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Abstract 

The shovel‑truck system is a widely used technique for haulage systems in surface 
mining operations. However, predicting the failure patterns of complex systems 
requires accurate failure prediction techniques. In this study, several major system reli‑
ability evaluation groups, including non‑parametric, parametric, and semi‑parametric 
methods, are investigated, and their effectiveness is compared to identify the best 
group for predicting the failure patterns of complex systems such as mining dump 
trucks, which operate in harsh environments. A historical dataset of time to failure (TTF) 
and maintenance data was collected. Then, the system’s reliability was evaluated using 
the major TTF data analysis methods. The findings demonstrated that all the major 
system reliability evaluation groups produced similar curves; however, the semi‑
parametric method outperformed the other methods. This result underscores that this 
system reliability evaluation group is the most effective method for complex systems. 
Also, it was found that the dump truck reliability dropped to 50% after 40 operation 
hours, demonstrating the critical importance of implementing preventive mainte‑
nance to enhance the system’s performance and ensure operation safety. In addition, 
this study provided an appropriate insight into the predictive methods and offered 
an accurate estimation of the failure pattern of complex systems, resulting in availabil‑
ity and productivity improvement.

Keywords: Mining dump truck, Haulage operation, Reliability evaluation, 
Maintenance management, Harsh and heterogeneous environment

Introduction
Raw material extraction is one of the fundamental links in the value chain of mineral 
products. This operation depends on mining equipment such as loaders, dozers, shov-
els, and dump trucks. Besides, these assets have become more complex and expensive 
so as to require more accurate maintenance to prevent operation interruption and loss 
of production capacity. Achieving these goals needs an efficient maintenance plan to 
implement inspections, preventive maintenance, and corrective maintenance. Therefore, 
reliability evaluation and maintenance management can remarkably affect haulage sys-
tem performance and availability, leading to production capacity insurance [1].
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Reliability evaluation is one of the effective metrics for developing comprehensive 
maintenance strategies [2]. It is employed for different applications and purposes in vari-
ous engineering sectors. Figure 1 displays a network of reliability applications in previ-
ous studies.

Various researchers employed different system reliability methods for analyzing com-
plex systems’ performance. Roy et al. [3] determined reliability and maintainability char-
acteristics in a fleet of mining shovels. They analyzed failure and maintenance data for 
four shovels by dividing the shovel system into several sub-systems. Thus, the mainte-
nance intervals were estimated for each shovel. Ghodrati and Kumar [4] employed the 
PHM to predict the optimal number of spare parts for the hydraulic jack in load–haul–
dump (LHD) machine operations. Barabady and Kumar [5] evaluated the reliability and 
availability of crushing equipment using the parametric reliability method to identify 
the most critical components in this system. Uzgören et al. [6] assessed the reliability of 
two dragline excavators using the parametric reliability method and then compared the 
results. In addition, Barabadi et al. [7] studied mine haulage throughput capacity con-
sidering failure rate and environmental conditions. They utilized the reliability phase 
diagram to analyze the reliability of the haulage trucks operating in two different pro-
duction lines. Morad et  al. [8] utilized a parametric reliability method to estimate the 
reliability of mining equipment sub-systems. They divided the mining truck system into 
several sub-systems and then predicted the reliability of each sub-system. Pandey et al. 
[9] performed reliability and failure rate evaluations for critical sub-systems of three 
dragline excavators operating in surface mines. They intended to increase availability 

Fig. 1 A network of reliability applications
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and decline maintenance and production costs. Angeles and Kumral [10] employed the 
power law process as a parametric reliability method to estimate optimal inspection and 
preventative maintenance scheduling in mining equipment. Allahkarami et al. [11] uti-
lized a mixed frailty model to identify the observed and unobserved risk factors affecting 
the system reliability in mining systems. Moniri-Morad et al. [12] analyzed the haulage 
fleet production capacity by estimating the system’s reliability, availability, and maintain-
ability (RAM). In this case, the discrete-event simulation and PHM have been combined 
to perform RAM analysis. Toraman Jakkula et  al. [13] investigated the RAM in LHD 
machine operations. Toraman [14] conducted the RAM analysis to compute the perfor-
mance of large-capacity trucks in mining operations. Florea et al. [15] utilized paramet-
ric models to investigate the reliability and maintainability of mining equipment with 
components subjected to intense wear. They determined the critical failure modes and 
their effects to establish a comprehensive maintenance plan for the components.

Previous studies have employed various system reliability evaluation models based on 
their application fields and data availability. However, a majority of these models can be 
classified into three major groups, including non-parametric, parametric, and semi-par-
ametric methods [16, 17]. Hence, it is necessary to analyze each method and compare 
their results based on the application field. The main aims and contributions of this work 
can be summarized as follows:

– Predicting the failure patterns of complex systems operating in the mining industry
– Investigating the practicality and robustness of the major system reliability evalua-

tion groups in challenging and harsh operating conditions
– Identifying the most effective system reliability evaluation group, resulting in supe-

rior performance outcomes
– Facilitating data-driven decision-making strategies by comparing the major system 

reliability evaluation groups, empowering analysts to choose the most accurate and 
appropriate method for their specific applications

– Demonstrating the applicability of the system reliability methods in various indus-
tries dealing with complex systems

The rest of this paper is organized as follows. The “Methods” section describes the 
study aims, proposed method, procedure, and boundaries for this study. Then, the 
“Methods” section investigates the major system reliability evaluation groups in a case 
study. Afterward, the achieved results are discussed in the “Discussion” section. Finally, 
conclusions and some remarkable findings are presented in the “Conclusions” section.

Methods
Reliability analysis is one of the most significant metrics in evaluating a system’s perfor-
mance. It is a process that encompasses collecting and pre-processing datasets, selecting 
appropriate reliability techniques (e.g., mathematical, statistical, or simulation), estimat-
ing system reliability, and interpreting the results. This process provides an appropriate 
insight into the system failure patterns, potential failure modes, and system characteris-
tics, enabling analysts to make informed decisions about the system’s reliability improve-
ment. There are two kinds of reliability analysis processes: structural and system 
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reliability analyses [17–19]. This study revolves around the system reliability analysis 
process, particularly reliability methods based on TTF data analysis.

Figure  2 illustrates the proposed step-by-step procedure in this study. As shown in 
Fig. 2, this study is designed based on two phases, encompassing reliability estimation 
and comparison processes. The system reliability estimation is started by collecting data 
and performing data pre-processing. Then, the data distribution is checked. If the dataset 
has a known distribution function, the parametric reliability method can be considered 
for analyzing the process. Otherwise, the non-parametric or semi-parametric reliability 
methods can be employed. Indeed, the non-parametric and semi-parametric reliability 
methods are used when the dataset does not have a known distribution function or if the 
distribution is complex or multi-modal. Therefore, it is possible to estimate the system’s 
reliability using the available methods. In the second phase, multiple selection criteria 
are identified by experts, and then the best system reliability evaluation group is selected 
among the non-parametric, parametric, and semi-parametric reliability methods.

Non‑parametric reliability method

The non-parametric reliability method is focused on collecting and analyzing the TTF 
dataset without making assumptions about an underlying distribution function. This 
method revolves around descriptive statistics to analyze the TTF data. Researchers 
have developed various non-parametric reliability models, such as Kaplan-Meier [20] 
and Nelson-Aalen [21]. The non-parametric reliability method has a significant advan-
tage over the other reliability methods (i.e., parametric and semi-parametric). In other 

Fig. 2 The designed reliability estimation process for this study
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words, it provides accurate outputs without assuming a specific probability distribution 
function. This procedure eliminates the risk of choosing an incorrect distribution and 
guarantees robustness in the analysis. However, it is crucial to mention that the non-
parametric reliability method is restricted to the observed data, confining their ability to 
simulate results for other time intervals beyond the available data. Thus, it is necessary 
to consider this limitation when employing a non-parametric reliability method.

The Kaplan-Meier model is proposed as one of the most conspicuous non-parametric 
reliability models in analyzing the TTF data. The reliability diagram is drawn as a step 
function with discontinuities or jumps at the observed failure times. Also, the height and 
width of these steps vary depending on the reliability function estimations and failure 
time observations, respectively [20]. The Kaplan-Meier model formulates the reliability 
function as follows:

where tj (j = 1, …, m) represents the failure times, m is the total number of data points, 
nj is the number of units at the failure risk just before time tj , and dj is the number of fail-
ures at time tj . If the observed data express the failure events, dj = 1 . Otherwise, if the 
observed data describe the censored data, dj = 0.

In the Kaplan-Meier model, the first observation occurs at time t = 0. Thus, there is no 
failure event in the first observation (R(t1) = 1), and then the reliability function goes to 
zero as a step function.

Parametric reliability method

The parametric reliability method is an effective technique for understanding system 
reliability. This method provides appropriate insights into the failure mechanisms, and 
the resulting model can assess the reliability parameters for the system’s lifetime. Also, 
the reliability is evaluated by fitting the standard distribution functions into TTF data. In 
this case, the estimated model can predict the reliability values beyond the range of the 
existing dataset.

The parametric reliability method is performed as follows. The trend of TTF data is 
first tested to identify the failure patterns of a system. The probability plotting method 
[22] is suggested to examine the data trend. This method is configured based on plot-
ting the cumulative number of events against the cumulative TTFs [23]. The plot out-
put is either a straight line or nonlinear. If the curve has an increasing (or decreasing) 
trend, the system is repairable, and thus, it is repaired after occurring a failure event. In a 
repairable system, the PLP is proposed as one of the most significant parametric reliabil-
ity models in analyzing the failure intensity of a system. The failure intensity is defined as 
follows:

where h(t) denotes the intensity function, t is the time between failures (TBFs), β pre-
sents the Weibull parameter, and � is the model parameter.

(1)R(tj) =
j|tj≤t

nj − d
j

nj

(2)h(t) = �.β .tβ−1
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The PLP is formulated using non-stationary techniques like the non-homogeneous 
Poisson process (NHPP) [24]. Indeed, a minimal repair process is performed on the sys-
tem after occurring failure, and the system status returns to its status just before per-
forming the repair action. In this model, the reliability function can be formulated as 
follows:

where R(t) is the reliability function, H(t) is the cumulative intensity function 
( H(t) =

∫ t
0h(∅)d∅ ), and h(∅) is the intensity function.

Also, satisfying the identical and independent distribution (IID) conditions demon-
strates that the system is non-repairable. These conditions are fulfilled by evaluating 
the data trend and dependency. In a non-repairable system, the dataset has a straight-
line trend, and the data dependency is examined via the serial correlation test. This test 
is conducted by plotting the ith incident time versus the (i-1)th incident time. In this 
diagram, the dataset is independent if all the points are scattered in a single cluster; 
otherwise, the dataset is dependent, indicating the violation of IID conditions. In a non-
repairable system, the RP model is suggested as one of the most remarkable parametric 
reliability models in predicting the failure behavior profile of the system.

Semi‑parametric reliability method

The semi-parametric reliability method evaluates the TTF data when exogenous factors 
affect the system’s reliability. This study revolves around the PHM as one of the most 
practical semi-parametric reliability models for evaluating system reliability in a hetero-
geneous environment.

The PHM has two main elements: a baseline hazard function and a multiplicative term 
(covariates). This model is mathematically formulated by Eq. (4) [25, 26].

where h(t|z) is the observed hazard function, and h0(t) is the baseline hazard function 
(dependent only on time), which occurs when the covariates have no influence on the 
failure profile ( Z = 0 or exp

(

βTZ
)

= 1 ). Also, Z is a t × 1 vector containing covariates. 
In addition, βT is a 1× t vector of regression coefficients. These coefficients characterize 
the impact of covariates. The PHM is assumed to be proportional, demonstrating a con-
stant hazard ratio (HR) between any two observations over time. This proportionality is 
tested as follows:

where HR is the hazard ratio, and h1(t|Z1) and h2(t|Z2) are two different observations.
In the parametric PHM, the unknown parameters for the baseline hazard function and 

the coefficients of covariates are estimated via the log-likelihood function.

(3)R(t) = exp(−H(t))

(4)h(t|Z) = h0(t)exp
(

βTZ
)

(5)HR =
h1(t|Z1)

h2(t|Z2)
=

h0(t)exp
(

βTZ1

)

h0(t)exp
(

βTZ2

) = exp[βT (Z1 − Z2)]

(6)ln(Li) = di ln
[

H ′(ti|Z)
]

−H(ti|Z)
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where ln(Li) is the log-likelihood function for the ith failure event, H ′(ti|Z) is the deriva-
tive function of the cumulative observed hazard function ( H(ti|Z) ), and di is the event 
indicator. If the observed event is failure, di = 1 ; otherwise, di = 0.

In this case, the Newton-Raphson technique is utilized to find the roots of the max-
imum likelihood estimation (MLE). This technique is formulated as follows:

where δi+1 represents the value of the new root, δi denotes the root value of the ith itera-
tion, g(δi) describes the gradient vector, and H(δi) characterizes the Hessian matrix.

Finally, it is possible to compute the system reliability function using the following 
equation:

where R(t|Z) is the observed reliability function, H0(t) is the cumulative baseline hazard 
function, Z is a vector containing covariates, and βT is a vector of regression coefficients.

Results
Historical data analysis

The failure and maintenance data collection process plays a crucial role in assessing 
the performance and reliability of mining equipment. This process involved system-
atically gathering data from mining operations to obtain solid insights into failure 
modes, failure frequency and severity, breakdowns, maintenance activities, and the 
effectiveness of maintenance strategies. In this case, the data collection spanned one 
year and specifically was focused on the failure and maintenance data of a Komatsu 
dump truck with a capacity of 100 tons, which operated at Sungun mine, East Azer-
baijan province, Northwest of Iran. The dump truck had accumulated approximately 
15,000 h.

The collected dataset included the failure times, restoration or replacement times, 
type of failed sub-system, and environmental conditions. Table 1 provides a sample of 
the collected failure dataset for this study. This dataset includes TTFs for the dump 
truck sub-systems (i.e., Engine, Transmission, Hydraulics, Body and Chassis, and 
Gearbox), the severity of the failure incident, and average temperature. In Table 1, the 
value of one denotes the failed sub-systems in each failure observation. For instance, 
the first failure occurred after 14 operation hours at − 0.1 °C, and the failure incident 
was due to the failure in the Hydraulics sub-system. Also, the severity value was zero, 
indicating that this failure was a mild incident. Table 2 provides the preliminary anal-
ysis of these data. In this table, the number of data was 92, and the variables were cat-
egorized into two groups, encompassing binary and continuous variables. The binary 
variables are subject to two states of success and failure. The percentage of ones rep-
resents the percentage of failure occurrences in each variable. In the continuous vari-
ables, the mean, standard deviation, minimum, and maximum values were reported 
for each variable. After the preliminary analysis of the dataset, it was analyzed based 
on the three major system reliability evaluation groups.

(7)δi+1 = δi + (−g(δi)
/

H(δi) )

(8)R(t|Z) = exp(H0(t)exp(β
TZ))
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Non‑parametric analysis of the collected dataset

The non-parametric reliability method was conducted by formulating the Kaplan-
Meier model. Table 3 gives the results of the reliability estimation using the Kaplan-
Meier model.

Table 3 reports various valuable information, including system reliability at differ-
ent times, standard error, and uncertainty (95% confidence interval). Also, the reli-
ability value goes from 0.9565 to 0.0109 after 220 operation hours.

Parametric analysis of the collected dataset

The truck reliability was estimated through the parametric reliability method. In 
this regard, the TTF data trend was first examined using the probability plotting 
technique. Figure 3 depicts the trend test for the truck system. The results of Fig. 3 

Table 1 A sample of the collected failure dataset

Time to 
failure 
(hour)

Engine Transmission Hydraulics Body & 
Chassis

Gearbox Severity Temperature 
(°C)

14 0 0 1 0 0 0 ‑0.1

35 0 0 1 0 0 1 7

36 0 0 0 1 0 0 7

25 0 1 0 0 0 1 3.3

42 0 1 0 0 0 1 3.3

129 1 0 0 1 0 1 9.1

19 1 0 0 0 0 0 9.1

55 1 0 0 0 0 0 7.6

30 1 0 0 0 0 0 7.6

170 0 0 1 0 0 1 11.6

18 1 0 1 1 0 0 11.6

32 0 0 0 1 0 0 11.6

30 1 0 0 0 0 0 7.6

170 0 0 1 0 0 1 11.6

Table 2 A statistical summary of the collected dataset

Type of variable Variables Total num‑
ber of obser‑
vations

The per‑
centage of 
ones

The percentage 
of zeros

Maximum Minimum

Binary Engine 92 41.3 58.7 1 0

Transmission 92 17.4 82.6 1 0

Hydraulics 92 14.1 85.9 1 0

Body & Chassis 92 43.5 56.5 1 0

Gearbox 92 8.7 91.3 1 0

Severity 92 33.7 66.3 1 0

Continuous Variables Total num‑
ber of obser‑
vations

Mean Standard devia‑
tion

Maximum Minimum

Time to failures 
(TTFs) (hour)

92 58.6 51.5 225 14

Temperature (°C) 92 8.7 8.7 22.5 ‑6.5
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Table 3 Evaluating system reliability using the non‑parametric method

Time Reliability 
function

Standard 
error

Uncertainty Time Reliability 
function

Standard 
error

Uncertainty

Lower 
bound

Upper 
bound

Lower 
bound

Upper 
bound

14 0.9565 0.0213 0.8883 0.9835 56 0.3152 0.0484 0.2234 0.4109

15 0.9239 0.0276 0.847 0.963 60 0.2935 0.0475 0.2044 0.3881

16 0.9022 0.031 0.8204 0.9479 65 0.2826 0.0469 0.1949 0.3766

17 0.8804 0.0338 0.7945 0.9319 66 0.2717 0.0464 0.1856 0.365

18 0.8043 0.0414 0.7076 0.8719 68 0.2609 0.0458 0.1763 0.3534

19 0.7826 0.043 0.6836 0.8539 72 0.2391 0.0445 0.1579 0.3299

20 0.7391 0.0458 0.6366 0.8168 73 0.2283 0.0438 0.1488 0.3181

25 0.7065 0.0475 0.602 0.7884 74 0.2174 0.043 0.1398 0.3062

26 0.6957 0.048 0.5906 0.7788 80 0.1957 0.0414 0.1221 0.2821

28 0.6848 0.0484 0.5792 0.7691 84 0.1739 0.0395 0.1047 0.2577

30 0.6413 0.05 0.5344 0.7298 92 0.163 0.0385 0.0962 0.2453

32 0.6304 0.0503 0.5233 0.7199 104 0.1522 0.0374 0.0878 0.2329

33 0.6196 0.0506 0.5123 0.7099 108 0.1413 0.0363 0.0796 0.2203

34 0.5761 0.0515 0.4687 0.6694 123 0.1304 0.0351 0.0714 0.2076

35 0.5326 0.052 0.4259 0.6282 129 0.1196 0.0338 0.0634 0.1948

36 0.5217 0.0521 0.4153 0.6178 135 0.1087 0.0325 0.0556 0.1818

38 0.5109 0.0521 0.4047 0.6073 140 0.0978 0.031 0.048 0.1686

40 0.4891 0.0521 0.3838 0.5862 150 0.087 0.0294 0.0406 0.1553

41 0.4674 0.052 0.363 0.565 155 0.0761 0.0276 0.0335 0.1417

42 0.4565 0.0519 0.3527 0.5543 166 0.0652 0.0257 0.0267 0.1279

43 0.4348 0.0517 0.3323 0.5328 170 0.0543 0.0236 0.0202 0.1138

50 0.413 0.0513 0.312 0.5111 174 0.0435 0.0213 0.0142 0.0993

52 0.3913 0.0509 0.292 0.4891 200 0.0326 0.0185 0.0088 0.0843

54 0.3587 0.05 0.2623 0.4559 210 0.0217 0.0152 0.0042 0.0688

55 0.337 0.0493 0.2427 0.4335 220 0.0109 0.0108 0.001 0.053

Fig. 3 The trend test for truck system
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illustrated that this dataset did not have a trend. Then, the serial correlation test 
was utilized to investigate the TTF data dependency (Fig.  4). According to the 
results of these two figures, the dump truck system followed the IID conditions, 
demonstrating that the dump truck should be analyzed as a non-repairable sys-
tem. Therefore, the RP model was employed to estimate the dump truck failure 
behavior.

After confirming the IID conditions for the existing dataset, a standard parametric dis-
tribution function was fitted to the data to find the best probability distribution. Multiple 
standard parametric distributions were analyzed for this purpose. Table 4 reports the esti-
mated parameters and the log-likelihood values for four distribution functions. Among 
these distributions, the Log-normal distribution showed the best fit with a log-likelihood 
value of − 452. Also, the mean and the standard deviation for the Log-normal distribution 
are 3.761 and 0.77, respectively.

Then, the system reliability was estimated based on fitting the Log-normal distribution 
function to the dataset. The system reliability function was formulated by the log-normal 
distribution as follows:

(9)R(t) = exp

[

µ+
1

2
σ 2

]

Fig. 4 The serial correlation test for the truck system

Table 4 Evaluating various standard parametric distribution functions for identifying the best fit

Distribution function Distribution parameters Log‑likelihood value

Log‑normal µ = 3.761 σ = 0.77 − 452

Weibull α = 63.894 β = 1.283 B − 461.86

Log‑logistic µ = 3.722 σ = 0.450 − 454.54

Gamma a = 1.762 b = 33.267 − 459.04
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where R(t) is the reliability function obtained from the Log-normal distribution, and 
µ and σ are the mean and standard deviation of the Log-normal distribution function, 
respectively.

Table  5 gives the reliability values estimated by the parametric method at various 
times. The uncertainty of the estimated reliability was also computed using the lower 
and upper bounds at a 95% confidence interval (Table 5).

Additionally, the parametric method was utilized to estimate the reliability of each 
truck sub-system. In this procedure, the truck system was decomposed into five sub-
systems. Then, the failure data for each sub-system were analyzed. Table 6 gives the best-
fitted distribution and the reliability value for each sub-system. The reliability value was 
estimated at 100 operation hours. Among these sub-systems, the most reliable and unre-
liable sub-systems were Gearbox and Engine, respectively.

Semi‑parametric analysis of the collected dataset

The truck system reliability was estimated using the semi-parametric method, particu-
larly parametric PHM. The estimation process was performed by analyzing the TTFs 
and the binary and continuous variables.

Table 5 Estimating system reliability at various times using the parametric method

Time Reliability 
function

Uncertainty Time Reliability 
function

Uncertainty

Lower bound Upper bound Lower bound Upper bound

0 1 10−6 1 125 0.083 0.047 0.136

5 0.997 0.990 0.999 130 0.075 0.042 0.126

10 0.971 0.940 0.987 135 0.069 0.037 0.117

15 0.914 0.860 0.951 140 0.063 0.033 0.109

20 0.840 0.771 0.893 145 0.057 0.030 0.102

25 0.759 0.683 0.825 150 0.052 0.026 0.095

30 0.680 0.599 0.753 155 0.048 0.024 0.089

35 0.605 0.524 0.683 160 0.044 0.021 0.083

40 0.537 0.456 0.617 165 0.040 0.019 0.078

45 0.476 0.396 0.558 170 0.037 0.017 0.073

50 0.422 0.344 0.504 175 0.034 0.015 0.068

55 0.375 0.298 0.456 180 0.031 0.014 0.064

60 0.333 0.259 0.413 185 0.029 0.013 0.060

65 0.296 0.225 0.375 190 0.027 0.011 0.057

70 0.263 0.196 0.341 195 0.025 0.010 0.053

75 0.235 0.170 0.311 200 0.023 0.009 0.050

80 0.210 0.149 0.284 205 0.021 0.008 0.048

85 0.188 0.130 0.260 210 0.020 0.008 0.045

90 0.169 0.114 0.238 215 0.018 0.007 0.042

95 0.152 0.100 0.219 220 0.017 0.006 0.040

100 0.136 0.088 0.201 225 0.016 0.006 0.038

105 0.123 0.077 0.185 230 0.015 0.005 0.036

110 0.111 0.068 0.171 235 0.014 0.005 0.034

115 0.101 0.060 0.158 240 0.013 0.004 0.032

120 0.091 0.053 0.147
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According to Table 1, the hazard function was formulated as h(t|Z) . In this case, the 
Weibull distribution function was chosen as the most appropriate function for modeling 
the baseline hazard function. Then, the Weibull distribution parameters and the model’s 
variables were computed using Eqs. (6) and (7). Afterward, the hazard function was cal-
culated as follows:

where lnH(t|X) is the log cumulative hazard function, the Engine, Transmission, 
Hydraulics, Body & Chassis, Gearbox, and Severity are binary variables, and Temperature 
is a continuous variable.

Therefore, the reliability function was obtained to estimate the reliability values for the 
dump truck system. Table  7 gives the reliability results based on the semi-parametric 
method. This table reports the reliability function and the estimated uncertainty (95% 
confidence interval) to provide a proper estimate.

Discussion
The truck system has been evaluated using three major system reliability evaluation 
groups, including non-parametric, parametric, and semi-parametric methods. Figure  5 
demonstrates the reliability curves derived from the semi-parametric (parametric PHM), 
parametric (RP or PLP), and non-parametric (Kaplan-Meier) methods.

As shown in Fig. 5, in the initial 30 operation hours, the non-parametric method esti-
mates the reliability values higher than the other methods (i.e., parametric and semi-par-
ametric methods). The parametric reliability curve coincides with the semi-parametric 
reliability curve in this interval. The reliability curves indicate different values during the 
50–100 operation hours. However, these deviations are negligible. After this period, all 
reliability curves are approximately matched. Moreover, the reliability estimation curves 
illustrated that the dump truck system reliability dropped to 0.4 and 0.19 after 50 and 
100 operation hours, respectively. This issue revealed the necessity of applying preven-
tive maintenance plans before these operation hours to improve the system availability 
and prevent dump truck sudden failures.

Although these major system reliability evaluation groups fundamentally had differ-
ent statistical procedures in the ranking and evaluation process, they nearly predicted 

(10)
lnH(t|X) =− 0.98+ 1.29× lnt + 0.66× Engine + 0.18× Transmisson+ 0.65×Hydraulics + 0.84

× Body&Chassis + 1.17× Gearbox − 1.19× Severity− 0.0058× Temperature

Table 6 Estimating the reliability of each truck sub‑system using the parametric method

Truck sub‑systems Best distribution fit Distribution parameters Sub‑system 
reliability (after 
100 h)

Engine Log‑normal Log‑Mean = 4.38
Lod‑Std = 0.94

0.41

Transmission Exponential Mean time = 251.36 0.67

Hydraulics Exponential Mean time = 309.11 0.72

Body & Chassis Log‑normal Log‑Mean = 4.40
Lod‑Std = 0.957

0.42

Gearbox Exponential Mean time = 461.14 0.81
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Table 7 Estimating the reliability function using the semi‑parametric method

Time Reliability 
function

Uncertainty Time Reliability 
function

Uncertainty

Lower bound Upper bound Lower bound Upper bound

19 0.967 0.919 0.987 17 0.543 0.236 0.772

20 0.960 0.908 0.983 35 0.539 0.386 0.670

25 0.946 0.881 0.976 60 0.531 0.226 0.763

35 0.908 0.810 0.956 50 0.527 0.274 0.728

14 0.897 0.763 0.957 50 0.526 0.332 0.688

18 0.885 0.792 0.938 40 0.524 0.381 0.649

15 0.881 0.805 0.928 40 0.523 0.379 0.648

42 0.878 0.759 0.940 36 0.522 0.369 0.655

15 0.870 0.762 0.931 25 0.493 0.301 0.659

16 0.868 0.788 0.920 38 0.492 0.338 0.629

15 0.865 0.766 0.925 43 0.485 0.341 0.614

17 0.864 0.697 0.942 18 0.448 0.192 0.676

35 0.856 0.678 0.940 43 0.420 0.268 0.564

19 0.824 0.729 0.888 73 0.402 0.116 0.680

18 0.819 0.707 0.891 14 0.395 0.116 0.670

28 0.798 0.650 0.888 74 0.387 0.223 0.549

18 0.796 0.680 0.874 41 0.382 0.157 0.606

20 0.774 0.658 0.855 65 0.378 0.191 0.565

14 0.773 0.584 0.884 52 0.372 0.233 0.511

14 0.772 0.626 0.866 54 0.344 0.205 0.488

20 0.766 0.644 0.851 54 0.343 0.203 0.487

20 0.765 0.642 0.851 84 0.342 0.192 0.499

16 0.749 0.532 0.876 55 0.339 0.204 0.479

25 0.745 0.631 0.829 123 0.320 0.159 0.493

34 0.741 0.571 0.852 60 0.300 0.174 0.436

26 0.734 0.501 0.871 135 0.280 0.120 0.466

54 0.724 0.579 0.826 68 0.227 0.116 0.360

18 0.687 0.403 0.856 104 0.204 0.088 0.355

18 0.668 0.497 0.793 72 0.184 0.082 0.318

30 0.668 0.539 0.769 225 0.179 0.049 0.376

41 0.661 0.471 0.797 56 0.161 0.015 0.455

30 0.658 0.519 0.765 170 0.141 0.011 0.426

52 0.656 0.426 0.813 166 0.129 0.033 0.291

66 0.655 0.495 0.775 220 0.127 0.019 0.342

18 0.654 0.475 0.784 30 0.116 0.002 0.468

35 0.645 0.370 0.825 150 0.115 0.026 0.276

30 0.607 0.458 0.726 155 0.103 0.022 0.258

34 0.604 0.463 0.719 92 0.088 0.029 0.190

32 0.582 0.432 0.705 84 0.065 0.014 0.174

55 0.577 0.420 0.705 129 0.049 0.006 0.174

33 0.575 0.422 0.701 210 0.049 0.004 0.192

56 0.569 0.265 0.787 140 0.031 0.001 0.172

34 0.556 0.403 0.684 108 0.026 0.003 0.096

80 0.554 0.382 0.695 200 0.010 0.000 0.096

72 0.553 0.310 0.741 80 0.008 0.000 0.077

34 0.549 0.397 0.677 174 0.002 0.000 0.020
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similar results. However, it is essential to compare the efficiency and performance of 
these major system reliability evaluation groups to provide better insights into their 
functionality. For this purpose, multiple criteria were chosen to analyze and compare 
their performance. Table  8 compares these major system reliability evaluation groups 
based on several criteria.

According to Table 8, five performance criteria were considered to compare the non-
parametric, parametric, and semi-parametric reliability methods, including Method 
Scope and Completeness, Data Availability and Abundance, Variable Categorization, 
Uncertainty Quantification and Analysis, and Extrapolation Capability and Predictive 
Power.

The method scope and completeness criterion demonstrated that the semi-parametric 
method efficiently estimated the influence of operational and environmental variables 
together with reliability and failure rate analyses, all in a one-step approach. But the par-
ametric (or non-parametric) methods required a multi-step approach, decomposing the 
system into several sub-systems to evaluate their individual failures separately.

Fig. 5 A comparison between the reliability curves in the non‑parametric, parametric, and semi‑parametric 
methods

Table 8 A comparison between the performance of the major reliability evaluation groups

Criteria Non‑parametric method Parametric method Semi‑parametric method

Method Scope and Com‑
pleteness

Implementing a multi‑
step approach for the 
desired outcomes

Implementing a multi‑
step approach for the 
desired outcomes

Implementing a one‑step 
approach for the desired 
outcomes

Data Availability and 
Abundance

Employing a partial data‑
set for each step

Employing a partial data‑
set for each step

Employing full dataset 
simultaneously

Variable Categorization Failure‑related variables Failure‑related variables Failure‑related and non‑
failure‑related variables

Uncertainty Quantification 0.28 0.11 0.15

Extrapolation Capability 
and Predictive Power

Null Extrapolation beyond the 
data range

Extrapolation beyond the 
data range
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Data availability and abundance criterion confirmed the advantage of the semi-para-
metric method over the other methods. Indeed, the semi-parametric method lies in a 
one-step approach, allowing the utilization of the full dataset for the analysis process. 
However, the parametric (or non-parametric) method requires the decomposition of 
the system into multiple sub-systems, each analyzed separately. Consequently, data 
will be shared between sub-systems, potentially leading to data insufficiency for certain 
sub-systems.

Variable categorization was another criterion for choosing the best method. In this 
study, two different variables were considered: failure-related variables (e.g., trans-
mission failure) and non-failure-related variables (e.g., rain and temperature). The 
parametric (or non-parametric) method could not examine and quantify the effect of 
non-failure-related variables, whereas the semi-parametric method could efficiently 
assess these variables and their effects.

Uncertainty quantification was also another criterion for comparing these three major 
reliability evaluation groups. The confidence interval for the non-parametric method 
was wider than those of the semi-parametric and parametric methods, with values of 
0.28, 0.15, and 0.11, respectively. Therefore, the parametric and semi-parametric meth-
ods demonstrated better performance than the non-parametric method from the uncer-
tainty perspective.

The fifth criterion was extrapolation capability and predictive power. Both the semi-
parametric and parametric methods could simulate and predict reliability estimations 
beyond the data range. While the non-parametric method does not have the ability to 
extrapolate beyond the available data range.

According to these findings, it is concluded that the semi-parametric method provided 
superior performance compared to the other methods. Thus, this system reliability eval-
uation group can be used as the most robust and effective method for evaluating the reli-
ability of complex systems that operate in harsh environments.

Conclusions
This study compared three major system reliability evaluation groups to identify the 
best method for evaluating the mining truck performance. For this purpose, the Kaplan-
Meier, RP (or PLP), and parametric PHM were chosen as the most significant system 
reliability evaluation models to formulate the non-parametric, parametric, and semi-
parametric methods, respectively. Also, an actual mine haulage operation dataset was 
collected to estimate the dump truck reliability. Then, the system reliability was esti-
mated using all three major system reliability evaluation groups at different times. The 
reliability analysis curves illustrated that the dump truck reliability dropped to 0.4 and 
0.19 after 50 and 100 operation hours, respectively. The findings revealed that although 
these major system reliability evaluation groups had different statistical procedures, the 
reliability values were almost similar. However, the semi-parametric method outper-
formed the other methods due to the less computational process and estimating more 
details. Therefore, it is recommended to consider this method for evaluating the reliabil-
ity of complex systems like mining dump trucks, which operate in harsh and heteroge-
neous conditions.
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Abbreviations
Z  A vector containing covariates
βT   A vector of regression coefficients
h0(t)  Baseline hazard function
H0(t)  Cumulative baseline hazard function
H(t)  Cumulative intensity function at time t
H ′(ti|Z)  Derivative function of the cumulative observed hazard function
di  Event indicator
g(δi)  Gradient vector
HR  Hazard ratio
H(δi)  Hessian matrix
IID  Identical and independent distribution
h(t)  Intensity function
LHD  Load haul dump
ln(Li)  Log‑likelihood function for the ith failure event
µ  Mean parameter of the log‑normal distribution
NHPP  Non‑homogeneous Poisson process
h(t|Z)  Observed hazard function
R(t|Z)  Observed reliability function
PLP  Power law process
PHM  Proportional hazard model
R(t)  Reliability function obtained from the log‑normal distribution
RAM  Reliability, availability, and maintainability
RP  Renewal process
δi+1  Root value of the (i+1)th Iteration
σ  Standard deviation of the log‑normal distribution
R(tj)  System reliability at time tj
dj  The number of failures at time tj
nj  The number of units at the failure risk just before time tj (j=1, …, m)
δi  The Root value of the ith iteration
TBF  Time between failures
TTF  Time to failure
m  Total number of data points
�  Weibull model parameter
β  Weibull parameter
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