
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Rajpal and Garg
Journal of Engineering and Applied Science (2023) 70:81
https://doi.org/10.1186/s44147-023-00252-2

Journal of Engineering
and Applied Science

Ensemble of deep learning and machine
learning approach for classification
of handwritten Hindi numerals
Danveer Rajpal1* and Akhil Ranjan Garg1

Abstract

Given the vast range of factors, including shape, size, skew, and orientation of hand-
written numerals, their machine-based recognition is a difficult challenge for research-
ers in the pattern recognition field. Due to the abundance of curves and resembling
shapes of the symbols, the recognition of Devnagari numerals can leverage the diffi-
culty level of the recognition. The suggested low-classification-cost method for obtain-
ing fine features from given numeral images used benchmark deep learning models,
VGG-16Net, VGG-19Net, ResNet-50, and Inception-v3, to address these issues. Principal
component analysis, a powerful dimensionality reduction method, was used to effi-
ciently reduce the number of dimensions in the information that pre-trained deep
convolutional neural network models provided. The method for improving recogni-
tion accuracy by fusing features was provided in the scheme. A machine learning
algorithm: support vector machine was employed for the recognition task due to its
capacity to distinguish between patterns belonging to distinct classes. The system
was able to obtain a recognition accuracy of 99.72% and was effective in demonstrat-
ing the importance of ensemble machine learning and deep learning approaches.

Keywords: Deep convolutional neural networks, Deep learning, Dimensionality
reduction, Feature optimization, Feature separation, Inception-v3, Machine learning,
ResNet-50, Support vector machine, t-SNE, VGG-16Net, VGG-19Net

Introduction
Machine-based recognition of handwritten alphabets is one of the requirements of
language-based automation. Intrinsic, unconditional diversity in writing styles, shapes,
scales, skews, orientations, and deformations of handwritten alphabets are the main
associated challenges. As a result of their massive populations not having embraced
English as their first language, nations like India, China, Egypt, Saudi Arabia, and the
United Arab Emirates are building automation systems in their own national tongues to
benefit most of their populations. Many advancements have been reported for language-
based automation systems related to English script due to its worldwide acceptance. Sys-
tems based on globally emerging languages like Hindi (Devnagari), Mandarin, Arabic,

*Correspondence:
danveer.rajpal@rediffmail.com

1 Department of Electrical
Engineering, M.B.M. University,
Jodhpur 3420001, India

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-023-00252-2&domain=pdf
http://orcid.org/0000-0003-0622-9853

Page 2 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

Javanese, Urdu, and Persian require extra care. Efforts have been made in the present
work for the Devanagari script. A set of Hindi numerals is shown in Fig. 1.

Several methods have been implemented so far for solving the proposed problem.
Some benchmarking models are described as follows: Das et al. [1] received quad-tree
longest-run and modular principal component analysis (PCA)-based features from
numeral images and concatenated them. The classification was done with a one-versus-
all support vector machine (SVM) classifier. Iamsa et al. [2] crafted a histogram of gradi-
ent (HOG) features from handwritten Hindi digits. The feedforward backpropagation
neural network (FBNN) and extreme learning machine (ELM) were implemented as
classification algorithms; the former was the top performer.

Khanduja et al. [3] created a hybrid of structural and statistical features that
included intersection points, end points, loops, and pixel distributions. The feed-
forward neural network was employed for the recognition of numerals. Singh et al.
[4] examined the performance of five distinct classifiers: multilayer layer perceptron
(MLP), Naïve Bayes (NB), logistic classifiers, random forest (RF), and SVM over local
weighted run-length features received from numeral images. Acharya et al.’s [5] intro-
duction of the deep convolutional neural networks (DCNN) model with a dropout
function marked a turning point for Devanagari alphabet recognition algorithms.
With the noble purpose of advancing relevant research, the authors have generated
a benchmarking dataset of isolated handwritten Devanagari characters and made
it freely accessible to the public. The effect of adding more layers to convolutional
neural networks (CNN) on the recognition of Devanagari alphabets was studied
by Chakraborty et al. [6]. A hybrid CNN and bidirectional long-short-term mem-
ory (BLSTM) model was also tried; however, it fell short of the performance of the
standard CNN model. AlexNet, a pre-trained DCNN model, was used by Sonawane
et al. [7] to present the transfer-learning method for identifying Devanagari charac-
ters. Aneja et al. [8] provided a thorough comparison analysis based on pre-trained
DCNN models, including AlexNet, DenseNet-121, DenseNet-201, VGG-11, VGG-16,
VGG-19, and Inception-V3, for the identification of Devanagari alphabets. Trivedi
et al. [9] implemented a genetic algorithm and the L-BFGS optimization method to
train CNN for addressing the concerns of getting stuck in local optima and the large
number of iterations. Their evolutionary technique achieved a higher recognition rate

Fig. 1 Set of handwritten Hindi numeral

Page 3 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

for handwritten Devanagari numerals. Kumar et al. [10] introduced a convolution
autoencoder based on unsupervised learning to extract reduced-sized features from
the augmented numeral images of Devanagari, English, and Bangla scripts. A deep
convolutional network was employed for the final classification using these features.
Chaurasia et al. [11] employed CNN as a feature extractor to receive salient features
from handwritten numeral images of various Indian scripts. The authors employed an
SVM classifier to avail the benefit of structural risk minimization. Sarkhel et al. [12]
developed a state-of-the-art multicolumn, multi-scale CNN architecture for captur-
ing important features from the images of handwritten characters related to several
Indian scripts. A SVM classifier was employed for the classification task.

Some recent studies presented benchmark approaches to solving similar problems.
Rakshit et al. [13] produced a comparative study of 11 different CNN models, namely,
DenseNet-201, MobileNetV2, VGG-19, EfficientNetB0, NASNetMobile, Xception,
Inception ResnetV2, ResNet50, EkushNet, InceptionV3, and ResNet152V2, in recog-
nition of handwritten Bangla characters. ResNet152V2 was the top performer. Garg
et al. [14] examined k-NN and SVM classifiers with linear, polynomial, and radial
basis function (RBF) kernels in machine-based recognition of Gurumukhi charac-
ters. Peak extent and modified division point-based features were crafted for the pur-
pose. In their later study [15], the authors presented a multifeature, multi-classifier
approach for solving the problem of recognizing Gurumukhi script from degraded
images. The authors employed zoning, diagonal, shadow, and peak extent-based fea-
tures on k-NN, decision tree, and RF classifiers. Kathigi et al. [16] developed a skewed
line segmentation technique to separate the individual Kannad characters. Steerable
pyramid and discrete wavelet transforms were implemented to extract salient fea-
tures. The classification was performed with LSTM using combined features. Narang
et al. [17] employed CNN for feature extraction as well as for classification in the
recognition of ancient characters in Devanagari script. Authors experimented with
CNN architecture by varying counts of layers and filters, the size of stride and kernel,
and activation functions in search of the best combination. To avoid manual feature
engineering in the recognition of handwritten Urdu characters. Mushtaq et al. [18]
developed a CNN model that outperformed the model based on handcrafted features.
Robert Raj et al. [19] developed a recognition model for handling the problems of
discontinuity, overlooping, and unnecessary portions presented in the structure of
Tamil characters. The authors introduced a junction point elimination algorithm that
outperformed conventional feature selection and pre-extraction algorithms. Deore
et al. [20] finely tuned the popular deep convolutional neural network model VGG16
with advanced adaptive gradients to recognize handwritten Devanagari characters.
Moudgil et al. [21] developed a convolution-based capsule network that captures
spatial relationships among local features and reduces the vector length for effective
classification of Devanagari characters. Guo et al. [22] proposed a solution for the
recognition of similar-shaped Tai Le characters. The authors estimated the second-
and third-level wavelet transforms for given character images and converted them
into wavelet deep convolution features. Linear discriminant and principal component
analysis were applied to limit the feature dimensionality. The classification model
included six deep, variationally sparse Gaussian processes for efficient recognition. It

Page 4 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

has been observed that deep learning techniques are replacing conventional feature
extraction and classification techniques in this field in order to attain improved rec-
ognition accuracy [23].

It could be observed that the deep learning-based models achieved a significant
recognition rate without the need for handcrafted features. The only concern is their
large feature vectors, which may leverage the classification cost. Optimizing the size
of the feature vector can lead to a low-classification-cost solution [24] in the following
terms.

• Training time: A smaller feature vector typically implies fewer features that need
to be processed and used to train a classifier. The computational complexity of
training algorithms may scale with the number of features, leading to shorter
training times for reduced feature sizes.

• Memory usage: A smaller feature vector requires less memory to store the fea-
ture values during training and classification processes. This can lead to reduced
memory usage, which can provide cost-effectiveness if there are limitations on the
available memory resources.

• Computational complexity: The computational complexity of the classification
algorithms (SVM in the present case) can be influenced by the size of the feature
vector. The computational complexity of SVM training and classification depends
on the number of support vectors, which are the data points nearest to the deci-
sion boundary. The dimensionality of the problem decreases by reducing the num-
ber of features, and it becomes computationally less expensive to find the support
vectors. Also, the number of kernel evaluations required during training and clas-
sification decreases, leading to faster execution.

Motivation

The state-of-the-art models could be categorized into two classes: (1) the models
adopted a machine-learning approach, and (2) the models employed deep convolu-
tional neural networks.

Machine learning typically involves the use of statistical models that are trained on
labeled data to make predictions or decisions. Machine learning models are often sim-
pler and more interpretable. These models can often be trained on smaller datasets
with fewer parameters. The model’s success significantly depends on the handcrafted
features that are extracted from the data. Important concerns about handcrafted fea-
tures are time consumption [25], the requirement of domain expertise and careful
feature engineering [26], bias due to the designer’s prior assumptions that may not
capture all relevant information in the data, and limited scalability, generalization,
and reproducibility due to problem-specific design. This can limit the effectiveness of
the model and lead to suboptimal performance.

The deep convolutional neural networks address these concerns through their
potential to auto-generate features from raw images. These networks are well known
for producing human-like performance in the field of pattern recognition. The main

Page 5 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

issues related to the implementation of these networks are the requirements of large
datasets, millions of trainable parameters, and high computational complexity, which
can restrict their deployment on low-end hardware platforms such as embedded sys-
tems, Raspberry Pi, field programmable gate arrays (FPGA), and cell phones.

The pros and cons of the abovementioned approaches induced the motivation for
developing a recognition model to bridge the gap between them and receive optimum
advantages.

Contribution

In the proposed work, the network architecture of benchmark DCNN models VGG-
16Net, VGG-19Net, ResNet-50, and Inception-v3 was modified as a feature extractor to
exploit their auto-generative feature capabilities. The classical PCA method was adopted
for optimizing the size of feature vectors received from individual models. The opti-
mized feature vectors were fused together in a strategic manner to obtain the maximum
recognition rate from the benchmark SVM classifier. The suggested model provided a
low-classification-cost solution to the proposed problem in terms of feature vector size.

Preliminary
An overview of the techniques used in the presented work is given in the following
subsections.

VGG‑16Net

This is a convolutional neural network architecture developed by the Visual Geometry
Group (VGG) at Oxford University. It is named after the fact that it consists of 16 layers,
which include convolutional layers, pooling layers, and fully connected layers [27]. The
VGG-16Net architecture was designed for image recognition and classification tasks
and achieved state-of-the-art performance on the ImageNet Large-Scale Visual Recogni-
tion Challenge (ILSVRC) in 2014. The network consists of a series of 3 × 3 convolutional
layers, each followed by a rectified linear unit (RELU) activation function and a 2 × 2
max pooling layer. The final layers of the network consist of fully connected layers that
perform the classification task. VGG-16Net is a deep neural network that has 138 mil-
lion parameters and requires significant computational resources to train. However, pre-
trained versions of the network are available and can be used for transfer learning, which
allows for faster training on new image recognition tasks.

VGG‑19Net

VGG-19Net is a convolutional neural network architecture with 19 layers [27]. It was
developed by the Visual Geometry Group (VGG) at the University of Oxford and
achieved state-of-the-art performance in ILSVRC-2014. The architecture of VGG-19Net
is like that of VGG-16Net but with the addition of three extra 3 × 3 convolutional lay-
ers. VGG-19Net has 143 million parameters and requires significant computational
resources to train. However, pre-trained versions of the network are available and can
be used for transfer learning, which allows for faster training on new image recognition
tasks.

Page 6 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

ResNet‑50

ResNet-50 is a deep convolutional neural network architecture that was introduced
by Microsoft Research in 2015. The name “ResNet” comes from “residual network,”
which refers to the use of residual connections, or skip connections, which allow
information to bypass certain layers in the network. This helps mitigate the vanish-
ing gradient problem, which can occur when training very deep neural networks [28].
ResNet-50 consists of 50 layers and is used primarily for image recognition tasks such
as object detection and classification. The architecture of ResNet-50 is based on the
building blocks known as residual blocks, which consist of two convolutional lay-
ers and a skip connection. The skip connection allows the input to be added directly
to the output of the residual block, which helps preserve information and gradients
through the network.

Inception‑v3

Inception-v3 is a convolutional neural network architecture that was introduced by
researchers at Google in 2015 [29]. The architecture of Inception-v3 is based on the use
of “inception modules,” which consist of several parallel convolutional layers with differ-
ent filter sizes. This allows the network to capture features at multiple scales and helps
reduce the computational cost of the network. Inception-v3 also uses a technique called
“factorization,” which decomposes large convolutions into smaller convolutions. This
helps reduce the number of parameters in the network and improve its computational
efficiency. Inception-v3 also includes other features such as batch normalization and
dropout regularization, which enhance the generalization performance of the network.

Principal component analysis

It is a statistical method that can be used to reduce the dimensionality of a dataset by
projecting the original data onto a lower-dimensional subspace defined by the princi-
pal components. This projection preserves as much of the original variability as possible
while reducing the number of dimensions needed to represent the data [30]. PCA has
several applications, including data compression, feature extraction, and the visualiza-
tion of high-dimensional data. It is also commonly used as a preprocessing step for other
machine learning algorithms to reduce the number of features and improve the accu-
racy of the model. The steps involved in the estimation of the principal components are
described as follows:

Let X be a data matrix of dimension N × F, where N is the number of samples and F is
the number of features.

1. Standardization of X:

where Z is the standardized data matrix, μ is the mean vector of X, and σ is the standard
deviation vector of X. This transforms each feature of X to have zero mean and unit vari-
ance, which ensures that all features are on the same scale and have equal importance in
the analysis.

(1)Z = (X − µ)/σ

Page 7 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

2. Calculation of the covariance matrix related to standardized data:

where, S is covariance matrix and ZT is the transpose of Z.

3. Determining the eigenvectors and eigenvalues of the covariance matrix by the
following:where V and λ represent eigenvectors and eigenvalues respectively and can
be denoted as follows:

The eigenvectors represent the principal components, and the eigenvalues represent
the variance explained by each principal component.

4. Calculation of principal components:

Where PC represents principal components.

Support vector machine

It is a popular and powerful machine learning algorithm used for classification and
regression analysis. The basic idea behind an SVM is to find the hyperplane that best
separates the data points of different classes. The hyperplane is chosen so that it maxi-
mizes the margin, which is the distance between the hyperplane and the closest data
points in each class. The data points closest to the hyperplane are called support vec-
tors. SVMs can handle both linearly separable and nonlinearly separable data by using
different types of kernels. A kernel function transforms the original data into a higher-
dimensional feature space, where it may become linearly separable. Some commonly
used kernel functions include the linear, the polynomial, and the RBF kernels. In addi-
tion to binary classification, SVMs can be extended to handle multiclass classification
problems by using techniques such as one-vs-all and one-vs-one [31]. SVMs have several
advantages over other classification algorithms, including their ability to handle high-
dimensional data, their robustness to overfitting, and their effectiveness even with small
datasets. In the proposed work, an SVM classifier was employed with the one-versus-all
technique and an RBF kernel. The classification cost of a one-versus-all SVM classifier
can be calculated as follows:

Let “m” be the number of classes and “n” be the number of training samples. Let “d”
be the dimensionality of the feature vector. During training, the one-versus-all SVM
classifier trains m separate binary SVM classifiers, one for each class. Each binary SVM

(2)S = (1/N)× Z
T × Z

(3)S × V = � × V

V = V1, V2,V3, . . .VF

� =
[

�1, �2,�3, . . .�F
]

(4)
PC = Z × V

Page 8 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

classifier is trained on a subset of the training data that consists of the samples from one
class and the samples from all other classes. Let C be the regularization parameter of the
SVM, and let “k” be the kernel function used by the SVM. The training complexity of the
one-versus-all SVM classifier can be expressed as follows:

During classification, the one-versus-all SVM classifier applies each of the m binary
SVM classifiers to the test sample and selects the class with the highest score. Let “t”
be the number of test samples. The classification complexity of the one-versus-all SVM
classifier can be expressed as follows:

The complexity of the RBF kernel (k) used in an SVM classifier depends on the number
of training samples and the dimensionality of the feature vector. The RBF kernel function
is defined as follows:

where x and x′ are two feature vectors, ||.|| is the Euclidean distance between them, and
ϒ is a parameter that determines the width of the kernel. The complexity of the RBF ker-
nel function can be calculated as follows:

For a single evaluation of the kernel function, the time complexity is O(d), since we
need to compute the Euclidean distance between the two feature vectors. To evaluate
the kernel function for all pairs of training samples, the complexity is as follows:

Since there are n2 pairs of training samples and we need to compute the kernel func-
tion for each pair. From Eqs. (5), (6), and (8), it is obvious that the various complexi-
ties of the SVM classifier directly depend on the dimensionality (d) of the feature vector.
This suggested that optimizing feature vectors in terms of dimensionality (size) would
improve the classification cost. The same is true for other classifiers.

Methods
The complete overview of the proposed scheme is depicted in Fig. 2.

Input dataset

The input dataset is compiled from a public repository [5]. The dataset has accurate
labelling for each handwritten numeral in Hindi script. The dataset exhibits a wide
range of variations in writing styles, size, slant, stroke thickness, etc. that are commonly
encountered in real-world scenarios. It has a balanced distribution of numerals across
different classes, which can ensure bias-free training. The dataset has satisfactory sample
counts of 20,000. All these reasons make it a suitable choice for the proposed work.

(5)O

(

m × n
2 × d

)

× [complexity of the kernel function k]

(6)O (m × t × d) × [complexity of the kernel function k]

(7)k

(

x, x
′
)

= exp
(

−ϒ × ||x − x
′

||2
)

(8)O

(

n
2 × d

)

Page 9 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

Dataset preprocessing

The pretrained DCNN models have specific input size requirements. In the presented
work, images were resized in the input dataset to match the input size expected by the
individual models. Details about the required input image size for proposed DCNN
models are provided in Table 1.

The resized images for VGG-16Net, VGG-19Net, ResNet-50, and Inception-v3 were
represented by S1, S2, S3, and S4, respectively, in Fig. 2.

Feature extraction

The architecture of individual models was modified for the purpose of feature extrac-
tion. The classification block of the individual DCNN models typically consists of fully
connected layers with a large number of parameters (of the order of millions). These
layers are responsible for mapping the extracted features to 1000 class labels, as the

Fig. 2 Design of proposed model

Table 1 Input size requirements of DCNN models

Sl. no DCNN model Required input size Resized images as per
col. 3 were termed as

1 VGG-16Net 224 × 224 × 3 S1

2 VGG-19Net 224 × 224 × 3 S2

3 ResNet-50 224 × 224 × 3 S3

4 Inception-v3 299 × 299 × 3 S4

Page 10 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

classification blocks of individual models were originally designed to solve the classifi-
cation problem of the ImageNet dataset with 1000 object classes. Since the objective of
the proposed strategy is to exploit the auto-generative feature capability of pretrained
DCNN models, their classification blocks are of no use. In the modified architecture,
the classification blocks were removed completely to eliminate the computational bur-
den and memory requirements associated with the fully connected layers. The remain-
ing convolutional layers in the modified architecture were locked out of further training
in order to take advantage of transfer learning. Arrangements have been made to collect
the features after the final convolutional layer of each model. The individual models were
set as feature extractors. The simplified architectures of modified networks are shown in
Fig. 3. The resized images (S1, S2, S3, S4) were applied to the respective modified DCNN
architectures, VGG-16Net, VGG-19Net, ResNet-50, and Inception-v3. The sizes of cor-
responding feature vectors derived for a given digit image were 4096, 4096, 2048, and
2048, respectively, and were represented by F1, F2, F3, and F4 in the design (refer to
Fig. 2). The process of feature extraction is depicted in Algorithm 1.

Algorithm 1. Algorithm for feature extraction

Feature optimization

This stage included the feature reduction and feature fusion steps of the proposed meth-
odology. The background details of the numeral images were almost identical and did not
carry any pattern-related information (refer to Fig. 1). This has suggested the possibility
of having redundant information in the individual feature types (F1 to F4). The principal
component analysis (refer to the “Inception-v3” section) has been applied to individual
feature types F1 to F4 to eliminate feature collinearity. The trial-and-error technique was
used to identify the optimum number of principal components. First, 10 PCA compo-
nents were estimated using separate feature vectors (i.e., F1, F2, F3, and F4). These ele-
ments were combined to form one vector. A sample dataset of 500 such fused feature
vectors (50 samples from each numeral class) was made for the specified purpose. The
sample dataset was used to train and test the proposed classifier. For the sample dataset,
the procedure was repeated while stepping up the principal component counts from 10
to 40 in increments of 2. The recognition accuracy was seen to greatly increase between
components 10 and 20, but no further significant increases were seen. This suggests that
20 component counts are the optimal number. The various feature vectors (F1, F2, F3,
and F4) were reduced in dimension by the suggested approach to 20, and the resulting
reduced feature vectors were shown as R1, R2, R3, and R4 accordingly (refer to Fig. 2).
The reduced features R1 to R4 were concatenated into a single feature vector Z. The frame

Page 11 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

format of the fused feature vector Z is shown in Fig. 4. The size of the proposed optimized
features becomes 80. The vector Z was estimated for all the numeral images in the input
dataset. The reduced feature vectors R1 to R4 and the fused feature vector Z were used to
create five new datasets. The process of feature optimization is depicted in Algorithm 2.

Fig. 3 Modified architecture of DCNN models as feature extractor. a VGG-16Net. b VGG-19Net. c ResNet-50.
d Inception-v3

Page 12 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

Algorithm 2. Algorithm for feature optimization

Numeral recognition

Besides the input dataset, five new datasets have been created up to this stage.
The details are given in Table 2. Datasets D1 to D4 were created from the features
received from VGG-16Net, VGG-19Net, ResNet-50, and Inception-v3, respectively,
after feature optimization. Dataset D5 was created by concatenating the features
related to datasets D1 to D4. The individual datasets were split into train and test
sets in a ratio of 75:25. The SVM classifier was trained and tested with individual
datasets. Details of the hyperparameters used during the classifier learning are given
in Table 3. The results were recorded in terms of precision, recall, F1 score, and
recognition accuracy. The formulations used for the calculation of the metrics are
given in Table 4. Here, TP, TN, FP, and FN represent true-positive, true-negative,

Fig. 4 Frame format of fused feature vector Z

Table 2 Summary of newly created datasets

Dataset Originated from Feature vector size Size of dataset

Input Pixel values of numeral images 1032 20,000

D1 VGG-16Net 20 20,000

D2 VGG-19Net 20 20,000

D3 ResNet-50 20 20,000

D4 Inception-v3 20 20,000

D5 Fusion of features related to D1, D2, D3, &
D4

80 20,000

Page 13 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

false-positive, and false-negative events during the testing phase of the proposed
classifier. A comprehensive result analysis is provided in the next section.

Results
Results obtained from various datasets are compiled in Tables 5, 6, 7, 8, 9 and 10.
Arrangements have been made to estimate the confusion matrix using classification
reports given in Tables 5, 6, 7, 8, 9 and 10. This would generate more readability
about the model’s performance. The consolidated results are compiled in Table 11.
The model achieved highest recognition accuracy of 99.72% with the proposed
fusion-based feature scheme (Dataset D5).

Table 3 Major parameters of SVM classifier

Parameter Value

Kernel RBF

Cache size 200 MB

Max iterations − 1 (no limit)

Decision function shape One versus all

Probability False

Table 4 Details of performance metrics used in the proposed study

Metrics Expression Description

Recognition accuracy (A) TP+TN

TP+FP+TN+FN
It counts the correct predictions out of total predictions

Precision (P) TP

TP+FP
It counts the correct positive predictions out of the total posi-
tive predictions for given numeral class

Recall (R) TP

TP+FN
It counts the correct positive predictions out of the total
samples for given numeral class

F1 score (F1) 2× P×R

P+R
It counts harmonic mean of precision and recall for given class

Table 5 Result obtained from input dataset (images)

Digit class Precision Recall F1 score Test samples

0 95.16 98.20 96.65 500

1 98.61 99.40 99.00 500

2 83.39 92.40 87.67 500

3 91.74 86.60 89.09 500

4 97.53 94.80 96.15 500

5 95.54 94.20 94.86 500

6 95.66 97.00 96.33 500

7 98.72 92.60 95.56 500

8 99.40 98.60 99.00 500

9 98.61 99.20 98.90 500

Overall recognition accuracy (%) 95.30

Page 14 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

Feature separation

Arrangements were made to visualize the separation between the features related to
various numeral classes in the input dataset and the proposed feature scheme (data-
set D5) by using t-SNE (t-distributed stochastic neighbor embedding) algorithm. It is

Table 6 Result obtained from dataset D1 (VGG-16Net)

Digit class Precision Recall F1 score Test samples

0 99.20 99.60 99.40 500

1 98.99 98.40 98.70 500

2 94.07 95.20 94.63 500

3 96.28 93.20 94.72 500

4 98.39 98.00 98.20 500

5 97.60 97.60 97.60 500

6 95.69 97.60 96.63 500

7 96.62 97.20 96.91 500

8 98.20 98.40 98.30 500

9 97.39 97.20 97.30 500

Overall recognition accuracy (%) 97.24

Table 7 Result obtained from dataset D2 (VGG-19Net)

Digit class Precision Recall F1 score Test samples

0 99.60 99.60 99.60 500

1 97.60 97.80 97.70 500

2 94.29 92.40 93.33 500

3 94.25 95.00 94.62 500

4 98.02 99.20 98.61 500

5 98.59 97.80 98.19 500

6 95.83 96.60 96.22 500

7 98.41 98.80 98.60 500

8 99.20 98.60 98.90 500

9 96.00 96.00 96.00 500

Overall recognition accuracy (%) 97.18

Table 8 Result obtained from dataset D3 (ResNet-50)

Digit class Precision Recall F1 score Test samples

0 100.00 99.60 99.80 500

1 98.59 98.00 98.29 500

2 94.72 96.80 95.75 500

3 96.95 95.40 96.17 500

4 97.43 98.60 98.01 500

5 97.80 97.60 97.70 500

6 95.10 97.00 96.04 500

7 98.60 98.40 98.50 500

8 98.40 98.20 98.30 500

9 97.55 95.40 96.46 500

Overall recognition accuracy (%) 97.50

Page 15 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

a popular dimensionality reduction algorithm used for visualizing high-dimensional
data in a low-dimensional space while preserving the structure of the original data as
much as possible. With the help of Gaussian kernel, t-SNE computes a similarity score
for each data point with every other data point based on Euclidean distance. The simi-
larity scores were used to compute probability distributions for both the high-dimen-
sional and low-dimensional spaces. The goal of t-SNE is to minimize the divergence
between the probability distributions in the high-dimensional and low-dimensional

Table 9 Result obtained from dataset D4 (Inception-v3)

Digit class Precision Recall F1 score Test samples

0 100.00 99.60 99.80 500

1 98.38 97.40 97.89 500

2 94.12 96.00 95.05 500

3 98.15 95.60 96.86 500

4 97.44 98.80 98.11 500

5 97.81 98.20 98.00 500

6 95.88 97.80 96.83 500

7 98.80 98.80 98.80 500

8 98.59 98.20 98.40 500

9 97.16 95.80 96.48 500

Overall recognition accuracy (%) 97.62

Table 10 Result obtained from dataset D5 (proposed fusion-based features)

Digit class Precision Recall F1 score Test samples

0 100.00 100.00 100.00 500

1 100.00 99.80 99.90 500

2 98.23 99.80 99.01 500

3 99.80 98.80 99.30 500

4 99.40 100.00 99.70 500

5 99.80 99.60 99.70 500

6 100.00 99.80 99.90 500

7 100.00 100.00 100.00 500

8 100.00 99.80 99.90 500

9 100.00 99.60 99.80 500

Overall recognition accuracy (%) 99.72

Table 11 Consolidated results obtained from various datasets used in the proposed study

Dataset Recognition
accuracy (%)

Input (images) 95.30

D1 97.24

D2 97.18

D3 97.50

D4 97.62

D5 (proposed) 99.72

Page 16 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

spaces. The algorithm does this by adjusting the positions of the data points in the low-
dimensional space so that the probability distributions match as closely as possible.

A significant separation between the features related to different numeral classes
could be observed in Fig. 6b, which derived from the proposed feature scheme, in
comparison to Fig. 6a, which derived from the raw images of the input dataset. The
more separation between the features, the easer their classification.

The results of various benchmark models, along with a proposed one, are compiled
in Table 12. It should be noted that there is no standard dataset of handwritten Hindi
numerals in the public domain, and the results of benchmark models as mentioned in
Table 12 were based on different datasets.

The proposed model produced a comparable recognition rate to the benchmark
models, that too with a smaller feature vector and a higher number of test samples.
Small is the size of the feature vector, and low will be the training and classification
complexities (refer to “Principal component analysis” section).

Table 12 Results of benchmark models along with proposed one

a The benchmark model in [3] addressed the recognition problem of handwritten Devanagari characters and numerals
individually. Recognition accuracy for numerals was included in the table to maintain relevance to the proposed study
b Benchmark models in [10–12] addressed the recognition problem of handwritten numerals related to various other scripts
as well. Recognition accuracy for Devanagari numerals was included in the table to maintain relevance to the proposed
study

Sl. no Benchmark
model

Feature‑
types

Classifier Dataset size Test‑
sample
count

Feature‑
vector size

Max. recg.
acc. (%)
for Hindi
numerals

1 Khanduja
et al. [3]a

Hybrid of
structural
and statistical
features
(intersection
points, end
points, loops,
and pixel
distributions)

MLP 22,556 2000 462 95.5

2 Trivedi et al.
[9]

Image CNN with
genetic
algorithm
and L-BFGS
method

22,546 3762 256 96.54

3 Kumar et al.
[10]b

Image Convolution
autoencoder

17,000 3400 1032 99.59

4 Singh et al.
[4]

Regional-
weighted run
length

MLP, NB,
logistic, RF,
SVM

6000 2000 196 95.02 with SVM

5 Chaurasiya
et al. [11]b

CNN-based
features

SVM 22,556 3759 1600 99.41

6 Sarkhel et al.
[12]b

CNN-based
features

SVM 3000 1000 4096, 2560, &
1792

99.5

7 Proposed
model

Fusion-based
features as
received from
VGG-16Net,
VGG-19Net,
ResNet-50,
and Incep-
tion-v3

SVM 20,000 5000 80 99.72

Page 17 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

Discussion
Figure 5 demonstrates the efficiency of the proposed scheme. The confusion matrix in
Fig. 5a was derived when the classifier was tested with the input dataset (i.e., numeral
images directly). A higher degree of confusion could be observed between numeral
classes 2–3, 4–5, and 6–7; also, a significant count of false-negative (FN) predictions was

Fig. 5 Confusion matrix related to a input dataset, b dataset D1, c dataset D2, d dataset D3, e dataset D4,
and f dataset D5 (proposed dataset)

Page 18 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

recorded for numeral classes 5 and 7. All these regions of the confusion matrix were
encircled in red. The confusion matrix in Fig. 5b to e was derived when the classifier
was tested with datasets D1 to D4. Clear improvements could be observed in the encir-
cled regions of the respective matrices with respect to Fig. 5a. This was also reflected
in the recognition accuracy achieved with these datasets (refer to Table 11). The confu-
sion matrix in Fig. 5f shows tremendous improvements over Fig. 5a and the rest. This
matrix was derived by testing the classifier with the proposed fusion-based feature
scheme (dataset D5). The matrix has minimal confusion. This suggested the potential of
the proposed scheme in the selection of prominent features related to different numeral
classes that could be helpful in their precise recognition by the given machine learning
algorithm.

Figure 6 demonstrates the effectiveness of the proposed scheme in selecting distinct
features related to various numeral classes. Proposed feature optimization resulted in a
good separation between the features related to various numeral classes in the feature
space, which contributed to achieve the comparable recognition rate to the benchmark
models.

Referring to Table 12, the proposed model achieved comparable recognition accu-
racy to benchmark models by considering fewer numbers of features, which suggest its
potential of solving the given problem with low-classification cost.

Conclusions
Most of the benchmark models relied on either a machine learning or deep learning
approach. The former is simpler and more interpretable; it can be trained with small
datasets and fewer parameters, but the need for manual feature engineering limits its
performance. On the other hand, deep learning methods can autogenerate the salient
features. These methods need large datasets and millions of trainable parameters to
produce excellent results. The proposed study presented an effective ensemble of these
state-of-the-art approaches. The benchmark DCNN models VGG-16Net, VGG-19Net,

Fig. 6 Separation between the features related to various numeral classes in a input dataset and b proposed
feature scheme (dataset D5)

Page 19 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

ResNet-50, and Inception-v3 were employed as feature extractors that produced large
feature vectors. The size of feature vectors was optimized by careful implementa-
tion of the classical PCA method, which led to a low-classification-cost solution to
the proposed problem. The optimized features were fused together in a systematic
manner and used to train the benchmark SVM classifier. The proposed model suc-
cessfully achieved comparable results to the benchmark models with a smaller feature
vector. Small is the size of the feature vector, and low will be the training and classifi-
cation complexities. Although medical imaging and related pattern recognition prob-
lems are not within the scope of the current study, we are hopeful that the proposed
fusion-based feature scheme would also be helpful in solving these kinds of problems
effectively.

Abbreviations
PCA Principal component analysis
SVM Support vector machine
HOG Histogram of gradient
FBNN Feedforward backpropagation neural network
ELM Extreme learning machine
MLP Multilayer perceptron
NB Naïve Bayes
RF Random forest
DCNN Deep convolutional neural networks
CNN Convolutional neural network
BLSTM Bidirectional long short-term memory
L-BFGS Limited memory-Broyden–Fletcher–Goldfarb–Shanno
k-NN K-nearest neighbor
RBF Radial basis function
LSTM Long short-term memory
FPGA Field-programmable gate array
VGG Visual Geometry Group
ILSVRC ImageNet Large-Scale Visual Recognition Challenge
RELU Rectified linear unit
TP True positive
TN True negative
FP False positive
FN False negative
t-SNE T-distributed Stochastic Neighbor Embedding

Acknowledgements
We present our deep gratitude to Google Co-laboratory services to provide a hassle-free Python platform with the
power of a graphical processing unit and vast python library support, without which it would be not easy to complete
the proposed work. We are grateful to Acharya, Pant, and Gyawali for their efforts in developing the dataset of handwrit-
ten Devanagari characters and providing it in the public domain for progressive research in the related field.

Authors’ contributions
All authors have equal contribution in the proposed research. All authors have read and approved the manuscript.

Funding
The proposed research does not involve any type of funding.

Availability of data and materials
The dataset used in the study is available on https:// www. kaggle. com/ datas ets/ ashok pant/ devan agari- chara cter- datas
et- large

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://www.kaggle.com/datasets/ashokpant/devanagari-character-dataset-large
https://www.kaggle.com/datasets/ashokpant/devanagari-character-dataset-large

Page 20 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

Received: 6 April 2023 Accepted: 2 July 2023

References
 1. Das N et al (2012) A statistical-topological feature combination for recognition of handwritten numerals. Applied

Soft Computing Journal 12(8):2486–2495
 2. Iamsa-At S, Horata P (2013) Handwritten character recognition using histograms of oriented gradient features in deep

learning of artificial neural network. International Conference on IT Convergence and Security, ICITCS-2013 1:1–5
 3. Khanduja D, Nain N, Panwar S (2015) A hybrid feature extraction algorithm for Devanagari script. ACM Transactions

on Asian and Low-Resource Language Information Processing 15(1):1–11
 4. Singh PK, Das S, Sarkar R, Nasipuri M (2017) “Recognition of offline handwriten Devanagari numerals using regional

weighted run length features,” International Conference on Computer, Electrical and Communication Engineering,
ICCECE-2016 1:1–6

 5. Acharya S, Pant AK, Gyawali PK (2015) “Deep learning based large scale handwritten Devanagari character
recognition,” 9th International Conference on Software, Knowledge, Information Management and Applications,
ICSKIMA-2015 9:1–6

 6. Chakraborty B, Shaw B, Aich J, Bhattacharya U, Parui SK (2018) “Does deeper network lead to better accuracy: a case
study on handwritten Devanagari characters,” Proceedings - 13th International Workshop on Document Analysis
Systems, DAS-2018 13:411–416

 7. Sonawane PK, Shelke S (2018) “Handwritten Devanagari character classification using deep learning.,” International
Conference on Information, Communication, Engineering and Technology, ICICET-2018 1:1–4

 8. Aneja N, Aneja S (2019) “Transfer learning using CNN for Handwritten Devanagari character recognition,” 1st IEEE
International Conference on Advances in Information Technology, ICAIT-2019 1:293–296

 9. Trivedi A, Srivastava S, Mishra A, Shukla A, Tiwari R (2018) Hybrid evolutionary approach for Devanagari handwritten
numeral recognition using convolutional neural network. Procedia Computer Science 125:525–532

 10. S. Kumar and R. K. Aggarwal, “Augmented handwritten Devanagari digit recognition using convolutional autoen-
coder,” International Conference on Inventive Research in Computing Applications, ICIRCA-2018. 2018:574–580.

 11. S. Chaurasia and S. Agarwal, “Recognition of handwritten numerals of various Indian regional languages using deep
learning,” 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineer-
ing, UPCON-2018. 2018:1–6.

 12. Sarkhel R, Das N, Das A, Kundu M, Nasipuri M (2017) A multi-scale deep quad tree based feature extraction method
for the recognition of isolated handwritten characters of popular Indic scripts. Pattern Recogn 71:78–93

 13. Rakshit P, Chatterjee S, Haldar C, Sen S, Obaidullah SM, Roy K (2022) Comparative study on the performance of the
state-of-the-art CNN models for handwritten Bangla character recognition. Multimedia Tools and applications
82(7):1–22

 14. Garg A, Jindal MK, Singh A (2019) Offline handwritten Gurmukhi character recognition: k-NN vs. SVM classifier. Int J
Inf Technol 13:2389–2396

 15. Garg A, Jindal MK, Singh A (2019) Degraded offline handwritten Gurmukhi character recognition: study of various
features and classifiers. Int J Inf Technol 14:145–153

 16. Kathigi A, HonnamachanahalliKariputtaiah K (2022) Handwritten character recognition using skewed line segmen-
tation method and long short term memory network. Int J Syst Assur Eng Manage 13(4):1733–1745

 17. S. R. Narang, M. K. Jindal, S. Ahuja, and M. Kumar, “On the recognition of Devanagari ancient handwritten characters
using SIFT and Gabor features,” Soft Computing, no. published online, pp. 1–11, 2020.

 18. Mushtaq F, Misgar MM, Kumar M, Khurana SS (2021) UrduDeepNet: offline handwritten Urdu character recognition
using deep neural network. Neural Comput Appl 33:15229–15252

 19. Raj MAR, Abirami S (2020) Junction point elimination based Tamil handwritten character recognition: an experimen-
tal analysis. J Syst Sci Syst Eng 29(1):100–123

 20. Deore SP, Pravin A (2020) Devanagari handwritten character recognition using fine-tuned deep convolutional
neural network on trivial dataset. Sadhana - Acad Proc Eng Sci 45(1):1–13

 21. Moudgil A, Singh S, Gautam V, Rani S, Shah SH (2023) Handwritten Devanagari manuscript characters recognition
using CapsNet. Int J Cogn Comput Eng 4:47–54

 22. H. Guo, Y. Liu, J. Zhao, and Y. Song, “Offline handwritten Tai Le character recognition using wavelet deep convolution
features and ensemble deep variationally sparse Gaussian processes,” Soft Computing, 2023.

 23. Singh S, Garg N, Kumar M (2022) Feature extraction and classification techniques for handwritten Devanagari text
recognition: a survey. Multimed Tools Appl 82:747–775

 24. Jia W, Sun M, Lian J, Hou S (2022) Feature dimensionality reduction: a review. Complex Intell Syst 8(3):2663–2693
 25. Janiesch C, Heinrich K. “Machine learning and deep learning”. 2021:685–695.
 26. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
 27. Simonyan K, Zisserman A. “Very deep convolutional networks for large-scale image recognition”. in 3rd International

Conference on Learning Representations, ICLR-2015. 2015:1–14.
 28. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition 2016-Dec:770–778
 29. Szegedy C et al (2015) “Going deeper with convolutions,” in IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR-2015 24:1–9
 30. Markos A, Tuzhilina E. “Principal component analysis,” nature reviews methods primers. 2022;2.
 31. Awad M, Khanna R (2015) Support Vector Machines for Classification. In: Efficient Learning Machines, vol 1. Apress,

Berkeley, p 39–66

Page 21 of 21Rajpal and Garg Journal of Engineering and Applied Science (2023) 70:81

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Danveer Rajpal received bachelor’s degree in Electronics and Communication Engi-
neering from University of Rajasthan, Jaipur, India, with Hons. in 2004; the master’s degree
in Digital Communication from JNU, Jodhpur, India, with Hons. and gold medal in 2011;
and currently pursuing Ph.D. degree from Department of Electrical Engineering, Faculty of
Engineering and Architecture, JNV University Jodhpur, India. He has served as Assistant
Profesor in Department of Electronics and Communication in JECRC Engineering College,
Jodhpur, India, from 2004 to 2012 and given his services as Head of the Dept. in Depart-

ment of Electronics and Communication Engineering, VIET Engineering College, Jodhpur, India, from 2012
to 2019. His research interests include pattern recognition using machine learning and deep learning
techniques.

Akhil Ranjan Garg received his BE (electrical engineering) and ME (control systems)
degrees from M.B.M. Engineering College, Jodhpur, India, and subsequently did his Ph.D.
from IIT Delhi, Delhi, India. He is presently working as Professor and Head in the Depart-
ment of Electrical Engineering, Faculty of Engineering and Architecture, M.B.M. University
Jodhpur, India. His research interests include computational neuroscience, intelligent sys-
tems, pattern recognition, power electronics, and machine learning. He has published over

40 papers in these areas in refereed international/national journals and conference proceedings. Dr. Garg is
a recipient of numerous honors and awards including Young Teacher Career Award of AICTE, DAAD (Ger-
man Academic Exchange Program) Fellowship, US Naval Academy Fellowship, and IBRO (International
Brain Research Organization) Fellowship. He has served as Member of All India Board of Undergraduate
Studies in Engineering and Technology (AIB-UGET) constituted by All India Council of Technical Education
(AICTE), New Delhi; Member of Board of Governor IIT Jodhpur; Member Executive Council Central Univer-
sity of Rajasthan; Member Board of Management, Rajasthan Technical University Kota; and Member Aca-
demic Council MDS University Ajmer and Member Academic Council, JNV University, Jodhpur. He is former
Honorary Chairman, Institution of Engineers (India) Jodhpur Local Centre. Dr. Garg is Fellow Institution of
Engineers (India), Life Member Indian Society of Technical Education (ISTE), Member IEEE, Member Interna-
tional Brain Research Organization (IBRO), and Member International Neural Network Society (INNS).

	Ensemble of deep learning and machine learning approach for classification of handwritten Hindi numerals
	Abstract
	Introduction
	Motivation
	Contribution

	Preliminary
	VGG-16Net
	VGG-19Net
	ResNet-50
	Inception-v3
	Principal component analysis
	Support vector machine

	Methods
	Input dataset
	Dataset preprocessing
	Feature extraction
	Feature optimization
	Numeral recognition

	Results
	Feature separation

	Discussion
	Conclusions
	Acknowledgements
	References

