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Abstract 

Ultra-high performance concrete (UHPC) benefits the construction industry due to its 
improved flexibility, high workability, durability, and performance compared to nor-
mal concrete. Some investigators have conducted observed papers on the UHPC’s 
mechanical properties for establishing a reliable analytical approach for calculating 
the compressive strength, tensile strength, slump, etc. However, most of these studies 
were performed with limited samples because of the UHPC’s high cost. This study aims 
to predict the compressive strength (CS) of UHPC through hybrid machine-learning 
approaches. The model is included Adaptive-Network Fuzzy Inference System (ANFIS). 
Moreover, three meta-heuristic algorithms were employed to improve the devel-
oped model’s accuracy, including the Generalized Normal Distribution Optimization, 
the COOT optimization algorithm, and the Honey Badger Algorithm. Several metrics 
were used to compare and assess the performance of the hybrid models in the frame-
work of ANGN, ANCO, and ANHB. A comparison of the predicted and measured 
results generally shows that the proposed developed models can reasonably estimate 
the mechanical properties of UHPC. The results indicated that the ANHB model could 
estimate the CS of UHPC with the most suitable accuracy.

Keywords:  Ultra high-performance concrete, Compressive strength, Adaptive-
Network Fuzzy Inference System, Generalized normal distribution optimization, COOT 
optimization algorithm, Honey Badger Algorithm

Introduction
Ultra-high-performance concrete (UHPC) is a new development in concrete technology. 
UHPC is a durable cement-based composite with high tensile and compressive strength 
[1]. Improved mechanical properties increase the shear strength, flexural strength, and 
concrete structures’ durability. UHPC is currently utilized in some concrete structures, 
typically containing precast waffle panels for bridge decks, precast/prestressed bridge 
girders, and connecting materials between precast concrete deck slabs and beams [2, 3]. 
In 2001, the USA began using UHPC for highway infrastructure. In addition, replacing 
normal concrete with UHPC saves materials and reduces labor costs and installation [4]. 
Regardless, the benefits have not been commonly identified due to the specific needs 
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regarding the material variables employed for producing UHPC blends and the UHPC’s 
high cost [5].

But getting the right mixture for UHPC sampling is tedious and time-consuming. 
For this reason, artificial intelligence (AI) has replaced laboratory work to predict the 
mechanical properties of UHPC [6–8]. Machine learning (ML) algorithms have been 
widely utilized to assess estimative results that nearly match the experiment, like arti-
ficial neural networks (ANNs). Nevertheless, an investigation may contain a complete 
test matrix with many parameters, of which the majority show little assistance to the test 
results. These computer scientists for developing new selection algorithms according to 
data-driven models [9]. Demand for software calculating tools in estimating engineering 
components, systems, and materials continues to grow.

Therefore, ANN has appeared as one of the most popular software computational 
models successfully used in many engineering problems [10]. In general, ANN has been 
executed in pattern and character recognition prediction and approximation, classifica-
tion, image processing, prediction, optimization, and control of corresponding issues. 
This has prompted investigators have been offered ANN models for solving many civil 
engineering problems [11–13]. Moreover, wide applications in modeling the ANN 
behavior of specific texture elements have been reported in several studies. Investigator 
interests have turned to using various ANN models to solve predictive building materi-
als challenges in recent years consisting of concrete, steel, and composite [14–16].

Most of the issues corresponding to concrete properties, such as new properties and 
hardening, have been solved employed ANN models according to the collected observed 
dataset. In addition, the compressive strength (CS) estimation of concrete by the ANN 
model is a topic of continuous investigation. This has prompted investigators to use the 
ANN calculation to evaluate the CS of light-weight, normal-weight, and recycled con-
crete [17–19]. Other researchers have investigated different predictive models to explain 
high-performance concrete’s compressive strength, employing various ML methods. 
Subsequently, the emergence of UHPC has caused the fundamental development of 
the ANN model toward prediction. Investigators have generated ANN to simulate the 
UHPC performance accurately [20, 21].

Awodiji et al. [22] trained a series of ANN models to examine the relationship between 
CS and the ratio of material mass to set an age for various hydrated lime-cement con-
crete. Kasperkiewicz et  al. [23] used ANN to optimize silica, cement, fine and coarse 
aggregates in superplasticizer, and water high-performance concrete (HPC) regardless 
of data complexity, incompleteness, and consistency predicted an excellent mixing ratio. 
They showed a significant correlation between the observed actual and estimative val-
ues, and ANN models can be used to approximate optimal mixtures. Ghafari et al. [24] 
studied a backpropagation neural network (BPNN) implementation and statistical mix-
ture designed for estimating the UHPC needed performance. They aim to use BPNN 
and statistical blend design for assessing the CS and consistency of UHPC in two various 
curing modes, including primarily wet and steam curing. The 53 concrete samples were 
designed according to a statistical mixture design sizing matrix, and the components 
that create the mixture were accepted as separated parameters in the BPNN model. The 
results showed that BPNN can predict CS and slump more accurately than the statistical 
mixed method.
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Regardless, these black box models provide very little information about what hap-
pens during the process of the ANN calculator. Thus, when evaluating the performance 
of UHPC blends, resolving this equivocation will be the next step in driving the motion 
to deploy intelligent algorithms while proving it mathematically. Deep ML applications 
have indicated promising work when optimization strategies during the ANN training 
phase are exploited to iteratively choose parameters that affect the model’s accuracy [22, 
25]. Then the selected parameters can be used in ANN or any other intelligent regres-
sion algorithm to improve the accuracy of the prediction model while understanding the 
physical phenomenon behind these selections [26].

UHPC is a material with complex and nonlinear behavior that poses a challenge for 
modeling using conventional analytical techniques. However, using an Adaptive neuro-
fuzzy inference system (ANFIS) can provide a solution for developing a predictive model 
for the compressive strength (CS) of UHPC. ANFIS can capture the intricate nonlinear 
relationships between the input variables, such as mixed design parameters, and the out-
put variable, CS. The study aims to present ML models containing ANFIS to identify 
critical parameters affecting the accuracy of UHPC CS estimation. ANFIS uses a set of 
fuzzy rules to represent the mapping between the input and output variables. Compre-
hensive data of multi-parameter experimental results have been compiled from pub-
licly available CS of UHPC analysis. In addition, when combined with the model, three 
innovative algorithms increase the accuracy of the prediction and reduce the error of 
the results. Algorithms that form a hybrid model by combining with the corresponding 
model include generalized normal distribution optimization (GNDO), COOT optimiza-
tion algorithm (COA), and Honey Badger Algorithm (HBA). The hybrid models’ frame-
work consists of ANGN, ANCO, and ANHB. To evaluate the models, some metrics have 
been used to select the most appropriate model are discussed in the following sections.

Methods
Dataset

Table 1 shows the constitutive variables of the UHPC samples based on empirical tests 
from the published paper [27]. In Table 1, the minimum (Min), maximum (Max), average 
(Mean), and standard deviation (St. Dev.) of the variables are specified that the inputs 
are cement, silica fume, fly ash, sand, steel fiber, quartz powder, water, and admixture, 

Table 1  The properties of data set components engaged in the modeling process

Components Units Properties

Max Min Mean St. Dev

C (Kg/m3) 1600 383 879.707 331.28

SF/C (%) 0.332 0 0.214 0.0848

FA/C (%) 1.011 0 0.053 0.1323

S/C (%) 4.699 0 1.447 1.1751

STF/C (%) 0.447 0 0.0395 0.076

QP/C (%) 0.937 0 0.0469 0.157

W/C (%) 0.514 0.0375 0.238 0.0636

Ad/C (%) 0.281 0 0.0385 0.0399

CS (MPa) 240 95 152.223 31.603
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and the output is compressive strength. In addition, the dataset contains 132 samples, of 
which 92 belonged to the training and 40 to the testing phase. Also, the distribution of 
the dataset is indicated in Fig. 1 [28].

Furthermore, Table  2 shows the correlation between the input and output varia-
bles. The values in the matrix indicate a negative correlation between the compressive 
strength (CS) of UHPC and variables such as C, SF/C, QP/C, and Ad/C. In contrast, 

Fig. 1  The histogram for the input and output variables

Table 2  The correlation between the input and output variables
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a positive correlation exists between CS and variables such as FA/C, S/C, STF/C, and 
W/C. Moreover, the correlation matrix reveals interesting interdependencies between 
some independent variables, including a robust negative correlation between C and S/C 
and a strong positive correlation between S/C and W/C.

Adaptive neuro‑fuzzy inference system

A fuzzy set consists of elements with different membership levels. The degree of mem-
bership offers flexibility in modeling fuzzy collections [29]. Several inference approaches 
like Mamdani and Sugeno are created for fuzzy rule-based systems [30]. Distinguish the 
output of fuzzy rule from sharp function. In Sugeno’s system, a typical representation of 
fuzzy rules is represented by when x1, x2, andxN are A1, A2, and AN, alternatively, then 
y = f (x) here A1,A2, ..., andAN represents fuzzy sets, and y represents the hash function. 
The result of each rule is a weighted average used to calculate the results of all the rules 
and a separate value in this technique. The explanation of a nonlinear map of the system 
is like a Kanno-type system (fFS) can be defined as follows:

Here, N  denotes the number of rules and hi denotes the membership function of fuzzy 
collection. From ANFIS, membership functions have been repeatedly determined to 
produce the correct output. Many membership functions exist, such as Bell, trigonomet-
ric, trapezoidal, and Gaussian. The functions of Gaussian membership were employed in 
this analysis. The function of Gaussian used as

In Eq.  (2), s and m indicate the standard deviation and the dataset’s mean. Training 
techniques are generally performed via two strategies containing hybrid learning algo-
rithms and backpropagation in the ANFIS methodology (Appendix 1).

Generalized normal distribution optimization

GNDO inspired the theory of normal distribution [31]. A normal distribution can be 
determined by expecting a random variable x to follow a probability distribution with 
location parameter (μ) and scale parameter (δ). Its probability density function can be 
determined as follows:

In Eq. (3), x indicates a normal random variable, and the normal distribution, µ and 
δ show the position of parameters and the scale parameter utilized to define the mean 
and standard variance of the random variable alternatively. Based on the relation-
ship between the normal distribution and the distribution of individuals within the 
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population in Eq.  (4), a generalized normal distribution model can be constructed for 
optimization:

Here V t
i  represents the tracking vector of the i − th individual at time t, µi represents 

the overall mean position of the i-th individual, δi represents the generalized standard 
variance, and p shows the indicative penalty coefficient. In addition, µi , δi , and p can be 
defined as follows:

In the above equations, r , �1 , and �2 represent random numbers between 0 and 1, xtbest 
represents the current best position, and a represents the current average position of the 
population. Furthermore, the a is determined as

Global Exploration finds promising regions in language regions around the world. 
GNDO’s global scan assumes three randomly chosen people, which can be given in 
Eq. (9):

In Eq. (9), �3 and �4 represent two random numbers that follow a normal distribution, 
b shows the adjustment parameter representing a random number between 0 and 1, and 
V1 and V2 represent two tracking vectors. Alternatively, V1 and V2 can be calculated as 
follows:

Here p1 , p2 , and p3 show the three random integers selected from 1 to N.

COOT optimization algorithm

Coots are small aquatic birds of the family Rallidae. They form the genus Fulica, which 
in Latin means "coot". The algorithm begins with a first-order random population of 

(4)V t
i = µi + δi × p, i = 1, 2, 3, . . . ,N
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x = {x1, x2, …, xn} [32]. A random population is often evaluated by the target function 
to determine the target values V = {V1,V2, . . . ,Vn} . The population is calculated in 
visible space as

where P(i) is the coot position, d shows the dimension of the problem and ub, lb shows 
the upper and lower bounds of the search space.

Furthermore, the fitness of each solution must be computed using the objective 
function Oi = f(x) after the initial population is generated and given the position of 
each agent. Choosing some coot to be the team leaders. To find a random position 
based on Eq. (13), move the coot to an arbitrary position in the search room.

Coot motions explore different parts of the search distance. This movement takes 
the algorithm out of the local optimal point when the algorithm gets stuck in the local 
optimal point. The new position of the “coot” is calculated according to Eq. (14)

In Eq. (14), r is a random number between 0 and 1, and J  can be calculated as:

where T  shows the current iteration and MaxIter shows the maximum iteration.
Chain development can be performed utilizing the average position of two coots. 

Another way to realize chain movement is that first calculate the distance vector 
between the two coots, then bring the larger coot closer together by about half the 
vector distance. Utilizing the primary strategy, the new position of the coot is calcu-
lated as follows:

where P(i − 1) shows the second coot.
The remaining coots may have to control their position and approach according to 

the group leader, and several coots manage the group in front of the group. The idea 
is to maintain its position depending on the Leader. The Leader’s average position 
can be considered, and the coot can upgrade it according to this average position. 
Expecting mean position leads to premature convergence. Using a mechanism for the 
motion implementation as

where I is the index number of the Leader, c is the current coot number, and N  is the 
number of leaders.

Depending on the Leader’s position, the coot should upgrade its position. The coot’s 
next position, according to the chosen Leader, can be determined as follows:

(12)P(i) = r(1, d)× (ub− lb)+ lb

(13)G = r(1, d)× (ub− lb)+ lb

(14)P(i) = P(i)+ J × r × (G − P(i))

(15)J = 1− T ×
(

1

MaxIter

)

(16)P(i) = 0.5× (P(i − 1)+ P(i))

(17)I = 1+ (cN )
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where P(i) indicates the coot’s current position, p determines the chosen Leader’s posi-
tion, and r1 shows a random number in the interval [− 1,1].

Groups need to be aligned themselves with their goals, so leaders need to update their 
positions on purpose. Equation (19) suggests upgrading the leader position as the for-
mula finds a suitable location around the current sweet point. Managers must step away 
from their best fit to find the correct position. This equation provides a great way to get 
closer to or farther from the optimal position.

where L indicates the best location found so far, and D can be determined as

In addition, the COA pseudo-code has been shown in Algorithm 1.

Honey Badger Algorithm

The HBA imitates the Honey Badger search method [33].
Initialize each position based on the number of badgers (N) as

In Eq.  (21), xi shows the honey badger’s ith position associated with the candidate 
solution for the N population, r1 indicates a random number between 0 and 1, lbi and ubi 
determine the explore region’s lower and upper bounds, alternatively.

Intensities included space between prey concentrations and prey and honey badgers. 
Ii indicates the intensity of the prey’s odor. The motion is slow, and vice versa when the 
odor is strong, described by the inverse square law [34] expressed as

where r2 shows the random number between 0 and 1, s indicates the concentration’s 
strength, Si is the space between the ith badger and the prey.

The density factor manages time-varying randomness from Exploration to exploitation 
to allow a smooth transition. In addition, updating the density factor, which decreases 
with iteration, to account for randomness over time can be determined as follows:

Here, C indicates a constant ≥ 1 (default = 2) and tmax shows a maximum iteration 
number.

(18)P(i) = p+ 2× r × cos(2πr1)× (l − P(i))

(19)p =
{

K × r × cos (2πr1)× (L− p) if r < 0.5(a)
K × r × cos (2πr1)× (L− p)− L if r ≥ 0.5(b)

}

(20)K = 1− T ×
(

1

MaxIter

)

(21)xi = lbi + r1 × (ubi − lbi)

(22)
Ii = r2 × s

4πS2i

s = (xi − xi+1)
2

Si = xprey − xi

(23)a = C × exp

(

−t

tmax
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The output of the local optimal step and the position of the agent’s actions are used to exit 
the locally optimal region. In the explore space, the developed algorithm exploits an indica-
tor to change the direction of discovery to benefit from significant opportunities for tight 
roaming agents.

HBA position (xnew) update techniques are divided into two sections containing the “min-
ing phase” and the “crypt phase.” During the digging phase, a badger indicates an action 
similar to cardioid conformation [35]. Cardioid movement can be calculated as follows:

In Eq.  (24), xprey indicates the position of prey, this is the best position found so far, 
in other words, the best overall position. c ≥ 1 (default = 6) is the ability of the badger to 
achieve food, r3 , r4 , and r5 shows various random numbers between 0 and 1, and e acts as a 
explore direction change flag, which can be calculated as

During the digging phase, honey badgers strongly depend on prey odor intensity, space 
between prey and badger, and time-varying food-influence factors. Additionally, badgers 
can detect every F sound, making it easier to locate prey when foraging.

If the honey badger follows the honeyguide to achieve the hive, this is presented as:

Algorithm 2 has indicated the HBA pseudo-code.

Performance evaluation methods

Evaluating the performance of the hybrid models during the training and testing sections 
is an essential step in ensuring that the model performs well against future unpublished 
datasets in terms of robustness, accuracy, and generalizability. Specifically, statistical met-
rics can be used to assess the ML model’s error in estimating the target. This paper used the 
coefficient of determination (R2), mean squared error (RMSE), the median of absolute per-
centage error (MDAPE), mean absolute error (MAE), and uncertainty 95% (U95) to assess 
the predictive accuracy of each model in the following:

(24)
xnew = xprey + e × c × S × xprey + e × r3 × a× di × |cos(2πr4)× [1− cos(2πr5)]|

(25)I =
{

1 if r6 ≤ 0.5

−1 else

(26)xnew = xprey + e × r7 × a× Si

(27)R2 =





�n
i=1(pi − p)(ri − r)

�

�
�n

i=1(pi − p)2
��
�n

i=1(ri − r)2
�





2

(28)RMSE =

√

√

√

√
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n

n
∑
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2

(29)MAE =
1

n

n
∑

i=1

|pi − ri|
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In the above equations, n determines the sample number, ri and pi are actual and pre-
dicted values, p and r are the mean values of predicted and actual, alternatively.

Results and discussion
This section will be discussed the results obtained from the model in two parts containing 
training and testing, in which 70% of the sample evaluation involved the training phase and 
30% were assigned to the test. In addition, the models are evaluated and compared with each 
other to choose the model with the highest accuracy and most minor error. The models 
were assessed by the evaluators introduced in “Performance evaluation methods” section. 
Table 3 has been shown the results obtained from the proposed models. The ideal values of 
the results in the evaluator are that except for R2, the remaining metrics should get the lowest 
value and close to zero due to the indicating error of models. If the values obtained during 
the test phase are better than the training, it indicates that the learning of the samples has 
been done suitable in the training section, which shows the model’s power.

In R2, where values are specified as percentages, models should get values close to 100%. 
As shown in Table 3, the models obtained better values during the testing phase. Compar-
ing between models, it can be seen that ANHB reached the highest value, equivalent to 
99.58%, during the test phase, but not much different from the rest of the models. In RMSE, 
ANHBtrain = 2.112 (MPa) has the lowest value and weakest performance of both parts of 
ANGN, and the differences between ANHB with ANCO and ANGN were 29% and 43%, 
respectively. In MDAPE and MAE, the lowest values obtained during the ANHB test phase 
were equal to 1.153 and 1.845, respectively. Finally, for U95, the lowest value equivalent to 
5.901 (MPa) was obtained for the ANHBtest , which reached 29 and 43% differences with 
ANCO and ANGN, alternatively. In general, the strongest to the weakest performance of the 
evaluation of models in two phases are related to ANHB, ANCO, and ANGN, respectively.

Table 4 compares our present study and previously published articles that explored 
similar fields. It serves as a reference to assess the performance and workability of 

(30)MDAPE = medain

(

�
ri − r

ri
� × 100

)

(31)U95 =
1.96

n

√

√

√

√

n
∑

i=1

(ri − pi)
2 +

n
∑

j=1

(rj − pj)
2

Table 3  The results obtained from the proposed models

Models Optimizers Hybrid models Section Statistic evaluator

R2 RMSE MDAPE MAE U95

ANFIS HBA ANHB Train 98.93 3.241 1.418 2.435 8.963

Test 99.58 2.112 1.153 1.845 5.901

ANFIS COA ANCO Train 97.32 5.148 1.677 3.449 14.21

Test 99.20 2.973 1.589 2.669 8.271

ANFIS GNDO ANGN Train 95.31 6.750 1.701 3.909 18.71

Test 98.74 3.719 1.824 3.048 10.33
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our developed hybrid model concerning recent studies. The results from the ANHB 
model demonstrate its superior ability to predict the compressive strength of UHPC 
compared to the other models studied.

Figure 2 shows the scatter plot in the developed models’ training and testing phase. 
The corresponding figure is based on the R2 and RMSE evaluators, which specify the 
dispersion and density of points. In addition, the center line is determined in X = Y  
coordinates, and the angle between the linear fit and the center line indicates the per-
formance of the models. The points related to ANHB are close to or on the center 
line, which is not observed in the overestimated or underestimated points. On the 
other hand, ANGN had more dispersion due to the high RMSE and low R2, and the 
angle difference was high between the linear fit of ANGN with center compared to 
other models. In addition, the high density and accuracy of ANHB can be seen in 
Fig. 3, which shows the comparison between predicted and measured samples. ANHB 
had a low difference between the predicted and measured. The scatter of points in the 
training section in ANCO is more due to the low R2 and high RMSE than the test.

Furthermore, it is possible to find a significant difference in some points of the 
training phase, but improving the performance in the test has minimized it. On the 
other hand, for ANGN, the dispersion of points in training is such that the points are 
over and underestimated, and as can be seen in Fig.  3, the difference between pre-
dicted and measured is higher than in other models. In general, it can be concluded 
that the ANHB model has been able to have high accuracy with the density of points 
and the slight difference between predicted and measured.

Figure 4 presents the scatter error plot for the developed models during the training 
and testing phases. In an ideal scenario, the error values should be close to zero, indi-
cating accurate predictions. During the ANHB model’s training phase, most predictions 
exhibited less than 5% errors, signifying its robust performance. However, a few samples, 

Table 4  Comparison of present study results with recently published articles with similar datasets

Work ID Model R2 RMSE

Wu [36] FDA-RBF 0.916 9

R. Abuodeh et al. [27] BPFNN 0.8 -

Alabduljabbar et al. [37] Gene expression 0.969 6.5

Present work ANHB 0.9958 2.11

Fig. 2  The scatter plot in the training and testing phase of developed models
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like sample 42, exhibited increased dispersion and were identified as outlier data, as dem-
onstrated in Fig.  5. During the testing phase, the ANHB model showed no particular 
distribution of errors, and most data points fell within the range of 0%. As a result, the 
mean error was nearly zero, demonstrating the model’s capability to generalize well to 
unseen data. In the case of the ANCO model, the dispersion of errors increased, leading 
to the identification of four outliers in both negative and positive ranges. Despite this, 
the ANCO model significantly improved, reducing its error from 13% during the train-
ing phase to 5% during testing. This reduction in error showcased the model’s ability to 
enhance its performance and better handle diverse datasets. Contrastingly, the ANGN 
model demonstrated higher error values than the other two models during the training 
phase, achieving an error rate of 18%. This higher error rate can be attributed to the pres-
ence of outlier data. Figure 5 highlighted outlier data points, further underscoring a per-
formance weakness in the ANGN model. However, the ANGN model showed remarkable 
improvement during the testing phase, outperforming the other two. No outlier data was 
observed during this phase, and the error rate was reduced to 10%, demonstrating the 
model’s adaptability and ability to overcome its initial limitations.

The scatter error plot provided valuable insights into the models’ performance 
during training and testing. While the ANHB model performed well with some out-
lier data during training, it demonstrated robustness in testing. The ANCO model 
improved performance during testing, despite encountering increased dispersion 
during training. On the other hand, the ANGN model initially suffered from higher 

Fig. 3  The comparison between predicted and measured samples
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errors and outlier data during training but exhibited remarkable improvement and 
outperformed the other two models during testing. These observations underscore 
the strengths and weaknesses of each model, guiding future refinements and optimi-
zations for enhanced performance.

Fig. 4  The scatter error plot of presented models based on the training and testing phase

Fig. 5  The error box plot for developed models in the training and testing phase
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Applying the predictive model, comprising ANFIS with GNDO, COA, and HBA, 
offers practical engineering benefits for UHPC construction.

Summary of benefits:

1.	 Enhanced quality control: the model estimates UHPC’s CS before testing, optimizing 
mix designs, and reducing material waste and costs.

2.	 Improved structural design: accurate CS predictions enable precise structural design, 
ensuring compliance with safety standards and regulations.

3.	 Cost and time savings: the model’s predictions reduce the need for physical tests, 
saving time and resources during construction.

4.	 Early issue detection: early assessment of CS helps identify and address potential 
issues in mixed design and curing processes.

5.	 Optimal construction scheduling: accurate CS predictions facilitate efficient schedul-
ing of construction activities for enhanced project management.

6.	 Risk mitigation: engineers can assess risks related to specific concrete batches or 
conditions, making informed decisions to avoid problems.

7.	 Research advancements: the model supports UHPC research by exploring the effects 
of different mixtures, additives, or curing methods on CS.

On the other vise, the developed model has several limitations:

1.	 It is computationally complex and requires significant processing power, making it 
challenging for real-time applications or low-resource environments.

2.	 The model’s interpretability is reduced due to incorporating complex algorithms, 
which can be a concern in domains where transparency is essential.

3.	 While it performs well on the training data, its generalization to unseen data is lim-
ited, presenting a challenge for broader applications.

4.	 The model’s success depends heavily on access to large, high-quality datasets, which 
can be resource-intensive and difficult to obtain in specific fields.

5.	 Integrating multiple algorithms introduces numerous hyperparameters that require care-
ful tuning, making the optimization process time-consuming and hindering deployment.

Conclusions
Ultra-High-Performance Concrete (UHPC) is a new development in concrete technology. 

UHPC is a durable cement-based composite with high tensile and compressive strength. How-
ever, getting the right mixture for UHPC sampling is tedious and time-consuming. For this 
reason, artificial intelligence (AI) has replaced laboratory work to predict the mechanical prop-
erties of UHPC. This study aimed to forecast the CS of UHPC employing ANFIS with the most 
significant influential concrete mixing factors. The results of the research are the following:

•	 In R2, the most appropriate value in the training and testing phase belonged to 
ANHB, which did not differ significantly from the other two models.

•	 The lowest RMSE value is related to ANHB, which had a difference of 29% and 43% 
with ANCO and ANGN, respectively.

•	 In MDAPE, the most appropriate value was obtained by ANHB equal to 1.153 MPa, 
which had a difference of 27 and 32% with ANCO and ANGN, respectively.
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•	 In MAE and U95, the most appropriate values and other metrics belonged to ANHB 
and were equaled to 1.845 and 5.901 Mpa, alternatively.

•	 Machine learning models are reliable for predicting the mechanical properties of 
UHPC and can replace laboratory methods to save time and energy.

Appendix 1

Algorithm 1. COOT Optimization Algorithm
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Algorithm 2. Honey Badger Algorithm
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