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Abstract 

Heart diseases are consistently ranked among the top causes of mortality on a global 
scale. Early detection and accurate heart disease prediction can help effectively man-
age and prevent the disease. However, the traditional methods have failed to improve 
heart disease classification performance. So, this article proposes a machine learn-
ing approach for heart disease prediction (HDP) using a decision tree-based random 
forest (DTRF) classifier with loss optimization. Initially, preprocessing of the dataset 
with patient records with known labels is performed for the presence or absence 
of heart disease records. Then, train a DTRF classifier on the dataset using stochas-
tic gradient boosting (SGB) loss optimization technique and evaluate the classifier’s 
performance using a separate test dataset. The results demonstrate that the proposed 
HDP-DTRF approach resulted in 86% of precision, 86% of recall, 85% of F1-score, 
and 96% of accuracy on publicly available real-world datasets, which are higher 
than traditional methods.

Keywords: Heart disease, Machine learning, Decision tree, Random forest, Stochastic 
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Introduction
One person dies due to cardiovascular disease every 36  s in every country. Coronary 
heart disease is the leading cause of mortality in the USA, accounting for one out of 
every four fatalities that occur each year. This disease claims the lives of about 0.66 mil-
lion people annually [1]. The expenditures associated with cardiovascular disease are 
significant for the healthcare system in the USA. In the years 2021 and 2022, it resulted 
in annual costs of around $219 billion owing to the increased demand for medical treat-
ment and medication and the loss of productivity caused by deaths. Table 1 provides the 
statistics of the heart disease dataset with total heart disease cases, deaths, case fatal-
ity rate, and total vaccinations. A prompt diagnosis also aids in preventing heart failure, 
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which is another potential cause of mortality in certain cases [2]. Since many traits put 
a person at risk for acquiring the ailment, it is difficult to diagnose heart disease in its 
earlier stages while it is still in its infancy. Diabetes, hypertension, elevated cholesterol 
levels, an irregular pulse rhythm, and a wide variety of other diseases are some risk fac-
tors that might contribute to this [3]. These ailments are grouped and discussed under 
“heart disease,” an umbrella word. The symptoms of cardiac disease can differ consider-
ably from one individual to the next and from one condition to another within the same 
patient [4]. The process of identifying and classifying cardiovascular diseases is a contin-
uous one that has a chance of being fruitful when carried out by a qualified professional 
with appropriate knowledge and skill in the relevant sector. There are a lot of different 
aspects, such as age, diabetes, smoking, being overweight, and eating a diet high in junk 
food. There have been several variables and criteria discovered that have been shown to 
either cause heart disease or raise the risk of developing heart disease [5].

Most hospitals use management software to monitor the clinical and patient data they 
collect. It is well-known these days, and these kinds of devices generate a vast quantity 
of information on patients. These data are used for decision-making help in clinical set-
tings rather seldom. These data are precious, yet a significant portion of their knowledge 
is left unused [6]. Because of the sheer volume of data involved in the process, the trans-
lation of clinical data that has been acquired into information that intelligent systems 
can use to assist healthcare practitioners in making decisions is a process fraught with 
difficulties [7]. Intelligent systems put this knowledge to use to enhance the quality of 
treatment provided to patients. As a result of this issue, research on the processing of 
medical photographs was carried out. Because there were not enough specialists and too 
many instances were misdiagnosed, an automated detection method that was both quick 
and effective was necessary [8].

The primary objective of the research is centered around the effective utilization of a 
classifier model, which aims to categorize and identify vital components within com-
plex medical data. This categorization process is a critical step towards enabling early 
diagnosis of cardiovascular diseases, potentially contributing to improved patient out-
comes and healthcare management [9]. However, the pursuit of disease prediction at an 
early stage is not without its challenges. One significant factor pertains to the inherent 

Table 1 Statistics of heart disease dataset

Country Total cases Total deaths Case fatality rate Total vaccinations

USA 44,752,659 720,581 1.61% 401,670,644

India 34,157,813 453,996 1.33% 1,031,906,566

Brazil 21,534,894 600,185 2.78% 239,756,958

Russia 8,073,318 222,853 2.76% 99,150,000

Turkey 7,052,488 64,049 0.91% 110,838,084

UK 7,005,365 137,322 1.96% 113,391,940

France 6,939,471 116,512 1.68% 100,355,009

Iran 6,261,269 126,711 2.02% 21,543,821

Argentina 5,301,830 115,662 2.18% 52,038,168

Colombia 4,985,923 126,245 2.53% 43,999,110

Spain 4,988,029 87,928 1.76% 77,561,325
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complexity of the predictive methods employed in the classification process [10]. The 
intricate nature of these methods can lead to difficulties in interpreting the underlying 
decision-making processes, which might impede the integration of these models into 
clinical practice. Furthermore, the efficiency of disease prediction models is impacted 
by the time they take to execute. Swift diagnosis and intervention are crucial in medi-
cal conditions, and time-intensive models might not align with the urgency required for 
timely medical decisions. Researchers [11] have investigated various alternative strate-
gies to forecast cardiovascular diseases. Perfect treatment and diagnosis have the poten-
tial to save the lives of an infinite number of individuals. The novel contribution of this 
work is as follows:

• Preprocessing of HDP dataset with normalization, exploratory data analysis (EDA), 
data visualization, and extraction of top correlated features.

• Implementation of DTRF classifier for training preprocessed dataset, which can 
accurately predict the presence or absence of heart disease.

• The SGB loss optimization is used to reduce the losses generated during the training 
process, which tunes the hyperparameters of DTRF.

The rest of the article is organized as follows: Sect. 2 gives a detailed literature survey 
analysis. Section 3 gives a detailed analysis of the proposed HDP-DTRF with multiple 
modules. Section 4 gives a detailed simulation analysis of the proposed HDP-DTRF. Sec-
tion 5 concludes the article.

Literature survey
Rani et al. [12] designed a novel hybrid decision support system to diagnose cardiac ail-
ments early. They effectively addressed the missing data challenge by employing mul-
tivariate imputations through chained equations. Additionally, their unique approach 
to feature selection involved a fusion of genetic algorithms (GA) and recursive feature 
reduction. Notably, the integration of random forest classifiers played a pivotal role in 
significantly enhancing the accuracy of their system. However, despite these advance-
ments, their hybrid approach’s complexity might have posed challenges in terms of inter-
pretability and practical implementation. Kavitha et al. [13] embraced machine learning 
techniques to forecast cardiac diseases. They introduced a hybrid model by incorporat-
ing random forest as the base classifier. This hybridization aimed to enhance predic-
tion accuracy; however, their decision to capture and store user input parameters for 
future use was intriguing but yielded suboptimal classification performance. This unique 
approach could be viewed as an innovative attempt to integrate patient-specific informa-
tion, yet the exact impact on overall performance warrants further investigation.

Mohan et al. [14] further advanced the field by employing a hybrid model that com-
bined random forest with a linear model to predict cardiovascular diseases. Through 
this amalgamation of different classification approaches and feature combinations, 
they achieved commendable performance with an accuracy of 88.7%. However, it is 
worth noting that while hybrid models show promise, the trade-offs between com-
plexity and interpretability could influence their practical utility in real-world clini-
cal settings. To predict heart diseases, Shah et  al. [15] adopted supervised learning 
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techniques, including Naive Bayes, decision trees, K-nearest neighbor (KNN), and 
random forest algorithms. Their choice of utilizing the Cleveland database from the 
UCI repository as their data source added a sense of universality to their findings. 
However, the lack of customization in data sources might limit the applicability of 
their model to diverse patient populations with varying characteristics. Guoet et al. 
[16] contributed to the field by harnessing an improved learning machine (ILM) 
model in conjunction with machine learning techniques. Integrating novel feature 
combinations and categorization methods showcased their dedication to enhanc-
ing performance and accuracy. Nonetheless, while their approach exhibits promising 
results, the precise impact of specific feature combinations on prediction accuracy 
could have been further explored. Hager Ahmed et  al. [17] presented an innovative 
real-time prediction system for cardiac diseases using Apache Spark and Apache 
Kafka. This system, characterized by its three-tier architecture—offline model build-
ing, online prediction, and stream processing pipeline—highlighted its commitment 
to harnessing cutting-edge technologies for practical medical applications. However, 
the scalability and resource requirements of such real-time systems, especially in 
healthcare settings with limited computational resources, could be an area of concern.

Kataria et al. [18] comprehensively analyzed and compared various machine learn-
ing algorithms for predicting heart disease. Their focus on analyzing the algorithms’ 
ability to predict heart disease effectively sheds light on their dedication to identify-
ing the most suitable model. However, their study’s outcome might have been further 
enriched by addressing the unique challenges posed by individual attributes, such as 
high blood pressure and diabetes, in a more customized manner. Kannan et al. [19] 
meticulously evaluated machine learning algorithms to predict and diagnose cardiac 
sickness. By selecting 14 criteria from the UCI Cardiac Datasets, they showcased 
their dedication to designing a comprehensive study. Nevertheless, a deeper analy-
sis of how these algorithms perform with specific criteria and their contributions to 
accurate predictions could provide more actionable insights.

Ali et  al. [20] conducted a detailed analysis of supervised machine-learning algo-
rithms for predicting cardiac disease. Their thorough evaluation of decision trees, 
k-nearest neighbors, and logistic regression classifiers (LRC) provided a well-rounded 
perspective on the strengths and limitations of each method. However, a more fine-
grained analysis of how these algorithms perform under various parameter configura-
tions and feature combinations might offer additional insights into their potential use 
cases. Mienye et al. [21] introduced an enhanced technique for ensemble learning, uti-
lizing decision trees, random forests, and support vector machine classifiers. The vot-
ing system they employed to aggregate results showcased their innovative approach 
to combining various methods. However, the potential trade-offs between ensemble 
complexity and the robustness of predictions could be considered for future refine-
ment. Dutta et  al. [22] revolutionized the field by introducing convolutional neural 
networks (CNNs) for predicting coronary heart disease. Their approach, leveraging 
the power of CNNs on a large dataset of ECG signals, showcased the potential for 
deep learning techniques in healthcare. However, the requirement for extensive com-
putational resources and potential challenges in model interpretability could be areas 
warranting further attention. Latha et  al. [23] demonstrated ensemble classification 
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approaches. Combined with a bagging technique, their utilization of decision trees, 
naive Bayes, and random forest exemplified their determination to achieve robust 
results. Nevertheless, the potential interplay between different ensemble techniques 
and their effectiveness under various scenarios could be explored further.

Ishaq et al. [24] introduced the concept of using the synthetic minority oversampling 
technique (SMOTE) in conjunction with efficient data mining methods to improve sur-
vival prediction for heart failure patients. Their emphasis on addressing class imbalance 
through SMOTE showcased their awareness of real-world challenges in healthcare data-
sets. However, the potential impact of the SMOTE method on individual patient sub-
groups and its implications for model fairness could be areas of future exploration. Asadi 
et al. [25] proposed a unique cardiac disease detection technique based on random for-
est swarm optimization. Their use of a large dataset for evaluation underscored their 
dedication to robust testing. However, the potential influence of dataset characteristics 
and the algorithm’s sensitivity to various parameters on prediction performance could 
be investigated further.

Proposed methodology
Heart disease is a significant health problem worldwide and is responsible for many 
deaths every year. Traditional methods for diagnosing heart disease are often time-con-
suming, expensive, and inaccurate. Therefore, there is a need for more accurate and effi-
cient methods for predicting and diagnosing heart disease. The article aims to provide 
a detailed analysis of the proposed HDP-DTRF approach and its performance in accu-
rately predicting the presence or absence of heart disease. The results demonstrate the 
effectiveness of the proposed approach, which can lead to improved diagnosis and treat-
ment of heart disease, ultimately leading to better health outcomes for patients.

Figure 1 shows the proposed HDP-DTRF block diagram. The initial step in the pro-
posed approach is the preprocessing of a dataset consisting of patient records with 
known labels indicating the presence or absence of heart disease. The dataset is then 
used to train a DTRF classifier with the SGB loss optimization technique. The perfor-
mance of the trained classifier is evaluated using a separate publicly available real-world 
test dataset, and the results show that the proposed HDP-DTRF approach can accurately 
predict the presence or absence of heart disease. Using decision trees in the random for-
est classifier enables the algorithm to handle nonlinear data and make accurate predic-
tions even with missing or noisy data. Applying the SGB loss optimization technique 
further enhances the algorithm’s performance by improving the convergence rate and 
avoiding overfitting. The proposed approach can be useful in clinical decision-making 
processes, enabling medical professionals to predict the likelihood of heart disease in 
patients and take appropriate preventive measures.

The detailed operation of the proposed HDP-DTRF system is illustrated as follows:

Step 1: Data preprocessing: Gather a dataset containing patient records, where each 
record includes features such as age, blood pressure, and cholesterol levels, along 
with labels indicating whether the patient has heart disease. Remove duplicate 
records, handle missing values (e.g., imputing missing data or removing instances 
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with missing values), and eliminate irrelevant or redundant features. Encode cate-
gorical variables (like gender) into numerical values using techniques like one-hot 
encoding. Scale numerical features to bring them to a common scale, which can pre-
vent features with larger ranges from dominating the model.
Step 2: Training the DTRF classifier: Initialize an empty random forest ensemble. For 
each tree in the ensemble, randomly sample the training data with replacement. It 
creates a bootstrapped dataset for training each tree, ensuring diversity in the data 
subsets. Construct a decision tree using the bootstrapped dataset. At each node of 
the tree, split the data based on the feature that provides the best separation, deter-
mined using metrics like Gini impurity or information gain. Add the constructed 
decision tree to the random forest ensemble. Repeat the process to create the ensem-
ble’s desired number of decision trees.
Step 3: SGB optimization: Initialize the model by setting the initial prediction to the 
mean of the target labels. Calculate the negative gradient of the loss function (such as 
mean squared error or log loss) concerning the current model’s predictions. This gra-
dient represents the direction in which the model’s predictions need to be adjusted 
to minimize the loss. Train a new decision tree using the negative gradient as the tar-

Fig. 1 Block diagram for the proposed HDP-DTRF system
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get. This new tree will help correct the errors made by the previous model iterations. 
Update the model’s predictions by adding the predictions of the new tree, scaled by a 
learning rate. This step moves the model closer to the correct predictions. Repeat the 
process for a predefined number of iterations. Each iteration focuses on improving 
the model’s predictions based on the errors made in the previous iterations.
Step 4: Performance evaluation: Use a separate real-world test dataset that was not 
used during training to evaluate the performance of the trained HDP-DTRF classifier.

DTRF classifier

The DTRF classifier, an ensemble learning model, centers around the decision tree as its 
core component. As illustrated in Fig.  2, the DTRF block diagram depicts a framework 
comprising multiple trained decision trees employing the bagging technique. During the 
classification process, when a sample requiring classification is input, the ultimate classi-
fication outcome is determined through a majority vote from the output of an individual 
decision tree [26]. In classifying high-dimensional data, the DTRF model outperforms 
standalone decision trees by effectively addressing overfitting, displaying robust resistance 
to noise and outliers, and demonstrating exceptional scalability and parallel processing 
capabilities. Notably, the strength of DTRF stems from its inherent parameter-free nature, 
embodying a data-driven approach. The model requires no prior knowledge of classifica-
tion from the user and is adept at training classification rules based on observed instances. 

Fig. 2 Block diagram of DTRF
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This data-centric attribute enhances the model’s adaptability to various data scenarios. The 
DTRF model’s essence lies in utilizing K decision trees. Each of these trees contributes a 
single “vote” towards the category it deems most fitting, thereby participating in determin-
ing the class to which the independent variable X, under consideration, should be allocated. 
This approach effectively harnesses the collective wisdom of multiple trees, facilitating 
accurate and robust classification outcomes that capitalize on the diverse insights provided 
by each decision tree. The mathematical analysis of DTRF is as follows:

Here, K  represents the number of decision trees present in the DTRF. In this context, θk 
is a collection of independent random vectors uniformly distributed amongst themselves. 
Here, K  individual decision trees are generated. Each tree provides its prediction for the 
category that best fits the independent variable X . The predictions made by the K  decision 
trees are combined through a voting mechanism to determine the final category assign-
ment for the independent variable X . It is important to note that the given Eq. (1) indicates 
the ensemble nature of the DTRF model, where multiple decision trees work collectively 
to enhance predictive accuracy and robustness. The collection of θk represents the varied 
parameter sets for each decision tree within the ensemble.

The following procedures must be followed to produce a DTRF:

Step 1: The K  classification regression trees are generated by randomly selecting K  
samples from the original training set as a self-service sample set, using the random 
repeated sampling method. Extracting all K  samples requires repeating this procedure.
Step 2: Each node in the trees will include m randomly selected characteristics from the 
first training set (m n). Only one of the m traits is employed in the node splitting pro-
cedure, and it is the one with the greatest classification potential. DTRF calculates how 
much data is included in each feature to do this.
Step 3: A tree never has to be trimmed since it grows perfectly without help.
Step 4: The generated trees are built using DTRFs, and the freshly received data is cate-
gorized using DTRFs. The number of votes from the tree classifiers determines the clas-
sification outcomes.

There are a lot of important markers of generalization performance that are inherent to 
DTRFs. Similarity and correlation between different decision trees, mistakes in generaliza-
tion, and the system’s ability to generalize are all features t. A system’s decision-making effi-
cacy is determined by how well it can generalize its results to fresh information that follows 
the same distribution as the training set [27]. The system’s performance and generalizability 
benefit from reducing the severity of generalization mistakes. Here is a case of the overgen-
eralization fallacy in action:

Here, PE∗ denotes the generalization error, the subscripts X and Y  point to the space 
where the probability is defined, and Mr(X ,Y ) is the margin function. The following is a 
definition of the margin function:

(1){h(X , θK ), k = 1, 2, · · · ,K }

(2)PE∗ = PX ,Y (mr(X ,Y ) < 0)
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If it stands for the input sample, Y  indicates the correct classification, and J  indi-
cates the incorrect one. Specifically, h(g) is a representation of a sequence model for 
classification, I(g) indicates an indicator function, and avgk(g) means averaging. The 
margin function determines how many more votes the correct classification for sam-
ple X receives than all possible incorrect classifications. As the value of the margin 
function grows, so does the classifier’s confidence in its accuracy. The term “conver-
gence formulation of generalization error” as follows [28]:

As the number of decision trees grows, the generalization error will tend toward 
a maximum, as predicted by the preceding calculation, and the model will not over-
fit. The classification power of each tree and the correlation between trees is used 
to estimate the maximum allowed generalization error. The DTRF model aims to 
produce a DTRF with a small correlation coefficient and strong classification power. 
Classification intensity ( S ) is the sample-space-wide mathematical expectation of 
the variable mr(X ,Y ).

Here, θ and θ ′ are independent and identically distributed vectors of estimated 
data EX ,Y  , correlation coefficients of mr(θ ,X ,Y ) and mr(θ , ′X ,Y ):

Among them, sd(θ) can be expressed as follows:

Equation  (7) is a metric that is used to quantify the degree to which the trees 
h(X , θ) and h(X , θ ′) on the dataset consisting of X, Y are correlated with one another. 
The correlation coefficient increases in magnitude in direct proportion ρ  to the size 
of the chi-square. The upper limit of generalization error is obtained using the fol-
lowing formula, which is based on the Chebyshev inequality:

The generalization error limit of a DTRF is inversely proportional to the strength 
of the correlation P between individual decision trees and positively correlated with 
the classification intensity S of a single tree. That is to say, the stricter the category 
S , the lower the degree of linkage P . If the DTRF is to improve its classification accu-
racy, the threshold for generalization error must be lowered.

(3)mr(X ,Y ) = Yavgk(I(h(X , θk) = Y )−max(J )))+ Yavgk(I(h(X , θk) = J ))

(4)limk → ∞PE∗ = PX ,Y (Pθ (I(h(X , θk) = Y ))−max(J ) �= YPθ (I(h(X , θk) = J )))

(5)S = EX ,Y ∗mr(X ,Y )

(6)ρ =
covX ,Y (mr(θ ,X ,Y ),mr(θ ′,X ,Y ))

sd(θ)sd(θ ′)

(7)sd(θ) =
1

N

N

i=1
mr(xi, θ)−

1

N

N

i=1
mr(xi, θ)

2

(8)PX ,Y (mr(X ,Y ) < 0) ≤
ρ(1− S2)

S2
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SGB loss optimization

The SGB optimization approach has recently received increased use in various deep-
learning applications. These applications call for a higher degree of expertise in 
learning than what can be provided by more conventional means. During the whole 
training process, the learning rate that SGB uses does not, at any time, experience 
any fluctuations. The SGB uses one learning rate, which is alpha. The SGB algorithm 
maintains a per-parameter learning rate to increase performance in scenarios with 
sparse gradients (for example, computer vision challenges). It maintains per-param-
eter learning rates that are updated based on the average of recent magnitudes of 
the gradients for the weight, and it does so based on averaging recent gradient mag-
nitudes (for example, how rapidly it is changing). In addition, it does this based on 
averaging recent gradient magnitudes for the weight. It illustrates that the strategy is 
effective for online and non-stationary applications (for example, noisy). The chain 
rule applied calculus to compute the partial derivatives. To calculate the loss gradi-
ent about the weights and biases, it will allow us to determine how the loss varies as 
a function of the weights and biases. Let us assume that we have a training dataset 
with N samples, denoted as { xi, yi } for i = 1, 2, …, N, where xi is the input, and yi is 
the true label or target value. It uses a decision tree with parameters θ to predict the 
output ŷifor input xi . The output can be any function of the parameters and the input, 
represented as ŷi = f (xi, θ). The goal is to minimize the difference between the pre-
dicted output ŷi and the true label yi . It is typically done by defining a loss function 
L(ŷi, yi) that quantifies the difference between the predicted and true values. The total 
loss over the entire dataset is then defined as the sum of the individual losses over all 
samples:

The optimization algorithm focused on estimating the values of the parameters θ 
that minimize this total loss. It is typically done using gradient descent, which updates 
the parameters θ in the opposite direction of the gradient of the total loss concerning 
the parameters:

Here,α is the learning rate, which controls the size of the parameter update, and 
∇θLtotal is the gradient of the total loss concerning the parameters θ. The SGB can 
sometimes oscillate and take a long time to converge due to the noisy gradients. 
Momentum is a technique that helps SGB converge faster by adding a fraction of the 
previous update to the current update:

Here, vt is the momentum term at iteration t,β is the momentum coefficient, typi-
cally set to 0.9 or 0.99, and the other terms are as previously defined.

(9)Ltotal = �iL
(
f (xi, θ), yi

)

(10)θnew = θold − α∇θLtotal

(11)vt = βvt − 1+ (1− β)∇θLminibatch

(12)θt = θt − 1− αvt
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Results and discussion
This section gives a detailed performance analysis of the proposed HDP-DTRF. The 
performance of the proposed method is measured using multiple performance met-
rics. All these metrics are measured for proposed methods as well as existing meth-
ods. Then, all the methods use the same publicly available real-world dataset for 
performance estimations.

Dataset

The Cleveland Heart Disease dataset contains data on 303 patients who were evalu-
ated for heart disease. The dataset is downloaded from open-access websites like 
the UCI-ML repository. Each patient is represented by 14 attributes, which include 
demographic and clinical information such as age, sex, chest pain type, resting blood 
pressure, serum cholesterol level, and exercise test results. The dataset has 303 
records, each corresponding to a unique patient. The data in each record includes 
values for all 14 attributes, and the diagnosis of heart disease (present or absent) is 
also included in the dataset. Table  2 provides a detailed description of the dataset. 
Researchers and data scientists can use this dataset to develop predictive models for 
heart disease diagnosis or explore relationships between the different variables in the 
dataset. With 303 records, this dataset is relatively small compared to other medi-
cal datasets. However, it is still widely used in heart disease research due to its rich 
attributes and long history of use in research studies.

Table 2 Description of dataset

Column Description Min value Max value

Age Age of the patient 29 77

Sex 1 = male, 0 = female) 0 1

Chest pain type 1 = typical angina, 2 = atypical angina, 
4 = asymptomatic, 3 = non-anginal pain

1 4

Resting blood pressure (mm Hg) Resting blood pressure 94 200

Serum cholesterol (mg/dl) Serum cholesterol 126 564

Fasting blood sugar Fasting blood sugar (> 120 mg/dl or not) of the 
patient (1 = true, 0 = false)

0 1

Resting electrocardiographic results Results of resting electrocardiogram (0 = normal, 
1 = ST-T wave abnormality, 2 = left ventricular 
hypertrophy)

0 2

Maximum heart rate achieved Maximum heart rate achieved (in beats per 
minute) during exercise

71 202

Exercise-induced angina Whether exercise-induced angina or not (1 = yes, 
0 = no)

0 1

Oldpeak ST depression induced by exercise relative to rest 0 6.2

Slope The slope of the peak exercise ST segment 
(1 = upsloping, 2 = flat, 3 = downsloping)

1 3

Number of major vessels Number of major vessels (0–3) colored by 
fluoroscopy

0 3

Thal Thallium stress test result (3 = normal, 6 = fixed 
defect, 7 = reversible defect)

3 7

Target Whether the patient has heart disease or not 
(0 = no, 1 = yes)

0 1
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EDA

EDA is essential in understanding and analyzing any dataset, including the Cleveland 
Heart Disease dataset. EDA involves examining the dataset’s basic properties, identifying 
missing values, checking data distributions, and exploring relationships between vari-
ables. Figure 3 shows the EDA of the dataset. Figure 3 (a) shows the count for each target 
class. Here, the no heart disease class contains 138 records, and the heart disease pre-
sented class contains 165 records. Figure 3 (b) shows the male and female-based record 
percentages in the dataset. Here, the dataset contains 68.32% male and 31.68% female 
records. Figure 3 (c) shows the percentage of records for chest pain experienced by the 
patient in the dataset. Here, the dataset contains 47.19% of records in typical angina, 
16.50% in atypical angina, 28.71% in non-anginal pain, and 7.59% in the asymptomatic 
class. Figure 3 (d) shows the percentage of records for fasting blood sugar in the data-
set. Here, the dataset contains 85.15% of records in the fasting blood sugar (> 120 mg/
dl) class and 14.85% of records in the fasting blood sugar (< 120 mg/dl) class. Figure 4 
shows the heart disease frequency by age for both no disease and disease classes. The 
output contains histogram levels that show the frequency of heart disease by age. Here, 
the counts of patients with and without heart disease are shown in red and green colors. 
The overlap between the bars shows how the frequency of heart disease varies with age, 
with a peak in the frequency of heart disease occurring around the age of 29–77 years.

Figure 5 shows the frequencies for different columns of the dataset, which contains 
the frequencies of chest pain type, fasting blood sugar, rest ECG, exercise-induced 
angina, st_slope, and number of major vessel columns. Exploring the frequencies 

Fig. 3 EDA of the dataset. a Count for each target class. b Male–female distribution. c Chest pain 
experienced by patient distribution. d Fasting blood sugar distribution
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of different variables in a dataset is crucial in understanding the data and gaining 
insights about the underlying phenomena. By analyzing the frequency of values in 
each variable, we can better understand the data distribution and identify poten-
tial patterns, relationships, and outliers that are important for further analysis. For 
example, understanding the frequency of different chest pain types in a heart disease 
dataset reveals whether certain types of chest pain are more strongly associated with 
the disease than others. Similarly, analyzing the frequency of different fasting blood 
sugar levels helps to identify potential risk factors for heart disease. Overall, exploring 
the frequencies of variables is an important step in the EDA process, as it provides a 
starting point for identifying potential relationships and patterns in the data.

Performance evaluation

Table 3 shows the class-specific performance evaluation of HDP-DTRF. Here, the per-
formance was measured for class-0 (no heart disease) and class-1 (heart disease pre-
sented) classes. Further, macro average and weighted average performances were also 
measured. Macro average treats all classes equally, regardless of their size. It calculates 
the average performance metrics across all classes, giving each class an equal weight. It 
means that the performance of smaller classes will have the same impact on the metric 

Fig. 4 Heart disease frequency by age
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as larger classes.Then, the weighted average considers the size of each class. It calcu-
lates the average performance metric across all classes but gives each class a weight pro-
portional to its size. It means that the performance of larger classes will have a greater 
impact on the metric than smaller classes.

Table 4 shows the class-0 performance comparison of various methods. Here, the 
proposed HDP-DTRF improved precision by 5.75%, recall by 1.37%, F1-score by 
6%, and accuracy by 2.45% compared to KNN [15]. Then, the proposed HDP-DTRF 
improved precision by 3.45%, recall by 0.63%, F1-score by 3.61%, and accuracy by 
1.45% compared to ILM [16]. Then, the proposed HDP-DTRF improved precision 
by 2.30%, recall by 1.27%, F1-score by 3.61%, and accuracy by 1.03% compared to 
LRC [20]. Table  5 shows the class-1 performance comparison of various methods. 
Here, KNN [15] shows a 2.35% lower precision, a 4.40% lower recall, a 3.53% lower 
F1-score, and a 1.03% lower accuracy than the proposed HDP-DTRF method. Then, 
ILM shows a 2.35% lower precision, a 5.49% lower recall, a 1.14% lower F1-score, and 
a 1.03% lower accuracy than the proposed HDP-DTRF method. Then, LRC [20] shows 
a 4.71% lower precision, an 11.11% lower recall, a 2.27% lower F1-score, and a 1.03% 
lower accuracy than the proposed HDP-DTRF method.

Fig. 5 Frequencies for different columns of the dataset
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Table 6 shows the macro average performance comparison of various methods. For 
KNN [15], the percentage improvements are 7.5% for precision, 13.3% for recall, 10.4% 
for F1-score, and 6.7% for accuracy. For ILM [16], the percentage improvements are 
achieved as 2.4% for precision, 6.1% for recall, 6.0% for F1-score, and 3.2% for accuracy. 
For LRC [20], the percentage improvements are achieved as 3.4% for precision, 10.0% 
for recall, 6.0% for F1-score, and 4.3% for accuracy archived by the proposed method. 
Table 7 shows the weighted average performance comparison of various methods. For 

Table 3 Class-specific performance evaluation of proposed HDP-DTRF

Method Precision Recall F1-score Accuracy

Class-0 0.87 0.79 0.83 0.98

Class-1 0.85 0.91 0.88 0.97

Macro average 0.86 0.85 0.85 0.95

Weighted average 0.86 0.86 0.85 0.96

Table 4 Class-0 performance comparison of various methods

Method Precision Recall F1-score Accuracy

KNN [15] 0.75 0.80 0.77 0.92

ILM [16] 0.80 0.70 0.75 0.91

LRC [20] 0.85 0.75 0.80 0.95

Proposed HDP-DTRF 0.87 0.79 0.83 0.98

Table 5 Class-1 performance comparison of various methods

Method Precision Recall F1-score Accuracy

KNN  [15] 0.83 0.87 0.85 0.96

ILM  [16] 0.81 0.85 0.87 0.96

LRC  [20] 0.79 0.81 0.85 0.96

Proposed HDP-DTRF 0.85 0.91 0.88 0.97

Table 6 Macro average performance comparison of various methods

Method Precision Recall F1-score Accuracy

KNN [15] 0.80 0.75 0.77 0.90

ILM [16] 0.85 0.82 0.83 0.93

LRC [20] 0.81 0.80 0.83 0.92

Proposed HDP-DTRF 0.86 0.85 0.85 0.95

Table 7 Weighted average performance comparison of various methods

Method Precision Recall F1-score Accuracy

KNN  [15] 0.81 0.79 0.79 0.90

ILM  [16] 0.83 0.82 0.81 0.93

LRC  [20] 0.85 0.81 0.83 0.93

Proposed HDP-DTRF 0.86 0.86 0.85 0.96
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KNN [15], the percentage improvements are 6.5% for precision, 3.3% for recall, 1.4% 
for F1-score, and 6.7% for accuracy. For ILM [16], the percentage improvements are 
achieved as 2.4% for precision, 5.1% for recall, 6.0% for F1-score, and 3.2% for accuracy. 
For LRC [20], the percentage improvements are achieved as 1.4% for precision, 1.0% for 
recall, 6.0% for F1-score, and 4.3% for accuracy archived by the proposed method.

The ROC curve of the proposed HDP-DTRF is seen in Fig.  6. The true positive 
rate (TPR) is shown against the false-positive rate (FPR) on the ROC curve, which 
considers various threshold values. In the context of the HDP-DTRF technique, the 
ROC curve illustrates the degree to which the model can differentiate between posi-
tive and negative heart disease instances. The model’s performance is greater when it 
has a higher TPR and a lower FPR. The ROC curve that represents the HDP-DTRF 
approach that has been suggested is used to find the best classification threshold, 
which strikes a balance between sensitivity and specificity in the diagnostic process. If 
there is a point on the ROC curve that is closer to the top left corner, this implies that 
the model is doing better.

Conclusions
This article proposes a machine-learning approach for heart disease prediction. The 
approach uses a DTRF classifier with loss optimization and involves preprocessing a 
dataset of patient records to determine the presence or absence of heart disease. The 

Fig. 6 ROC curve of proposed HDP-DTRF
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DTRF classifier is then trained on the SGB loss optimization dataset and evaluated using 
a separate test dataset. The proposed HDP-DTRF improved class-specific performances 
and a macro with weighted average performance measures. Overall, the proposed HDP-
DTRF improved precision by 2.30%, recall by 1.27%, F1-score by 3.61%, and accuracy by 
1.03% compared to traditional methodologies. Further, this work can be extended with 
deep learning-based classification with machine learning feature analysis .

Abbreviations
HDP  Heart disease prediction
DTRF  Decision tree-based random forest
SGB  Stochastic gradient boosting
FP  False positive
FN  False negative
TN  True negative
TP  True positive
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