(xi)

T = 4
10

10
∑

i=1

xi

F(xi) =







1, if (xi > T & xi+1 < T )|(xi < T & xi+1 > T )

0 otherwise

30 Root mean square (RMS) [18]
RMS =

√

1
L

L
∑

i=1

(Xi)
2

31 Simple square integral (SSI) [16]
SSI =

L
∑

i=1

(Xi)
2

32 Skewness (SKEW) [16]
SKEW =

∑L
i=1 (xi−x̄)3

(L−1)
(

∑L
i=1 (xi−x̄)2

)3
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No Feature Equation

33 Slope sign change (SSC) [17]
SSC =

L−1
∑

i=2

F(xi)

F(xi) =







1, if (xi > xi+1& xi > xi−1)|(xi < xi+1&xi < xi−1)

0 otherwise

34 Standard deviation (SD) [16]
SD =

√

1
L−1

L
∑

i=1

(Xi)
2

35 Temporal Moment (TM) [16]
TM =

∣

∣

∣

∣

1/L
L
∑

i=1

(Xi)
3

∣

∣

∣

∣

36 Variance (VAR) [16]
VAR = 1

L−1

1
∑

L

(Xi)
2

37 VOrder (VO) [16] VO = Y
1
4

Y =

∑L
i=1 (Xi )

4

L

38 Wavelength (WL) [16]
WL =

L−1
∑

i=2

|Xi − Xi−1|

39 Willison amplitude (WA) [17]
WA =

L−1
∑

i=1

F(xi)

F(xi) =







1, if
�

|xi − xi+1| > T
�

0, otherwise

40 Zero crossing (ZC) [16]
ZC =

L
∑

i=1

F(xi)

F(xi) =







1, if (xi > 0 & xi+1 < 0)|(xi < 0 & xi+1 > 0)

0 otherwise

X is the EMG sip signal, X̄ is the mean value of the signal, T is the threshold value, and L is the length of 
signal
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