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Abstract 

One of the characteristics of a robust power grid is minimal variations in its frequency 
to load change or loss in generating unit(s). From the perspective of optimal control 
theory, the issue of load frequency control in the context of the interconnected func-
tioning of power systems is investigated in this work, and a novel load frequency con-
troller is proposed for a single area isolated power network. This novelty incorporates 
all the primary characteristics of the solutions that are based on a mixture of optimal 
controller designs by establishing a linear quadratic regulator optimized with quantum 
particle swarm optimization to design a proportional integral derivative (PID) con-
troller unlike the conventional PID controller designs that are based on a combined 
Ziegler-Nichols and root locus (ZN-RL) method and manual tuning. The simulation 
results of the proposed controller using MATLAB show its efficacy in not only ensuring 
that there is no steady-state error in terms of the system frequency with load changes 
but also in achieving smoother transients. Following these landmark achievements, 
a transfer function model of the resulting power grid is constructed. The outcome 
of the model reveals that the system transients have been improved while keeping 
the intended steady-state characteristics. Furthermore, it is observed that the proposed 
load frequency controller has the best performance when compared with the com-
bined ZN-RL method and the manual PID designs. This, therefore, demonstrates 
the superiority of the proposed design for load frequency control in power systems.

Keywords: Load frequency, Transfer function, Linear quadratic regulator, Particle 
swarm optimization, PID controller, Ziegler-Nichols

Introduction
The conventional power grid whose main purpose was to generate electricity in bulk at 
far away generating stations and transmitting it at high voltages to load centers through 
transmission lines is rapidly evolving with the introduction of distributed generation 
(DG), storage, and Internet of things [1]. All these have tremendously increased the 
complexity of the power grid and have brought in numerous challenges one of which 
being load frequency control (LFC) [2]. As the frequency of the network must always 
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be within set tolerances, frequency stability is a critical component of the power sys-
tem. The tripping of big production units or tie lines, a sudden change in loads, or an 
imbalance between the power generated and the power requested by the loads are all 
examples of events that can cause frequency deviations [3]. Frequency response services 
are used by distribution service providers to balance the grid in real time by enabling 
generating units and loads to adjust their input or output powers in response to changes 
in the frequency of the power grid [4]. A lot of control strategies have been proposed 
in the literature for LFC of the power grid. The proportional-integral-derivative (PID) 
controller is of interest in this research work. PID controllers are one of the most preva-
lent controllers that are available for industrial applications because of their ease of use, 
straightforward functionality, and simplicity [5, 6]. PID controllers are used to accom-
plish both the improvement of the dynamic response and the reduction or elimination of 
the steady-state error.

Numerous scholars have proposed the use of PID controllers for the LFC of iso-
lated power grids. In [7], the authors used active disturbance rejection control for the 
LFC of a power grid highly penetrated with wind power taking into consideration the 
randomness of the generated wind power. Simulation results demonstrated the effec-
tiveness of their proposed solution over the conventional proportional integral (PI) 
controller and its ability in controlling the grid frequency within small margins. In 
[8], quadratic regulator approach with compensating pole technique is used to opti-
mize the design of a PID controller to control the frequency of a single area as well as 
a multi-area power system. To demonstrate the robustness, the proposed design was 
tested with external disturbance, uncertainties in parameters, and nonlinearities such 
as governor dead band and generation rate constraint. The authors in [9] proposed 
a state feedback control based on proportional-integral observer (PI observer) to 
control the load frequency of an isolated single-area power grid. The result obtained 
was compared with those obtained with a state feedback control based on a full-state 
Luenberger observer, and the response of the former showed to be better than that 
of the latter. Two-degree-of-freedom (2DOF) controllers are proposed to control the 
frequency of a hybrid islanded power grid made up of a solar thermal power plant, 
a diesel generator, a wind turbine, fuel cells, and a battery bank in [10]. The results 
obtained were compared with the primitive PI controller, classical PID controller, and 
2DOF-PI controllers. The researchers in [11] were able to control the load frequency 
of a multi-area power grid by using a fuzzy PID controller taking into account uncer-
tainties in parameters in addition to external disturbances. The proposed design was 
observed to have good transient behavior, could reliably reject disturbances, and was 
not sensitive to changes in parameters. An optimum way of tuning the PID controller 
together with the corresponding transient droop compensator (TDC) for a hydraulic 
turbine is present in [12]. The suggested approach was based on the input guide vane 
servomotor’s desired time response specification (DTRS), which covered typical rate 
limiters and gain saturation in power plants. In [13], the authors proposed a decen-
tralized brain emotional learning-based intelligent controller (BELBIC) to control the 
frequency of a microgrid where in each DG is equipped with a BELBIC and parti-
cle swarm optimization (PSO) is used to get the parameters of the controller based 
on integral time square error (ITSE) criterion. The results obtained are compared 
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with those obtained using decentralized PID controllers, and also, fractional order 
PID (FOPID) controllers and their proposed design are shown to be outstanding. The 
research presented in [14] made used genetic algorithms, firefly, and bacterial forag-
ing to tune decentralized PID controllers used for each generating unit/source in a 
microgrid. The simulation results demonstrated the superiority of firefly for the task 
compared to GA and BF.

This research aims at designing a linear quadratic regulator optimized with quantum 
particle swarm optimization proportional integral derivative (LQR-QPSO PID) con-
troller for load frequency control of a single area power grid. The effectiveness of the 
proposed controller is validated by comparing its results with those obtained when the 
combined Ziegler-Nichols and root locus (ZN-RL) tuned, and manually tuned PID con-
trollers are used. The contribution of this work to the body of knowledge is as follows:

• The utilization of QPSO to optimize the design of an LQR to tune a PID controller 
for load frequency control

• The design of the transfer function of the power grid with the proposed LFC inte-
grate

The next section of this paper will elaborate on the methodology used in this research, 
followed by the presentation and discussion of the results and then a conclusion.

Methods
LFC strives to regulate the tie-line interchange schedules while also dividing the load 
between the generators of the same network, which is one of its operational goals. Other 
goals include maintaining a relatively constant frequency. The variation in frequency and 
the active power of the tie-line network are both detected, and this provides a measure 
of the variation in the rotor angle δ . This change in δ provides an error �δ that has to be 
minimized. The corresponding change (error signal) in frequency �f  and real power of 
the tie line �Ptie line are amplified, combined, and converted into a real power command 
signal �Pvalve before being sent to the prime mover (turbine). This signal command goes 
to request for an increase or a decrease in the torque being produced by the machine. 
To modify the values of �f  and �Ptie line within the required tolerance, the prime mover 
changes the generator output by an amount �Pgen . Figure 1 shows the block diagram of a 
power system with the load frequency control and automated voltage regulator.

Mathematical modeling of an isolated power system

The process of mathematically modeling a control system is the initial stage in its study 
and design. The state variable technique and the transfer function approach are the two 
most popular approaches. The state variable method may be used to represent both lin-
ear and nonlinear systems. The system must first be linearized before the linear state 
equations and transfer function can be used. In this work, the transfer function model 
has been created for the following elements using the right hypotheses and approxima-
tions to linearize the mathematical equations characterizing the system [15].
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Generator modeling

The power angle δ between the rotor axis and the resulting magnetic field is always kept 
constant while the machine is in its steady-state condition. Any disturbance will cause the 
rotor to slow down or speed up, causing a relative motion between the rotor and the air gap 
MMF (magneto-motive force). When there is no significant change in the total amount of 
power generated Pelect , the rotor will return to its starting position. The swing equation is 
the equation that accurately describes this relative motion as given by [1].

where Pmech and Pelect are respectively the per unit electrical and mechanical power, ωs 
is the electrical angular velocity, and H is the per unit inertia constant defined by the 
following:

H is measured in seconds and usually lies in the range [1, 10] depending on the type or 
size of the machine.

For dδ
dt

 as a state variable, we obtain the following:

where �ω is the angular frequency change of the grid due to perturbation. Hence, in 
terms of a small change in the angular velocity, Eq. (1) becomes as follows:

Expressing �ω as per unit we obtain the following:

(1)
2H

ωs

d2δ

dt2
= Pmech − Pelec

(2)H =
Total kinetic energy inMJ at rated speed

machine rating inMVA

(3)
dδ

dt
= �ω

(4)2H
d�ω

ωs

dt
= �Pmech −�Pelect

(5)2H
d�ω

dt
= �Pmech −�Pelect

Fig. 1 Power system block diagram showing load frequency control and automated voltage regulator
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Transforming Eq. (5) as Laplace function yields the following:

Load modeling

The load of a power system can be either resistive or reactive. However, only reactive 
loads like motors are sensitive to changes in the frequency of the power system. Their 
sensitivity depends on the combined speed-load characteristics of all the devices (loads) 
driven by the power system. The approximation of these characteristics can be repre-
sented by [16].

where �Pload denotes the change in the load that is not sensitive to frequency and D�ω 
denotes the change in the load that is sensitive to frequency. The value of D is calculated 
by taking the percentage of change in load and dividing it by the percentage of change in 
frequency.

Taking the Laplace transform of Eq.  (7) and combining it with Eq.  (6) give the 
following:

where Kgen =
1
D is the power system gain and τgen =

2H
D  is the power system time 

constant.

Turbine modeling (prime mover)

The mechanical power provided by the prime mover may be derived from the mechani-
cal action of hydraulic turbines at waterfalls or steam turbines whose energy is derived 
from the combustion of coal, gas, nuclear fuel, and gas turbines. The turbine model con-
nects changes in mechanical power output �Pmech to changes in the steam valve posi-
tion �Pvalve . The simplest prime mover model (for a non-reheat steam turbine) may be 
approximated with a single time constant τturbine , having the transfer function defined by 
Eq. (10). The time constant τturbine is usually between [0.2, 2] s [17].

where Kturbine is the gain factor of the turbine.

Governor modeling

The turbine governor detects the change in speed and adjusts the turbine input valve 
and mechanical power output to restore the speed to a constant state. Watt governors 
which are the earliest use rotating flyballs to detect speed and respond to variations in 

(6)��(s) =
�Pmech(s)−�Pelect(s)

2Hs

(7)�Pelect = �Pload + D�ω

(8)��(s) =
�Pmech(s)−�Pload(s)

2Hs + D

(9)��(s) =
Kgen

τgens + 1
(�Pmech(s)−�Pload(s))

(10)Gturbine(s) =
�Pmech(s)

�Pvalve(s)
=

Kturbine

τturbines + 1
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speed with mechanical motion. The modem governors detect speed variations elec-
tronically. The governors are usually designed to allow the speed to decrease as the load 
demand increases to ensure stable operation. This variation between the speed and the 
load demand is governed by the speed regulation gain R.

Governors often have a 5 to 6% speed control from no load to full load. The governor 
speed mechanism functions as a comparator, with the output �Pgov equal to the differ-
ence between the reference power �Pref  and the power 1R�ω as determined by the gov-
ernor’s speed characteristics [18]. That is as follows:

Taking the Laplace transform of Eq. (9) gives the following:

A large amount of force is usually needed to operate the steam/hydro turbine valves. 
This force comes from the hydraulic amplifier. It converts the command �Pgov to the 
steam valve position command �Pvalve . With a linear connection and a time constant 
τgov , we get the relation in the Laplace domain as below.

where Kgov is the speed governor gain.

Load frequency control of a single area network

In the process of modeling the power system for a single-area network, the development 
of the integrated structure of the speed governor, turbine, and generator load has to be 
formulated. Combining Eqs. (9), (10), (12), and (13) in a block diagram yields the com-
plete schematic representation of a single area network as shown in Fig. 2.

Transfer function model

The steady-state analysis may be carried out by assuming that the speed changer is set to 
a fixed value, denoted by �Pref (s) = 0 , while the demanded load changes. Free governor 
operation is the term used to describe this scenario.

(11)�Pgov = �Pref −
1

R
�ω

(12)�Pgov(s) = �Pref (s)−
1

R
��(s)

(13)�Pvalve(s) =
Kgov

τgovs + 1
�Pgov(s)

Fig. 2 Load frequency control of a single area isolated power system
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Figure 3 is the result of redrawing the block diagram shown in Fig. 2 with the load change 
�Pload(s) serving as the input and the frequency deviation ��(s) serving as the output. 
Equations  (14) and (15) present respectively the open loop and the overall closed-loop 
transfer function of the design representing frequency change in response to load change.

Kgov and Kturbine are respectively the static gains of the governor and turbine, and Kgen is 
the generator’s gain which is the inverse of the damping coefficient D.

Steady‑state analysis

For a unit step change in the load demand �PD , the accompanying Laplace transform is 
given by the following:

The frequency response now becomes the following:

Considering the final value theorem, the steady-state response of the frequency change 
can be obtained by the following:

(14)G(s) =
KgovK turbine

Kgen

R τgovs+ 1 (τturbines+ 1) τgens+ 1

(15)
��(s)

−�Pload(s)
=

Kgen

(
τgovs + 1

)
(τturbines + 1)

(
τgovs+ 1

)
(τturbines+ 1)

(
τgens+ 1

)
+

KgovK turbine
Kgen

R

(16)�Pload(s) =
�PD

s

(17)��(s) =
−�PDKgen

(
τgovs + 1

)
(τturbines + 1)

s
[(
τgovs+ 1

)
(τturbines+ 1)

(
τgens+ 1

)
+

KgovK turbine
Kgen

R

]

(18)��ess = Lim
s→0

s�(s)

(19)��ess = Lim
s→0

s





−�PDKgen

�
τgovs + 1

�
(τturbines + 1)

�
τgens + 1

�

s
��
τgovs+ 1

�
(τturbines+ 1)

�
τgens+ 1

�
+

KgovK turbine
Kgen

R

�





Fig. 3 Load frequency control of a single area network with load change as input and frequency change as 
output under free governor operation
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Substituting for Kgen =
1
D gives the following expression for the steady-state value of 

the frequency.

From Eq. (21), it can be seen that in the absence of a frequency-sensitive load (when 
D = 0 ), the steady-state deviation in frequency is determined by the governor speed reg-
ulation and the static gains of the turbine and the generator and is given by the following:

Load frequency control in response to load change

The purpose of the control strategy is to monitor and control the grid frequency with 
changes in load demand. The frequency response controller will need to be designed to 
robustly restore the frequency to its nominal value when a change in load occurs.

PID controller design

The proportional integral derivative (PID) controller is one of the most prevalent con-
trollers that are available for purchase in commercial settings. The PID controller is used 
to accomplish both the improvement of the dynamic response and the reduction or 
elimination of the steady-state error. The derivative controller incorporates a finite zero 
into the open-loop plant transfer function, which helps to enhance the plant’s reaction to 
transients. The integral controller raises the system type by one, adds a pole at the origin, 
and brings the steady-state error to zero. The time domain function used by the PID 
controller is as follows:

where Kp , Ki , and Kd are respectively the proportional, integral, and derivative gains 
of the controller, u(t) is the control input, and e(t) is the error signal. Equation (24) is 
Eq. (23) expressed in the s-domain.

The controller gains of the PID controller are calculated by picking the closed-loop 
poles that fulfill the performance criterion by appropriately optimizing the control-
ler using swarm intelligence. This is done regardless of which controller is being used. 
PID controller design makes use of three distinct gains, which results in the intro-
duction of two zeros and a pole at the origin of the system. This causes the system as 
a whole to become a type 1 system, which enables them to have no steady-state error. 

(20)��ess =
−�PDKgen

1+
KgovK turbine

Kgen

R

(21)��ess =
−�PD

D +
KgovK turbine

R

(22)��ss = −�PD
R

KgovK turbine

(23)u(t) = Kpe(t)+ Ki

∫
e(t)dt + Kd

de(t)

dt

(24)U(s) = Kp +
Ki

s
+ Kds
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The difficulty encountered during system controls using PID is locating the control rule 
vector K =

[
Kp Ki Kd

]
 of the controller, and as such, a more optimal control strategy is 

needed.
A change in system load will result in a steady-state frequency variance with the main 

LFC loop, dependent on the governor speed control. We must offer a reset operation to 
minimize the frequency deviation to zero. The rest action is accomplished by including 
an inbuilt proportional-integral-derivative controller that acts on the load reference set-
ting to modify the speed set point. The proportional controller increases the speed of the 
response to bring the system to stability quickly. The integral controller raises the sys-
tem type by one, causing the ultimate frequency deviation to equal zero. The derivative 
controller adds zero which helps enhance the system from heavy overshoots and oscil-
lations. Figure  4 depicts the LFC system with the controller added. For an acceptable 
transient response, the controller gain 

[
Kp Ki Kd

]
 must be adjusted.

From Fig.  4, the closed-loop transfer function is obtained assuming that the speed 
changer is set to a fixed value, denoted by �Pref (s) = 0 , while the demanded load 
changes. This gives the following:

Optimal PID design with combined Ziegler‑Nichols tuning method and root locus

Ziegler and Nichols, who were Taylor Instruments employees, proposed two simple 
mathematical approaches for adjusting PID controllers in 1942. These approaches are 
now considered standard practice in the field of control systems. Both strategies involve 
a priori assumptions about the system model, but none requires these models to be 
explicitly understood. The first approach is used on plants that have step response; while 
the second method is used on plants that may be driven to instability with proportional 
control [2]. The Ziegler-Nichols formulas for controller specification are based on plant 
step responses. In this research, only the second method has been chosen because of 
its complex dynamics. The approach is intended to produce a closed-loop system with 
some acceptable percentage overshoot. However, this is most of the time not achieved 
since Ziegler and Nichols had predicted the changes on a unique plant model.

To move forward with the Ziegler-Nichols tuning procedure, it is needed to convert 
Eq. (23) into the form as follows:

(25)

��(s)

−�Pload(s)
=

Kgen

(
τgovs + 1

)
(τturbines + 1)

(
τgovs + 1

)
(τturbines + 1)

(
τgens + 1

)
+

KgovK turbine
Kgen

R

(
Kp +

Ki
s + Kds

)

Fig. 4 LFC of an isolated power system
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where,
Kp = K  is the proportional gain
Ki = Kp/Ti is the integral gain
Kd = KpTd is the derivative gain
Ti is the reset time (integration time constant)
Td is the rate time (derivative time constant)
The tuning procedure is as follows:

• Step 1: The gain K  is adjusted until the system bursts into continuous oscillations 
that neither decay nor explode.

• Step 2: The value of K = Kc is noted for this condition. Kc is known as the critical or 
ultimate gain.

• Step 3: The oscillation is noted, and the period of the oscillation Tc is measured. Tc is 
known as the critical or the ultimate period.

• Step 4: Kp , Ti , and Td are determined.
• Step 5: Ki and Kd are computed as a result.

According to the Ziegler-Nichols, the following Table 1 can be used to compute the [
Kp Ki Kd

]
 gains. This research focuses on the design of a classical PID.

To start establishing the controller design using the Ziegler-Nichols method, the 
characteristic question q(s) of the closed-loop system is obtained to compute the crit-
ical frequency since the response of the system is already known. q(s) can be obtained 
following Eq. (25) with integral and derivative terms ignored and Kp = K .

The parameters used in this research for the generating power plant are shown in 
Table 2 [1].

The root locus diagram is obtained following the open-loop transfer function in 
Eq. (14) with a forward gain K  (step 1 of the Ziegler-Nichols procedure). The gover-
nor speed regulation R is assumed to be constant.

(26)u(t) = K

[
e(t)+

1

Ti

∫
e(t)dt + Td

de(t)

dt

]

(27)q(s) =
(
τgovs + 1

)
(τturbines + 1)

(
τgens + 1

)
+

KgovK turbine
Kgen

R
K

Table 1 Ziegler-Nichols rule

Type of controller Kp = K Ti Td Ki = Kp/T i Kd = KpTd

P-control 0.5Kc ∞ 0 0 0

PI control 0.45Kc Tc/1.2 0 0.54Kc/Tc 0

PD control 0.8Kc ∞ Tc/8 0 0.1KcT c

PID control (classical) 0.6Kc Tc/2 Tc/8 1.2Kc/Tc 0.075KcT c

Pessen integration 0.7Kc 2T c/5 3T c/20 1.75Kc/Tc 0.105KcT c

Control with some overshoot Kc/3 Tc/2 Tc/3 (2/3)Kc/Tc (1/9)KcT c

Control with no overshoot 0.2Kc Tc/1.2 Tc/3 (2/5)Kc/Tc (1/15)KcT c
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Substituting the parameters of the plant in Eq. (21) gives the following:

The basic goal of a root locus diagram is to predict the behavior of the closed-loop 
response using the root locus plot, which is derived from the open-loop transfer func-
tion. This plot shows the complex plane of the closed-loop pole locations. The root locus 
may be altered through the controller to provide the required closed-loop response by 
adding zeros and/or poles or simply shifting the closed-loop poles by adjusting K  . K  
is given a value such that it drives the system to marginal instability under the given 
change in load demand. The root locus response is shown in Fig. 5.

(28)G(s) =
K .Kgov .Kturbine

Kgen

R
(
τgovs+ 1

)
(τturbines+ 1)

(
τgens+ 1

)

(29)G(s) =
25K

(0.2s+ 1)(0, 5s+ 1)(12.5s+ 1)

Table 2 Parameters used for LFC of an isolated power plant

Name Parameter Value

Governor gain Kgov 1

The governor’s time constant (s) Tgov 0.2

Turbine gain Kturbine 1

The turbine time constant (s) Tturbine 0.5

Generator inertia time constant (s) H 5

Percentage change in load divided by percentage change in 
frequency

D 0.8

Generator gain Kgen = 1/D 1.25

The generator time constant (s) Tgen = 2H/D 12.5

Governor speed regulation in p.u R 0.05

Turbine-base MVA Pmech 250

Nominal frequency (Hertz) f 50

Change in load in p.u �Pload 0.2

Fig. 5 Root locus plot for a gain K = 1
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From the open-loop response of the root locus, the critical frequency ωc is computed 
to deduce the gain at the point where the root locus crosses the stability boundary. This 
gain is Kc according to Ziegler Nichols since it is at this gain that the system will undergo 
an infinite simple harmonic motion.
Kc = 3.74 is the proportional gain at marginal stability. From the root locus plot, it can 

be seen that s = ±j3.26 at the limit of stability. The control system is said to have a pair 
of conjugate poles on the jω-axis and is only marginally stable. Hence, marginal stability 
is obtained at around 14.96% of the overall system gain which is 25.

For ω = 3.26rads/s, a similar value of Kc is obtained using the system parameters and 
solving closed-loop characteristic equation q(s) = 0 in Eq. (27). The time response of the 
system at the critical gain is obtained and shown in Fig. 6 to compute the critical period 
Tc which is found to be 1.935 s. The above results are expressed in Table 3 below.

PID‑based optimal LQR controller

The design of controllers in classical feedback control is based on output feedback. Such 
a control scheme is referred to as a feedback control scheme. The design of controllers 
in the state space is based on different feedback control scheme which is referred to as 
state feedback scheme. The use of state feedback gives the possibility of designing con-
trollers with properties that cannot be obtained from classical feedback controllers. In 
this work, a state feedback controller known as a linear quadratic regulator (LQR) has 
been used to optimally design a PID controller for load frequency control. LQR is the 

Table 3 Combined ZN-RL controller design parameters

Critical gain ( Kc) 3.74

Critical period ( Tc) 1.935s

Critical frequency ( ωc) ±j3.26 rads/s

Fig. 6 Frequency response with change in load under critical gain
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designed optimal controller for linear systems with quadratic performance index and is 
based on minimal error and energy criteria [3].

The LQR is a state feedback controller which is designed to maintain the state vector 
x̃ , to the origin of the state space. The state vector here is x̃ = [�Pvalve�Pmech��]T . 
If disturbance as a result of load change should cause x̃ to shift from its nominal value 
x̃0 =

[
�Pvalve�Pmech��

]
o

T in the state space, the controller will act to bring back x̃ as 
closed to x̃0 as possible (the origin). Another method of optimal control like pole place-
ment is a feasible option but finding the best place put the closed-loop poles have not 
been intuitive in higher-order systems or system with more actuators or states. The con-
trol law is designed to minimize the following parabolic objective function, J :

where Q is the positive semi-defined matrix and R is the real symmetric matrix, A is the 
state matrix, and B is the input gain matrix. If the marked minors of all the elements of 
Q matrix are not negative, Q matrix is a positive semi-defined matrix. The selection of 
Q and R elements is determined according to the weighted relations of state variables 
and control inputs. With LQR, pole locations are not selected but rather an optimal gain 
matrix Kopt is determined by choosing closed-loop characteristics that are important 
for the control operation. This may include characteristics like how well the system per-
forms and how much effort is needed to get that performance.

The objective of optimal regulator design is the determination of the optimal con-
trol rule u∗(t) = Kopt x̃(t) for the combined system to reject the step disturbance from 
a change in load demand �Pload , which implies converging the initial states to zero and 
minimizing the cost function defined by Eq. (30). In most research paper, the minimi-
zation of the above quadratic cost function has followed solving the Riccati equation 
[3] which is the solution to the Lagrange multiplier or Hamiltonian equation when 
the dynamics of the system is known to enable obtaining the gain Kopt that returns the 
best control input u defined by Eq. (31). The Hamiltonian is a mathematically advanced 
description of dynamic systems, a concept from the theory of classical mechanics. It is 
also regarded as a more sophisticated form of the Lagrangian dynamic equation.

where B and R are respectively the input matrix and weighting matrix that is specified 
in Eq.  (30) and P is a symmetric positive definite matrix that is created by solving the 
algebraic Riccati equation that is described in Eq. (25) [4] and is a rich version of the Lya-
punov equation (which solves a globally asymptotically stable system at zero input cost).

where A represents the state matrix and Q represents the symmetric positive semi-
definite weighting matrix as specified in Eq. (32) and P is a symmetric positive definite 
matrix satisfying the equation. That is the solution to the Riccati equation. At times, 

(30)J =

∫ Tf

To

[
x̃TQx̃ + uTRu

]
dt

Subject to ˜̇x = Ax̃(t)+ Bu(t)

(31)Kopt = −R−1BTP

(32)ATP + PA− PBR−1BTP = −Q
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Eq. (32) or the Lagrange multiplier equation [1] with higher dimension (system with a 
large number of state variables and control loops) may become difficult and expensive to 
solve. As a result, finding the best control input u which minimizes the objective func-
tion J  to give the optimal PID parameters for a given Q and R that give Kopt need to 
be known by the controls engineer. In this research work, using the LQR method, the 
gain parameters of the PID controller are optimally determined stochastically using the 
swarm intelligence technique known as quantum particle swarm optimization.

Quantum particle swarm optimization

Kennedy and Eberhart created the particle swarm optimization (PSO) method in 1995, 
drawing inspiration from the social behavior of fish and birds. This method is based on 
evolutionary swarm intelligence and is used to address numerous optimization tasks 
[19]. Due to its few adjustable parameters, quick convergence, simplicity, and ease of 
coding, as well as the fact that the initial solution does not significantly affect its conver-
gence, PSO has been frequently utilized to address a range of engineering tasks [20].

In PSO, there are two main concepts: the local optimum pbest and the global optimum 
gbest . The global optimum is the optimum solution obtained by the entire swarm, while 
the local optimum is the optimum solution obtained by every particle that makes up the 
swarm. Given a swarm with particles P, every particle i, in the swarm at iteration t, has 
a position vector Xt

i = (xi1xi2xi3 . . . xin)
T and velocity vector V t

i = (vi1vi2vi3 . . . vin)
T . 

Equations  (33) and (34) are used to update these vectors during every iteration via j 
dimension.

where:
i = 1, 2, 3, . . . ,P and j = 1, 2, 3, . . . , n, c1 and c2 are learning factors and rt1 and rt2 are 

random numbers between 0 and 1.
From Eq. (26), we can see that there are three contributions to the movement of the 

particle in an iteration. On the other hand, Eq.  (27) updates the position of the parti-
cle. The parameter w is an initial weight constant, usually positive for classical PSO, and 
serves to balance the global search (known as exploration in the case of being set with 
higher values) as well as the local search (known as exploitation when being set with 
lower values) [19].

The risk of getting trapped in the local optimum solution is a difficulty for the primi-
tive PSO, which prevents it from ever obtaining the global best solutions [21]. Because of 
this, many variants of PSO have been developed over the years [22]. The quantum PSO 
(QPSO) was introduced by J. Sun et al. in [23], after being inspired by the convergence 
of PSO, followed by a detailed analysis of the behavior of each particle making up the 
swarm. In [24], it is derived that the complexity of the behavior of social organisms is 
far greater to be able to be simplified by linear equations as is the case of the classical 
PSO. The QPSO particle movement rhythm is very different from the classical PSOs. 
The position and velocity of a particle cannot be determined simultaneously because, 

(33)V t+1
ij = wV t

ij + c1r
t
1

(
pbestij − Xt

ij

)
+ c2r

t
2

(
gbestij − Xt

ij

)

(34)Xt+1
ij = Xt

ij + V t+1
ij
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according to the quantum world’s unpredictability theory, they become observable at 
any location in the search space with a given probability. In the case of infinite searching 
iterations, the global convergence of QPSO ensures that the global optimal solution is 
calculated. Experimental findings on several benchmark functions have shown the supe-
riority of QPSO over the classical PSO making QPSO very promising over PSO [25].

The different steps associated with QPSO are outlined below:

• Step I: Generation of the initial random population of the swarm within the 
D-dimension’s space boundaries

• Step II: Estimation of the fitness value of each particle
• Step III: Comparison of the actual fitness of each particle with its personal best 

( pbest ). Should in case the actual fitness is greater than pbest , then pbest is updated 
with the actual fitness value.

• Step IV: Calculate the average best position ( avbest ) of all the P particles present in 
the swarm using Eq. (35) shown below.

• Step V: From the entire swarm, determine the actual overall best fitness and its coor-
dinate and compare it with the global best ( gbest ). If is greater than the global best 
( gbest ), then it becomes the new gbest.

• Step VI: Calculate the vector local focus of the particles.

• Step VII: The position xjd of the  dth dimension of the  jth particle is updated using 
Eq. (36).

If xjtjd < xdmin

Then

If xjtjd > xdmax

Then

where rand1 , rand2 , rand3 , rand4 , and rand5 are random numbers between 0 and 1 and 
jt is the present iteration.

(35)avbest =
1

P

P∑

j

avbestj

VLF
jt
jd = rand1

jt
jd ×

(
pbest jd

)
+

(
1− rand1

jt
jd

)
× gbest

(36)

x
jt
jd = VLF

jt
jd +

�
(−1)

ceil
�
0.5+rand2

jt
jd

��
∗ β ∗

���avbest − x
jt−1
jd

��� ∗ loge


 1

rand3
jt
jd




(37)x
jt
jd = xdmin + 0.25 ∗ rand4

jt
jd ∗

(
xdmax − xdmin

)

(38)x
jt
jd = xdmax − 0.25 ∗ rand5

jt
jd ∗

(
xdmax − xdmin

)
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Equations (37) and (38) are applied in every dimension in the interval ( xdmin , x
d
max ) to 

ensure that the particles do not exit the domain of interest.
The flowchart in Fig. 7 summarizes the operation of QPSO.

Results and discussion
System with no controller

According to the parameters provided in Table 2 as the plant parameters, when there 
is a step change in the load demand of 0.2 p.u. (50 MW), the following results shown 
in Fig.  8 are obtained. The frequency responses (the change in frequency and the 
measured frequency) related to a 0.2 p.u change in the load demand when the plant is 
under an uncontrolled state can be observed. The steady-state change in frequency �f  

Fig. 7 Quantum particle swarm optimization algorithm flowchart [26]

Fig. 8 No control: 0.2 p.u (50 MW) change in load. a Change in frequency in Hz. b Measured frequency in Hz
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is noticeable around 0.4794 Hz from the nominal system frequency, and it takes more 
than 6 s to transit to achieve this value. A maximum overshoot of 0.7437 Hz from the 
reference frequency also occurred. Though this may sound appealing in the context of 
control theory, however, for large changes in load, the frequency may run far from the 
normal and cause the system to be heavily unstable which has an adverse consequence 
on the generators as control action becomes very important.

System with manually tuned PID controller

When the control method that involves using PID that has been manually tuned is used 
as shown in Fig. 9, the change in frequency becomes more stable in comparison to the 
condition it was in before a controller was introduced. The time it takes to change the 
frequency in power networks must always not be too long (a requirement for every 
control) while also minimizing overshoots. This control system satisfies the require-
ments in certain respects with regard to stability. This system becomes acceptably stable 
before the 6-s mark before settling for a value of 1.267× 10−4 Hz at 10 s unlike when 
a controller is not used. However, the system still suffers some degree of overshoot of 
2.962× 10−1 Hz which the controller could not remove. The controller design consid-
eration was made to get the desired settling time while keeping the overshoot margin 
minimal. Using manual tuning to design a PID control may be one of the easiest ways 
towards designing this type of control, but this method becomes extremely challenging 
for complex systems with many control loop systems, and at times, finding the optimal 
gains can even be impossible. As a result, a classical design technique becomes handy as 
such a controller may not be very robust.

Table 4 below shows the result of the obtained PID gains from manual tuning.

Fig. 9 PID control: manual tuning method: 0.2 p.u (50 MW) change in load. a Change in frequency in Hz. b 
Measured frequency in Hz

Table 4 PID (classical) control parameter from manual tuning

Parameter Value

Kp 2.0121

Ki 0.9989

Kd 1.0117
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Combine Ziegler‑Nichols and root locus PID controller

The performance of the closed-loop step response using the combined Ziegler-Nich-
ols and root locus method reveals a maximum overshoot difference of 3.485× 10−1 
Hz above the goal compared to the manual tuning which is less than 0.3 Hz. This is 
shown in Fig. 10.

The controller was still able to bring the power system frequency to acceptable sta-
bility after 8  s which was too long. The controller finally had a steady-state error of 
7.038× 10−1 Hz within a simulation time of 10 s. Given that the Ziegler-Nichols method 
relies on a standard model, the design goals will nearly never be accomplished accord-
ing to transient response. This method seems to operate best in providing an efficient 
basis for getting started with controller tuning and does not require expert knowledge 
or a model of the system before designing the controller. Following Table 1, the Ziegler-
Nichols formulation is now applied to obtain the different PID gains depicted in Table 5.

QPSO‑LQR PID controller

As can be observed in Fig.  11, the load frequency of the system according to the 
QPSO-LQR controller achieved better stability in a relatively short amount of time 
when the load is placed, precisely before 4  s compared to the other controllers that 
were unable to achieve this amount of stability during this time. Because of the 
QPSO-LQR optimum control design, the frequency of the load is not significantly 
altered by the changes that occur in the system parameters, and the load is less than 
4 s. The maximum overshoot difference with the LQR controller is also found to be 
around 0.4521× 10−1 Hz margin compared to the other approaches. The QPSO-LQR 
is able to implement a control for dynamic systems with rapidly changing dynamics 
and fast transients, hence demonstrating the robustness of the controller. The PID 
gains obtained for the optimal control theory of LQR have been shown in Table 6.

Fig. 10 PID control: combine Ziegler-Nichols and root locus method: 0.2 p.u (50 MW) change in load. a 
Change in frequency in Hz. b Measured frequency in Hz

Table 5 PID (classical) control parameter from combined Ziegler-Nichols and root locus

Parameter Value: Kc = 3.74 and Tc = 1.935s

Kp 0.6Kc 2.244

Ki 1.2Kc/Tc 2.31937984

Kd 0.075KcT c 0.5427675
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Validation of proposed QPSO‑LQR PID controller

A MATLAB Simulink program has been used to obtain all the above findings for the 
LFC of an isolated power system. Each of the three distinct cases of an optimal control-
ler design was carried out under the same condition of load change. When observing the 
performance of a control algorithm, it becomes necessary to compare controller design 
with other control laws to test its effectiveness in meeting system requirements. It can 
be seen from Figs. 9, 10, and 11 that the frequency deviation was overall improved when 
a controller was used compared to the case of no controller action. That is the case in 
Fig. 9. The combined results of all the controlled case have been presented in Fig. 12.

Table  7 has been used to summarize the results of the transient responses and the 
controller gains of the different design approaches. In the combined ZN-LR method, a 
noticeable overshoot of 0.3485 Hz and a steady-state error 0.0007038 Hz after 10 s were 
found compared to the case of the manual PID controller which had 0.2962-Hz over-
shoot above the nominal frequency and a steady-state error of 0.0007038  Hz for the 

Fig. 11 PID control: LQR-based controller with PSO: 0.2 p.u (50 MW) change in load. a Change in frequency 
in Hz. b Measured frequency in Hz

Table 6 PID (classical) control parameter from optimal LQR design from PSO algorithms

Parameter Value

Kp 79.07627655526

Ki 282.030055079202

Kd 43.7656545844910

Fig. 12 Combined frequency response of all control action under load change
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same transient analysis of 10 s. This was however achieved after several trials and efforts 
of manual tuning. The Ziegler-Nichols method showed lower performance with respect 
to manual tuning because the method however has been built based on a generic plant 
model, and design requirements are usually subjective with no standard design rule. The 
method is also not mathematically rigorous since most of the time a real experiment 
is usually needed if you do not have the model or simulation of the system; this could 
be expensive. Also, systems that cannot be driven to instability with proportional gain 
cannot be designed from this method. On the other hand, the design rule for manual 
control is non-exhaustive, and the final controller is conclusive in terms of its optimality.

In the case of a QPSO-LQR controller, the frequency has greater stability in a short 
amount of time following the load change. The maximum overshoot and steady-state 
error are found to be respectively 0.04521  Hz and 0.00007  Hz which is found to be a 
significant improvement compared to the manual and ZN-LR designs. The frequency 
of the load is not significantly altered by the adjustments made to the system parameter 
with the QPSO-LQR control. The controller produces satisfactory results compared to 
the manual PID-tuned controller which takes a lot of time to find the best tune and the 
Ziegler-Nichols method that has been constructed based on a general model that does 
not consider some of the intrinsic dynamics of the plant.

Conclusions
In this paper, an improved LQR-PID controller has been developed to control the load 
frequency of a single-area power system. The controller was designed using a QPSO 
optimization technique. The effectiveness of the suggested control strategy was imple-
mented in the LFC of a single area power system in the presence of external disturbances 
and parametric uncertainties, as well as load changes. Additionally, the results of damp-
ing for frequency deviation profile from the QPSO-based LQR-PID controller were com-
pared with those designed from combined ZN-RL and manual methods. The obtained 
results confirmed the validity of this strategy. Simulation results show that the proposed 
QPSO-based LQR-PID controller has a superior control effect of good transient behav-
ior with less overshoot, smaller settling time, and less sensitivity to parameter variations 
and load disturbances. Moreover, it was discovered that the QPSO-LQR design process 
was clearer and easier than the conventional controller designs. It should be emphasized 
that the findings were achieved for all three controllers using different approaches.

Table 7 Summary of the dynamics of the different controllers and their PID gains

Controller dynamics
Controller No controller Manual ZN‑RL QPSO‑LQR
Overshoot (Hz) 0.7437 0.2962 0.3485 0.04521

Steady-state error (Hz) 0.4794 0.0001267 0.0007038 0.00007

Duration of steady-state analysis (s) 10 10 10 10

Controller gains
PID gains Values
Kp - 2.0121 2.244 79.0763

Ki - 0.9989 2.3194 282.0301

Kd - 1.0117 0.5428 43.7655
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The load frequency regulation of two separate power systems linked by a tie line will 
be considered in the future. Furthermore, before validating its robustness, the suggested 
technique shall be evaluated with a more sophisticated real-world application such as 
LFC-integrated electric cars, wind, and solar systems. The power system will be divided 
into two parts: a microgrid with DGs and the main grid. The intermittent nature of the 
microgrid power production will be modeled, and an appropriate control law will be 
developed to control frequency when the load suddenly changes.
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