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Abstract 

In the context of Industry 4.0, which prioritizes intelligent and efficient solutions 
for industrial systems, this paper introduces an innovative methodology for fault detec-
tion and fault-tolerant control of DC motors. Leveraging the capabilities of machine 
learning and reinforcement learning, our approach aims to achieve optimal perfor-
mance while maintaining a low computational burden. At the heart of our strategy 
lies a reinforcement learning-enhanced proportional-integral controller meticulously 
designed for precise positioning of DC motors. Through extensive comparative 
analysis, we establish the superiority of this controller in terms of precision, efficiency, 
and user accessibility when compared to traditional techniques. To ensure robust fault 
detection, we synergize a model-based observer with Mahalanobis distance-based 
outlier analysis, creating a swift and accurate diagnostic method for sensor faults. In 
cases of sensor malfunctions, an internal model-based control strategy comes into play, 
enabling the system to uphold its effectiveness despite disruptions. The effectiveness 
of our proposed methods is vividly demonstrated through simulations in the MATLAB 
environment, utilizing a DC motor subjected to sensor failures. The results unequivo-
cally highlight the advantages of our approach, showcasing improved precision, 
faster operation, cost-effectiveness, and streamlined simplicity. As such, our approach 
finds suitability for industrial applications. In our quest to strike a delicate balance 
between performance and complexity, our techniques are purposefully crafted to pro-
vide intelligent yet pragmatic solutions that promote reliability, safety, and sustainabil-
ity. This paper contributes to the evolving landscape of intelligent industrial solutions 
by offering a comprehensive framework that optimizes performance while minimizing 
complexity and costs. In doing so, we lay the foundation for a more efficient and resil-
ient industrial ecosystem.
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Introduction
The fourth industrial revolution has ushered in a transformative era in industrial control, 
marked by the integration of artificial intelligence (AI). This integration not only empow-
ers machines with autonomous decision-making but also enhances the adaptability and 
flexibility of industrial control systems. By leveraging AI algorithms and machine learn-
ing techniques, these systems achieve improved efficiency, reduced human errors, and 
optimized performance. The copious data generated by industrial processes are effec-
tively harnessed by AI for tasks such as performance optimization, early anomaly detec-
tion, and enhanced product quality. This fusion of AI with industrial control streamlines 
processes, enhances reliability, and propels businesses towards heightened competitive-
ness and profitability [1–3].

Motivations and related works

Fault detection (FD) and fault-tolerant control (FTC) are fundamental functions within 
industrial control systems, ensuring safety and reliability. FD identifies deviations or 
malfunctions in the control system and the equipment it governs, facilitating timely 
intervention to mitigate potential disruptions. FTC, on the other hand, enables control 
systems to operate seamlessly in the presence of faults or malfunctions, often through 
adaptive control strategies or redundancy mechanisms. These components collectively 
enhance system reliability, minimize downtime, and optimize maintenance costs [4, 5].

The convergence of AI, FD, and FTC has captivated researchers, driving the integra-
tion of these fields. Recent years have seen a concerted effort to amalgamate AI tech-
niques with fault management strategies, resulting in intelligent systems capable of 
diagnosing and compensating for faults. This review examines contemporary studies 
that interlace AI methodologies with FD and FTC across diverse industrial systems. 
From robotic manipulators to unmanned aerial vehicles, injection molding processes, 
and DC servo motors, these studies offer a comprehensive exploration of neural net-
works, deep learning, reinforcement learning, iterative learning control, and other AI 
methodologies. They illustrate how AI can enhance fault detection accuracy and facili-
tate fault tolerance, even in intricate industrial systems fraught with uncertainties and 
time delays. The synthesis of AI and fault management holds promise to revolutionize 
industrial control systems by imbuing them with intelligent fault-handling capabilities.

Within this context, the present paper embarks on a journey to unlock the transforma-
tive potential of AI for fault management in industrial control systems. Armed with an 
array of methodologies, we delve into AI’s capacity to revolutionize fault detection and 
tolerance, contributing to the efficiency, resilience, and reliability of industrial processes. 
By scrutinizing existing literature, this review aims to illuminate the promise and possi-
bilities that AI offers to the realm of fault management in industrial settings. Subsequent 
sections delve into AI-driven approaches for fault diagnosis and fault-tolerant control 
across diverse industrial domains. By bridging the gap between AI and fault manage-
ment, this review seeks to enrich the knowledge landscape and propel the industrial sec-
tor into a new era of intelligent fault management.

Recent research has yielded a spectrum of fault detection and diagnosis (FDD) strat-
egies, showcasing their potential to tackle the intricate challenges posed by industrial 
systems. Notable contributions include:
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Qian et al. [6] offer an encompassing overview of autoencoder (AE)-based representa-
tion learning for FDD in industrial processes. Their review surveys state-of-the-art mon-
itoring strategies and future research prospects. Sun and Ma [7] introduce an enhanced 
kernel learning data-driven (EKLDD) algorithm for identifying multiple faults in indus-
trial systems. Incorporating dynamic features and considering measurement noise, 
the EKLDD method employs the FARMAX technique to capture variable interactions 
in time series data. The authors propose a monitoring scheme grounded in fault lines 
and angle statistics, validating its applicability through simulations and real-world case 
studies.

In [8], a novel deep learning framework named ADL-FDI4 is presented for fault diag-
nosis in Industry 4.0 applications. ADL-FDI4 adeptly combines long short-term memory 
(LSTM), convolutional neural networks (CNN), and graph CNN (GNN) to handle het-
erogeneous data. A branch-and-bound procedure is employed for parameter optimiza-
tion, leading to superior detection rates, reduced running times, and enhanced energy 
efficiency compared to baseline solutions. Xueyu Li et al. [9] propose an off-policy rein-
forcement learning (RL) algorithm for fault-tolerant control in industrial processes. This 
model-free RL algorithm learns from system trajectory data and solves a linear quadratic 
zero-sum game using the game algebraic Riccati equation (GARE). Simulation results on 
an injection molding process showcase the algorithm’s potential as an effective and effi-
cient fault-tolerant control approach.

Leveraging iterative learning control (ILC), [10] combines ILC with fault-tolerant 
control to mitigate process faults and guide the plant to a predefined reference trajec-
tory. The effectiveness of this method is demonstrated through simulation of a DC servo 
motor. Additionally, [11] presents an incremental learning approach based on CNN-AE 
for novelty fault detection in rotary systems. The method is validated through an experi-
mental case study on a fault machinery simulator, showcasing its potential to adapt to 
complex real-world manufacturing environments.

By harnessing Bayesian deep learning models, [12] proposes an advanced approach 
to FDD that accounts for prediction uncertainty. This entails using Automatic Differ-
entiation Variational Inference (ADVI) for Bayesian inference, extracting prediction 
uncertainty information, and integrating it into a risk function. Experimental validation 
on both open-source datasets and real case studies demonstrates the superiority of this 
approach over classical deep learning models.

Furthermore, [13] introduces a neural network state observer-based robust adaptive 
quantized iterative learning output feedback control (RAQILOFC) strategy for rigid-
flexible coupled robotic systems (RFCRSs). The method’s utilization of a neural network 
state observer facilitates accurate estimation of angular velocities, crucial for precise tra-
jectory tracking. Wu, Kang, and Yao’s method [14] proposes a learning observer for fault 
diagnosis and fault-tolerant control of manipulators, comprising both fault estimation 
and sliding mode fault-tolerant control. Verification through simulation underscores its 
effectiveness.

Fukai Zhang et al. [15] present a learning-based active Fault-Tolerant Control (FTC) 
scheme for robot manipulators, accommodating uncertainties and actuator faults. By 
employing dynamic learning theory and radial basis function networks, the FTC method 
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demonstrates effective fault detection and isolation, alongside fault compensation for 
improved control performance.

In [16], a fault-tolerant control approach is presented for faulty fixed-wing 
unmanned aerial vehicles (UAVs). This strategy combines prescribed performance 
functions and a PID-type filter to mitigate tracking errors in the presence of actua-
tor faults. A composite learning algorithm incorporating neural networks and dis-
turbance observers enhances fault tolerance for non-linearities, verified through 
Lyapunov stability analysis and experimental results.

These contributions collectively illustrate the diverse approaches and methodolo-
gies employed in modern FDD strategies, highlighting the rapid evolution and ongo-
ing innovation within this critical field of study.

The industrial landscape resonates with the prevalence of permanent magnet DC 
(PMDC) motors, a pivotal class of electric motors that employ permanent magnets to 
generate magnetic fields. Designed for precision control of speed and torque, PMDC 
motors find applications in domains such as robotics, machine tools, and automated 
manufacturing equipment. These motors, characterized by a simple construction 
comprising a stator and rotor housing permanent magnets and windings respectively, 
are seamlessly integrated with DC power sources and controllers. This synergy results 
in an efficient, durable, and easily controlled mechanism that orchestrates precise 
motion control.

The versatility and longevity of PMDC motors have rendered them indispensable 
in sectors where precise motion control is imperative. However, this ubiquity also 
necessitates robust control mechanisms capable of maintaining performance in the 
presence of faults and failures. It is within this context that the exploration of fault 
detection and fault-tolerant control strategies for PMDC motors assumes significance.

A plethora of methodologies has emerged to address the challenges of fault man-
agement in PMDC motors. Dilmi et al. [17] present a hybrid control strategy for the 
active fault-tolerant control of brushless DC motors (BLDCMs). Their approach inte-
grates interval type-2 fuzzy logic control with second-order sliding mode control, 
enhancing both static and dynamic performance. Notably, their strategy includes a 
fault detection algorithm that promptly identifies phase current imbalances and 
short-circuit faults, enabling timely fault mitigation.

Advancing the domain of fault tolerance, G. Sajitha et  al. [18] propose a novel 
fault-tolerant control (FTC) strategy tailored for brushless DC (BLDC) motor drives 
in electric vehicle applications. Their scheme adeptly employs direct torque control 
(DTC) under normal conditions and smoothly transitions to field-oriented control 
(FOC) in the event of voltage sensor failure. This approach ensures continuous drive 
system operation, enhancing reliability.

In pursuit of robust fault-tolerant strategies for PMDC motors, Umm-e-Aimen 
et al. [19] introduce a method that combines multiple models switching and tuning 
(MMST) with linear quadratic tracking (LQT). This approach, characterized by its 
robustness, effectively tracks time-varying sinusoidal reference signals despite actua-
tor faults. The combination of robust fault detection and isolation (FDI) strategies and 
efficient decision-making mechanisms culminates in a comprehensive fault-tolerant 
solution.
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The integration of AI and fault management strategies is evident in the work of 
Chu et al. [20], who employ neural network techniques for fault diagnosis in BLDC 
motors. Their exploration of neural network variants, including convolutional neural 
networks (CNNs) and deep neural networks (DNNs), reveals fault identification accu-
racy surpassing 95%.

Recent research [21] in BLDC motor control introduces an adaptive fractional order 
PID (FOPID) controller, enhanced by the Artificial Bee Colony (ABC) algorithm. This 
controller is designed to improve BLDC motor performance under various speed and 
load conditions, addressing challenges like settling time, steady-state error fluctuations, 
power instability, and nonlinearity. The controller prioritizes enhanced controllabil-
ity. Additionally, [21] focuses on optimizing the FOPID controller through integration 
with the ABC algorithm within a self-tuned regulator framework. This approach fine-
tunes the controller’s performance by minimizing a predefined objective function while 
adhering to critical inequality constraints. The study acknowledges Hall effect sensor 
limitations and proposes employing a Kalman filter for speed estimation, mitigating sen-
sor-related complexities. Simulation-based assessments underscore the superiority of 
the ABC-tuned FOPID controller in terms of time-domain behavior, control effort, and 
performance indices compared to traditional tuning methods. Experimental validation 
confirms the practical utility of this approach within real-world operational scenarios.

Vanchinathan and Valluvan [22] introduce an inventive strategy centered around the 
Bat algorithm (BA) for optimal tuning of fractional-order proportional integral deriva-
tive (FOPID) controllers aimed at regulating rotor speed in sensorless brushless direct 
current (BLDC) motors. By integrating the BA into this context, the study introduces 
a pioneering optimization algorithm capable of fine-tuning various FOPID control-
ler parameters, including Kp, Ki, Kd, lambda, and mu. The core focus of [22] is achiev-
ing desired speed control and robust performance through meticulously tuned FOPID 
closed-loop speed controllers, leveraging the Bat algorithm. The study extensively 
evaluates dynamic system behavior, emphasizing critical time-domain specifications 
such as peak time, overshoot percentage, settling time, rise time, and steady-state error. 
Compared with the Artificial Bee Colony (ABC) optimization method and modified 
genetic algorithm (MGA), the proposed Bat algorithm-based FOPID controller excels 
in enhancing transient characteristics and reducing steady-state error, showcasing its 
potential to elevate control performance.

Study [23] introduces an innovative approach termed the Whale Optimization Algo-
rithm (WOA) for optimal tuning of a fractional-order proportional integral and inte-
gral-order controller ( FOPI� ). The research focuses on the sensorless speed control of 
a permanent magnet brushless DC (PMBLDC) motor powered by solar photo-voltaic 
(PV) systems. Operating under varying conditions, including speed changes, solar PV 
output voltage fluctuations, load variations, integrated scenarios, and uncertain control-
ler parameters, the study addresses challenges associated with uncertainties, nonlin-
earity, and poor controllability. To enhance motor control performance, optimization 
algorithms, namely Bat algorithm (BA), Grey Wolf Optimization (GWO), and WOA, are 
proposed for FOPI� controller optimization. The study uses MATLAB 2019a/Simulink 
to develop and compare the effectiveness of proposed controllers, demonstrating that 
the WOA-optimized FOPI� controller outperforms other methods in terms of various 
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performance metrics and control efforts, making it an attractive choice for solar PV-fed 
sensorless speed control of PMBLDC motors.

These are but a few examples from the dynamic landscape of AI-driven control and fault 
management strategies for DC motors. Each study encapsulates a unique facet of fault 
detection, diagnosis, and tolerance, underscoring the transformative potential of AI in 
enhancing control and fault management across diverse industrial domains. Through the 
exploration of these innovative methodologies, this review seeks to unravel the complexi-
ties of AI-empowered fault management and its implications for industrial control systems.

Within this context, our paper introduces a pioneering approach to address the intricacies 
of fault detection and fault-tolerant control in PMDC motors. This innovative framework 
capitalizes on the amalgamation of reinforcement learning, machine learning techniques, 
and established industrial control strategies, engendering a paradigm shift in how these sys-
tems are managed.

Distinguishing itself from earlier studies, our approach embarks on a twin-pronged jour-
ney. The first facet involves swift and precise detection of sensor failures, orchestrated 
through a learning-enhanced observer. This observer augments traditional sensing mech-
anisms with learning-driven insights, enabling rapid identification of sensor malfunctions 
even in complex operational scenarios.

Complementing this proactive detection, the second facet of our approach revolves 
around maintaining consistent and reliable performance post-fault. To achieve this, we har-
ness the power of internal model-based fault-tolerant control. This strategy deftly adapts 
to fault-induced perturbations, mitigating their impact and ensuring continuous, safe, and 
optimal operation.

Notably, the proposed methodology extends beyond its application to PMDC motors, 
encompassing its versatility for addressing complex system faults across industries. By 
merging the sophistication of reinforcement learning, the acumen of machine learning 
techniques, and the robustness of industrial control strategies, we forge a comprehensive 
solution that optimizes performance, precision, and cost-effectiveness. This amalgamation 
is designed with pragmatism in mind, ensuring that the proposed approach retains its util-
ity even within the dynamic realm of Industry 4.0.

Key contributions

This paper rests on two pillars of innovation. Firstly, we harness the power of cutting-edge 
artificial intelligence tools, particularly reinforcement learning, to chart a new course in the 
landscape of fault detection and fault-tolerant control of PMDC motors. This integration 
transcends the confines of traditional methodologies, venturing into a realm of adaptability 
and intelligence that befits the complexity of industrial systems.

Secondly, our approach is characterized by its unwavering commitment to practical-
ity. We recognize the imperatives of real-world implementation and, therefore, engineer 
our framework with computational efficiency and simplicity at its core. This emphasis on 
minimizing complexity and cost renders our approach well-suited for adoption within the 
industrial arena, particularly under the banner of Industry 4.0. By doing so, we endeavor 
not only to bolster fault management strategies but also to catalyze the transformation of 
industrial control processes into intelligent, accessible, and forward-looking endeavors.
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Methods
PMDC motor system

Direct current (DC) motors are electromechanical systems that convert electrical energy 
into rotational mechanical energy. With attributes like high torque, controllable speed 
range, portability, and compatibility with various control methods, DC motors find wide 
applications in control systems. Among them, permanent magnet DC motors utilize a per-
manent magnet to generate the stator’s magnetic field. A schematic of a PMDC motor is 
depicted in Fig. 1.

Here, we present a linear approximation of the equations governing a PMDC motor sys-
tem [24].

The motor air-gap flux φ(t) is directly proportional to the field current, as expressed in 
Eq. (1) [24].

We assume that the motor torque Tm(t) is linearly related to both φ(t) and armature cur-
rent ia(t) . If a constant field current is sustained in a field coil, the Laplace transform of 
motor torque can be described as [24]:

Here, Km is influenced by the magnetic material’s permeability. The input voltage applied 
to the armature determines the armature current as given by Eq. (3) [24].

The back electromotive-force voltage, Vb(s) , is proportionate to the motor’s speed [24]:

(1)ϕ(t) = Kf if (t)

(2)Tm(s) = (K1Kf Ka)If (s) = KmIf (s)

(3)Va(s) = (Ra + Las)Ia(s)+ Vb(s)

(4)Vb = Kbω(s)

Fig. 1 PMDC motor schematics
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where ω(s) = sθ(s) denotes angular speed and the armature current is given by Eq. (5) 
[24].

The rotating inertia torque load is defined by Eq. (6) [24].

Furthermore, the relationship between TL(s) and other torque components is captured 
by Eq. (7) [24].

Here, J, b, and Td(s) represent friction, inertia, and disturbance torque, respectively.
Based on Eqs. (2) and (5)–(7), we derive the position control dynamics of the PMDC 

motor, which can be succinctly represented by the transfer function presented in Eq. (8) 
[24]:

This equation encapsulates the intricate interplay between motor characteristics and 
control variables, providing a concise mathematical expression of the PMDC motor’s 
position control dynamics

A graphical representation of the PMDC motor’s position control dynamics is pre-
sented in Fig. 2.

Reinforcement learning framework and agent‑environment interaction

The implementation of a reinforcement learning framework involves several key com-
ponents that collectively drive the learning process: Environment, Agent, State, Action, 
and Reward. In this section, we provide a more precise explanation of how these com-
ponents interact within our study to achieve fault-tolerant control of permanent magnet 
DC motors.

(5)Ia(s) =
Va(s)− Kbω(s)

Ra + Las

(6)TL(s) = J s2θ(s)+ bsθ(s)

(7)TL(s) = Tm(s)− Td(s)

(8)GPMDC(s) =
θ(s)

Va(s)
=

Km

s[(Js + b)(Ra + Las)+ KmKb]

Fig. 2 PMDC motor position control dynamics block diagram



Page 9 of 23Sardashti and Nazari  Journal of Engineering and Applied Science          (2023) 70:109  

Agent and environment

In our proposed approach, the environment represents the PMDC motor system, while 
the agent takes on the role of the PI controller. This alignment establishes an interactive 
loop where the agent, as the controller, interacts with the environment, aiming to opti-
mize the control strategy. The dynamic interplay between the agent and the environment 
is at the heart of the reinforcement learning paradigm, enabling the agent to learn opti-
mal control policies through trial and error.

Agent‑environment interaction

The interaction between the agent and the environment is a pivotal aspect of the RL 
process. At each time step, the agent selects an action to be applied to the environment, 
akin to a control signal. This action directly influences the motor’s behavior, affecting 
its response to the control effort exerted by the agent. The agent’s decision-making pro-
cess is guided by its observations and learned policy, with the objective of steering the 
motor’s behavior toward the desired trajectory.

States and observations

The state of the environment, as perceived by the agent, is encapsulated in its obser-
vations. These observations consist of two crucial components: the reference tracking 
error ( θref − θ ) and the integral of this error ( (θref − θ) dt). The reference tracking 
error reflects the disparity between the desired reference position ( θref  ) and the actual 
position of the motor ( θ ). The agent’s observations provide insights into these discrepan-
cies, allowing it to make informed decisions regarding the optimal action to be taken.

Rewards and learning

The agent’s action triggers a response from the environment, which generates a reward 
signal. This reward plays a pivotal role in guiding the agent’s learning process. The 
reward function (Reward) is designed to achieve a balance between minimizing the 
tracking error ( θref − θ ) and controlling the control effort (u(t)). Notably, the control 
effort (u(t)) reflects the amplitude of the control signal applied by the agent. By mini-
mizing the control effort, the agent ensures that control actions remain within practical 
limits, enhancing the stability and feasibility of the controlled system.

In conclusion, the reinforcement learning framework leverages the interactive rela-
tionship between the agent and the environment to optimize control strategies. Through 
the cyclical process of action, observation, and reward, the agent refines its policy to 
enhance position tracking accuracy and manage control signal magnitudes effectively. 
This understanding underscores the synergy between key RL components in achieving 
fault-tolerant control of permanent magnet DC motors

Primary control strategy

Reinforcement learning was selected as the approach for fault-tolerant control in this 
study due to its unique advantages over other advanced control algorithms. RL stands 
out as a powerful methodology for learning optimal control policies in intricate and 



Page 10 of 23Sardashti and Nazari  Journal of Engineering and Applied Science          (2023) 70:109 

uncertain environments, rendering it particularly well-suited for fault-tolerant control of 
permanent magnet DC motors. This technique is proficient in managing non-linear sys-
tems and addressing non-convex optimization challenges, which often prove difficult or 
infeasible for traditional control algorithms. Furthermore, RL offers the ability to adapt 
to dynamic conditions and minimize computational complexity by learning optimal 
control policies directly from empirical data. While various advanced algorithms exist in 
the field of control, RL has showcased promising outcomes across a broad spectrum of 
applications, including the realm of fault-tolerant control for diverse systems. Hence, RL 
was deliberately chosen as the preferred methodology for fault-tolerant control in this 
study, capitalizing on its distinctive strengths to tackle the complexities associated with 
systems like permanent magnet DC motors.

Our primary control strategy hinges on the proportional-integral (PI) control method, 
which forms the foundation of our control scheme. We embark on a comprehen-
sive evaluation of two distinct techniques for adjusting the controller coefficients: the 
renowned Ziegler-Nichols tuning method and the cutting-edge reinforcement learn-
ing tuning technique. The Ziegler-Nichols method, a widely adopted and pragmatic 
approach to tuning PID controllers, finds its place in the industry. In this study, we spe-
cifically employ the closed-loop Ziegler-Nichols frequency tuning method. The transfer 
function of the PI controller, a cornerstone of our methodology, is expounded as follow:

Here, the symbols Kp and Ki signify the proportional and integral gains, respectively.
This approach entails initializing the system within a closed-loop configuration, incor-

porating proportional control with an almost negligible gain. Gradually, we amplify the 
controller gain until the output initiates continuous oscillations at a specific frequency. 
Resultantly, the amplified gain is designated as the ultimate gain ( Ku ), while the oscilla-
tion period is referred to as the ultimate period ( Tu ). Employing these crucial values, we 
proceed to compute the controller coefficients as delineated in the following:

Aligned with the framework illustrated in Fig.  3, the implementation of the RL-
based fault-tolerant control methodology employs the twin-delayed deep determin-
istic policy gradient (TD3) algorithm to fine-tune the PI controller gains, Kp and 
Ki . For the development and implementation of the RL framework, the MATLAB/
Simulink environment was utilized. This algorithm was chosen over its counterparts 

(9)GPI(s) = Kp +
Ki

s

(10)Kp = 0.45ku,Ki = KuTu/1.2

Fig. 3 Reinforcement learning-based control framework
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due to its model-free nature, dispensing with the requirement for an environment 
model to make decisions. Additionally, its online learning capacity enables real-time 
policy updates based on incoming observations. The TD3 algorithm enhances stabil-
ity and learning speed by employing two critic networks instead of one. Within the 
TD3 agent, three pivotal components comprise the architecture: the actor-network 
and two critic networks, collectively approximating the long-term reward. The actor-
network takes on the role of determining appropriate actions in response to observed 
states, while the critic networks evaluate the potential long-term consequences of 
those actions. By minimizing the mean-squared error between their predictions and 
actual rewards, the critic networks enhance their accuracy in predicting long-term 
rewards.

The TD3 algorithm extends from DDPG (Deep Deterministic Policy Gradients), 
addressing certain limitations of the latter. This extension is realized through the 
use of two critic networks, the introduction of a delay between the actor and critic 
networks, and the employment of target networks for both. These adjustments con-
tribute to the stabilization of the learning process and the overall enhancement of 
algorithmic performance. TD3 has demonstrated notable efficacy across diverse 
applications, spanning control problems, robotics, and video game contexts, render-
ing it a suitable choice for addressing the challenge at hand. Further insights into this 
algorithm can be found in [25].

The architecture and hyperparameters of the neural network, specifically the actor-
network and critic networks employed in the TD3 algorithm, have been meticu-
lously determined for optimal performance in the MATLAB/Simulink environment. 
The actor-network serves the purpose of selecting appropriate actions based on the 
observed state, with the gains of the PI controller, Kp and Ki , represented as absolute 
weights within the actor-network.

The architecture of the neural network encompasses layers designed to efficiently 
capture the intricate relationships within the control problem. The hyperparameters, 
such as the number of neurons in each layer, activation functions, and learning rates, 
were carefully tuned to ensure effective learning and convergence.

The RL agent comprises a policy for generating actions and a methodology for itera-
tively updating this policy by maximizing a defined reward function. Observations from 
the environment, in this case, the PMDC motor, provide the input for the RL agent’s 
interaction with the system. These observations encompass the reference tracking errors 
( θref − θ ) and their corresponding integrals ( 

∫

(θref − θ) dt). The primary objective of the 
RL agent is to optimize the reward function by minimizing position tracking errors and 
control effort. The policy for action generation is embodied in the actor-network-a neu-
ral network that maps observations to specific actions. Notably, the gains of the PI con-
troller, Kp and Ki , are encoded as absolute weights within the actor-network. The reward 
function, as defined, captures the essence of this optimization endeavor:

Breaking down the components of the reward function, it encompasses two pri-
mary terms. The first term, 2(θref − θ) , directly addresses the objective of diminishing 

(11)Reward = −
[

2(θref − θ)+ 0.01u(t)
]
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the disparity between the desired reference position (θref ) and the actual position (θ) 
of the motor. This term is intrinsically linked to the attainment of precise and reliable 
position tracking, thereby enhancing the overall quality of control.

The second term, 0.01u(t), is of paramount significance in its role as a regulatory 
mechanism for the control effort. This term echoes the emphasis placed on optimiz-
ing control actions while simultaneously averting the escalation of control signal mag-
nitudes to impractical levels. The weight of 0.01 assigned to this term underscores the 
intentional approach of moderating control effort within our framework.

Collectively, the multidimensional reward function we present seeks to harmonize 
accurate position tracking with judicious control effort management. Our intention 
remains rooted in the creation of control strategies that not only excel in perfor-
mance but also uphold the sustainability and operational practicality of the controlled 
system.

Throughout the training process, carried out in the MATLAB environment, the 
actor and critic networks undergo iterative updates aimed at identifying the optimal 
control policy that maximizes the reward function. Notably, the critic networks play 
a pivotal role in evaluating the long-term implications of the control gains Kp and Ki , 
achieving this by mapping observations to approximations of the anticipated long-
term reward. This comprehensive training environment provides a robust platform 
for developing and fine-tuning the reinforcement learning-based fault-tolerant con-
trol strategy for permanent magnet DC motors.

For our PI controller, we adopt a simplified representation in the form of a neural 
network with a singular fully connected layer. The critical Kp and Ki gains of the PI 
controller are precisely mirrored by the absolute weights within the actor-network. 
These essential parameters are summarized in Table 1.

Further insight into the controllers’ comparative performance is provided by Fig. 4, 
where we juxtapose the step responses of the two controllers. These comparative sim-
ulations were conducted within the Matlab/Simulink environment, utilizing the fol-
lowing model parameters in Table 2.

A more granular assessment of performance characteristics is offered by Table  3, 
which delves into various performance criteria of the two controllers.

Here, “RT,” “TT,” and “ST” correspond to rise time, transient time, and settling time, 
respectively. The outcomes elucidated within Table  2 compellingly underscore the 
superior performance of the reinforcement learning-based (RL) controller in compari-
son to its counterpart. Consequently, the RL-based controller forms the bedrock of our 
approach to implementing fault-tolerant control. By harnessing the enhanced capabili-
ties of the RL-based controller, this approach fortifies the system’s resilience, enabling 
stable operation even when confronted with faults or other external disturbances.

Table 1 The controllers’ derived gains

Controller type Kp Ki

ZN 114.75 3.825

RL 3.7685 0.124
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Fig. 4 Comparison of the step responses of the two controllers

Table 2 Network structure, hyperparameters, and DC motor parameters

Component Description

Actor network

    Layers Fully connected PI layer

    Input Observations

    Output Control actions

Critic network

    State path layers Fully connected layer with 32 neurons

    Action path layers Fully connected layer with 32 neurons

    Input Observations and control action

    Output Q-values

Hyperparameters

    Actor learning rate 1e−3

    Critic learning rate 1e−3

    Gradient threshold 1

    Mini-batch size 128

    Experience buffer length 1e6

    Exploration model Gaussian noise with a variance of 0.1

DC motor parameters

    L 0.05

    R 1

    Km 0.05

    Kv 0.05

    J 1e−5

    b 1e−2
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It is noteworthy to emphasize that the contrast with the Ziegler-Nichols tun-
ing method stems from an industrial perspective, where a pragmatic one-size-fits-
all approach is often favored over intricate model-based techniques. The Z-N tuning 
method furnishes an initial estimate to render the control loop operational, which can 
subsequently be fine-tuned based on the actual dynamics of the system. In practical sce-
narios, recurrent model updates can prove unfeasible; hence, the necessity for a straight-
forward method to establish the initial settings accurately. The RL-based approach we 
employ endeavors to surmount certain limitations intrinsic to the Z-N method, all while 
preserving a manageable complexity to align with industrial applicability.

Fault tolerant control

Figure 5 illustrates the proposed fault-tolerant control strategy, designed to swiftly iden-
tify system faults and reconfigure the control system to ensure stability and sustained 
performance. The strategy comprises three pivotal elements: residual generation, resid-
ual evaluation, and fault-tolerant control (FTC) logic.

For fault detection, an observer-based technique inspired by methods presented 
in [26] is employed. This technique involves comparing the system’s output with the 
observer’s output to generate a residual signal, which is subsequently subjected to analy-
sis using a machine learning approach centered around the Mahalanobis distance met-
ric. The Mahalanobis distance metric, renowned for assessing the distance between 
a sample point and a distribution, is harnessed to facilitate tasks such as multivariate 
anomaly detection, imbalanced dataset classification, and one-class classification.

In the event that the fault detection unit detects erroneous sensor data, the controller 
seamlessly transitions to utilizing its internal model to derive dependable observations 
until the sensor fault is rectified. A comprehensive elucidation of this process will be 
expounded upon in subsequent sections.

Table 3 Comparison of the performance of the two controllers

Controller type Overshoot Peak RT TT ST

ZN 81.27 1.81 0.01 0.71 0.71

RL 7.50 1.08 0.1 0.31 0.31

Fig. 5 Fault-tolerant control strategy
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Observer design

To effectively address the influence of sensor measurement noise, our approach employs 
a Kalman filter, a robust method renowned for its efficacy in estimating and controlling 
linear systems. The system’s dynamics can be encapsulated within the following linear 
discrete-time model [5]:

Here, f(k) represents the fault vector, v(k) accounts for measurement noise, and w(k) 
characterizes process noise. Both noise sources are presumed to adhere to a zero-mean 
white noise pattern, their covariance matrix is stipulated as follows, in accordance with 
[5]:

The Kalman observer design for this system adopts the subsequent form [5]:

The Kalman observer gain K is ascertained through the following equation, derived 
from [5]:

Furthermore, the computation of K necessitates determining the symmetric and semi-
positive solution P to the ensuing discrete algebraic Riccati equation, as detailed in [5]:

For the assessment of potential faults, a residual signal is defined as follows:

Subsequent analysis of this residual signal is delegated to the residual evaluation unit, 
empowered by machine learning techniques.

Residual evaluation

The Mahalanobis distance emerges as a potent and versatile metric for detecting out-
liers, finding widespread utility across diverse research domains and practical applica-
tions. Especially well-suited for high-dimensional data marked by correlated variables 
and instances of missing data, the Mahalanobis distance’s salient attributes make it an 
indispensable tool in real-world challenges. Its capability to account for variable corre-
lations, scale-invariance, outlier sensitivity, and adaptability to missing data solidify its 
efficacy as an outlier detection mechanism [27].

(12)
x(k + 1) =Ax(k)+ Bu(k)+ Ff (k)+ w(k)

y(k) =Cx(k)+ Du(k)+ Ff (k)+ v(k)

(13)E

([

w(k)
v(k)

]

[

wT (l) vT (l)
]

)

=

[

Qw Qwv

Qwv Qv

]

(14)x̂(k + 1) = Ax̂(k)+ Bu(k)− K (y(k)− Cx̂(k)− Du(k))

(15)K = −(APCT + Qvw)(Qv + CPCT )−1

(16)
P =APAT

− (APCT + Qwv)(Qv + CPCT )−1(CPAT + QT
wv)

+ Qw

(17)r(k) = y(k)− Cx̂(k)− Du(k)
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Given these advantages, we opted for the Mahalanobis distance as the cornerstone of 
our residual evaluation strategy, leveraging its robust outlier detection capabilities and 
straightforward implementation. The computation of the Mahalanobis distance entails 
establishing the distance between a vector x and a distribution characterized by mean µ 
and covariance � , expressed as follows:

In terms of standard deviations, this distance conveys the extent to which x deviates 
from the mean.

During the training phase, we employ residual signal data from healthy conditions to 
calculate the Mahalanobis distance between the training dataset and its corresponding 
distribution. Subsequently, for fault detection, we utilize the maximal Mahalanobis dis-
tance value as a threshold score. This threshold can be tuned based on desired sensitivity 
levels. Consequently, the incorporation of the Mahalanobis distance within the residual 
evaluation component empowers robust fault detection, triggering timely responses 
from the control system to preserve system performance and efficacy.

Results and discussion
In this section, we present a comprehensive evaluation of the proposed fault-tolerant 
control strategy. To initiate the assessment, we focus on the motor position tracking sys-
tem’s performance under a reference input, illustrated in Fig.  6. This preliminary step 

(18)dM =
√

(x − µ)�(x − µ)T

Fig. 6 System tracking healthy response with RL-based PI control
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underscores the accuracy of the reinforcement learning-based control in maintaining 
precise tracking during healthy conditions and in the absence of faults.

Transitioning to more intricate scenarios, we explore the system’s behavior in the 
presence of faults. Specifically, two fault scenarios are examined: a bias fault and an 
additive sinusoidal fault affecting the position sensor measurements. In the first sce-
nario, depicted in Fig. 7, a bias fault with an amplitude of 2 emerges at t = 5 seconds 
( f1(t) = 2step(t − 5) ). While the fault’s influence is evident, the absence of a fault-tol-
erant control system permits the system to eliminate the fault’s impact, a phenomenon 
known as fault hiding. This situation underscores the need for robust fault detection and 
fault-tolerant control to preemptively address such imperceptible anomalies.

In the second scenario, depicted in Fig. 8, an additive sinusoidal fault with an ampli-
tude of 2 is introduced at t = 5 seconds ( f2(t) = 2sin(t)step(t − 5) ). In this case, the 
controller’s inability to counteract the fault’s effect substantially impairs system per-
formance. This outcome underscores the pivotal role of fault-tolerant control systems 
in swiftly detecting and mitigating fault-induced disturbances. The absence of such a 
system can lead to severe performance degradation and potential system failure. This 
underlines the paramount significance of a robust and efficient fault-tolerant control 
strategy to ensure both the safety and reliability of the system.

The introduced fault-tolerant control strategy is then assessed, demonstrating its 
efficacy in fault detection, residual generation, and residual evaluation. Figures  9 and 
10 present the outcomes of the residual generation and evaluation subsystems, which 
collaborate to signal fault occurrences promptly. This signal enables the fault-tolerant 

Fig. 7 System tracking faulty response in bias sensor fault scenario
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Fig. 8 System tracking faulty response in sinusoidal sensor fault scenario

Fig. 9 Residual generation and evaluation in bias sensor fault scenario
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Fig. 10 Residual generation and evaluation in sinusoidal sensor fault scenario

Fig. 11 Fault-tolerant control strategy response in bias sensor fault scenario
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control strategy to take swift action, as confirmed by the response displayed in Figs. 11 
and 12. The synergy between the fault detection and residual generation subsystems 
results in a non-zero residual signal post-fault, serving as a fault indicator. Subsequently, 
the residual evaluation subsystem scrutinizes this residual, triggering the fault-tolerant 
control strategy upon surpassing a pre-defined threshold.

It is important to underscore that this paper’s perspective emanates from industrial 
control applications, where simplicity, minimal computational demands, and ease of 
implementation are paramount considerations. While advanced simulations and mod-
eling techniques can offer deeper insights, they concurrently amplify system complexity 
and computational overheads significantly. In industrial contexts, solutions with sim-
plicity and manageability are preferred, given the constraints of available computational 
resources.

The significance of fault detection and fault-tolerant control in ensuring industrial sys-
tem safety and reliability cannot be overstated. Nonetheless, it is imperative that such 
approaches do not inadvertently introduce complexity, inflate costs, or hinder imple-
mentation and maintenance efforts. The approach posited in this paper strikes a balance 
by integrating learning-based techniques with conventional components in a straight-
forward yet efficacious manner. While advances in modeling, simulation, and computing 
open up new horizons, the practicality of simplicity, cost-effectiveness, and user-friend-
liness remains pivotal within an industrial framework.

Fig. 12 Fault-tolerant control strategy response in sinusoidal sensor fault scenario



Page 21 of 23Sardashti and Nazari  Journal of Engineering and Applied Science          (2023) 70:109  

Conclusions
This study has addressed the crucial challenges of fault diagnosis and fault-tolerant con-
trol within the framework of a permanent magnet DC motor affected by sensor faults. 
Through the integration of a reinforcement learning-based approach, we have intro-
duced an innovative methodology for optimizing the proportional-integral control 
coefficients, customized specifically for motor position control. By conducting a com-
parative analysis against the Ziegler-Nichols method, we have clearly demonstrated the 
superior performance of our approach, characterized by computational efficiency and 
user-friendly implementation, thus making it accessible even to those without extensive 
expertise.

The introduction of an observer-based mechanism for residual signal generation, 
coupled with the employment of the Mahalanobis distance for rapid and accurate fault 
detection, has been pivotal in our strategy. To address sensor faults, we harnessed the 
capabilities of an internal model-based control approach. It is noteworthy that our meth-
odologies have been thoughtfully crafted for ease of understanding and deployment, 
eliminating the necessity for specialized knowledge. This inherent simplicity allows for 
seamless integration with minimal additional cost, further solidifying their practicality.

As a trajectory for future research, we propose extending the evaluation to encompass 
nonlinear systems, exploring the adaptability of our methods to various fault types such 
as actuator or system faults, delving into scenarios involving cyber-attacks, and refining 
the reward function to amplify overall performance. By venturing into these directions, 
the applicability and robustness of our fault-tolerant control strategy can be further 
enhanced, paving the way for safer and more reliable industrial systems.
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