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Abstract 

This study presents a static analysis and natural frequency analysis of functionally 
graded laminated piezoelectric beams based on the Euler–Bernoulli theory using 
the finite element method. A simple power law is used to vary all material properties 
across the thickness, except for Poisson’s ratio. The effect of laminate configuration 
and volume fraction index on the deflection and natural frequency of beams made 
of functionally graded piezoelectric materials (FGPM) is investigated, and the relation-
ship between deflection and different volume fraction indices under thermal, electri-
cal, and mechanical loads is explored. The study shows that there is a certain volume 
fraction index that maximizes or minimizes deflection. Additionally, the variation 
of natural frequency in relation to the power law index is examined. The findings of this 
research are useful for the development of sensors and actuators in different environ-
ments, and the appropriate operation point of the structure can be selected based 
on the behavior of the sensor or actuator of the beam.

Keywords: FGPM beam, Finite element method, Thermo-electrical loading, Optimum 
volume fraction index

Introduction
Importance of the problem

In the past few decades, multilayer piezoelectric structures have become increasingly 
important in various fields of engineering as they can serve as sensors and actuators for 
monitoring the state or controlling vibrations of structures [1]. However, such structures 
can also face several issues due to sudden changes in material properties at the junctions 
of individual laminates, such as residual stresses and delamination, especially in high-
temperature environments [2]. Stress concentrations between adjacent layers, creep at 
high temperatures, and failure at layer boundaries are also potential issues that can arise 
in multilayer panels subjected to mechanical, thermal, or electrical loading. A prom-
ising solution to address these limitations is the development of functionally graded 
piezoelectric materials (FGPMs), in which one or more layers have graded properties 
that smoothly vary through the structure, thereby reducing these shortcomings [3]. 
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Consequently, research into the behavior of FGPM structures has garnered significant 
attention in recent years, and numerous articles have been published on this topic.

Background information of researches

The most commonly used piezoelectric sensors and actuators are laminated piezoelectric 
composites consisting of multiple layers, each layer having particular properties. Several 
studies have investigated the behavior of piezoelectric laminated composite structures. 
Robins and Reddy [4] investigated the static and dynamic interaction of the piezoelec-
tric layer and the substructure layer of a clamped-free beam using Reddy’s generalized 
laminated plate theory. Lee and Saravanos [5] developed a finite element formulation 
for a beam element with linear shape function. They discovered that there is a signifi-
cant coupling between thermal and piezoelectric effect in the open circuit. Mukherjee 
and Chaudhuri [6] investigated the large deformation effect of piezoelectric composite 
materials. They compared the linear and nonlinear behavior of the carrier considering 
large deformations. Li et al. [7] studied the displacement of heterogeneous piezoelectric 
bimorph beam. They introduced a direct analytical solution to predict the displacement 
distribution in a heterogeneous piezoelectric bimorph beam. Varelis and Saravanos [8] 
analyzed the stability of piezoelectric shells under thermal loading. They derived for-
mulation of constitutive equation of plates in curvilinear coordinate. The static bend-
ing, free vibration and dynamic response of FGPM actuators was analyzed by Yang and 
Xiang [9]. The comparison between Euler–Bernoulli and Timoshenko beam theories 
illustrates that Timoshenko beam theory predicts large displacement. Xiang and Shi 
[10] investigated an FGP sandwich beam under thermal and electrical loading based on 
piezoelasticity theory. They found out that the electromechanical coupling must not be 
disregarded while the piezoelectric coefficient of the material is large. Behjat et al. [11] 
studied the static bending, free vibration and dynamic reaction of piezoelectric plates 
using the finite element method under mechanical and electrical loading. Non-linear 
behavior of FGPM plates were studied using FEM under various loadings by Behjat and 
Khoshravan [12]. Lezgy et al. [13] introduced a new FE model for static, free vibration, 
and dynamic analysis of FGM piezoelectric beams using beam elements. Based on the 
strain gradient theory and Timoshenko beam theory, a size dependent beam model is 
developed by Li et al. [13]. A model for simulating FGPM harvesters was introduced by 
Amini et al. [14]. They found that the variation of power law index affects the sensory 
voltage and power of harvester. The three-dimensional Element-Free Galerkin method 
was developed by Mikaeeli and Behjat [15] in order to investigate the static behavior of 
thick FGPM rectangular plate with arbitrary material properties. They investigated the 
deformation, electric potential and electric field in the functionally graded piezoelectric 
plates. Nourmohamadi and Behjat [16] studied the static bending of FGPM plates under 
(thermo-electro-mechano) loading and different boundary conditions in order to find 
the specific volume fraction index that can be used in design of functionally graded pie-
zoelectric plates. They discovered that there is a specific volume fraction index in which 
the plate deflection is maximized or minimized under thermal and electrical loading. 
Dai et al. [17] studied distribution of temperature, displacement, and stress of a rotating 
disk in the constant angular velocity under a coupled hygrothermal field by using a new 
numerical method. Bodaghi et  al. [18] studied the effect of geometrical non-linearity 
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and mechanical and thermal loadings on the active control of dynamic response of sim-
ply supported functionally graded beams under blast pulses using piezoelectric sensors 
and actuators. They found out that power law indices of FGP sensor and actuator can 
play a significant role. Bodaghi et al. [19] introduced the thermo-mechanical behavior of 
composite plates and used a new formulation. Kamarian and et al. [20] investigated free 
vibrations analysis of the FGSCNTR beams rested on Pasternak and studied the influ-
ences of four parameters in the CNT volume fraction relation on the natural frequen-
cies. Salim et al. [21] investigated the thermal vibration of SMAHC cylindrical shells and 
found out that the orientation of SMAs in the layers plays an effective role in vibrations 
of SMAHC shells under thermal environments. Shen and Yang [22] investigated the 
large amplitude vibration of FG-FRC laminated beams and they found out that, temper-
ature variation has a moderate effect on the natural frequencies of the hybrid laminated 
beam. Huang, Ding, and Chen [23] presented the analytical solutions for a functionally 
graded actuator subjected to constant electric potential for the two-dimensional plane 
stress problem. Pietrzakowski [24] discussed the comparison of changes in both the nat-
ural frequencies and resonant amplitudes depending on the PZT gradation. It was also 
seen that this actuator layers give a satisfactory operational effectiveness of the control 
system. Satyajit and Ray [25] investigated the geometrically nonlinear dynamic response 
of functionally graded laminated composite plates, where the numerical results showed 
that unlike the conventional laminated composite plates, the variations of stresses across 
the thickness of the FG laminated composite plates are smooth and continuous. Wu and 
Liu [26] introduced a semi-analytical method for three dimensional analyses of compos-
ite FGPM plates and shells. Ridha et al. [27], employed a higher order shear deforma-
tion beam formulation having three variables without using of shear correction factor in 
order to analyze forced vibrational of shear deformable functionally graded (FG) nano-
beam under partial dynamical load, consequently they found out as the dynamical force 
moves away from the beam edges, the dynamical deflections increase.

Ridha et al. [28] investigated nonlinear thermal stability behaviors of elastic nanobe-
ams with piezo-magnetic properties. They employed Nonlocal theory for mathematical 
formulating and they found that the buckling temperature reduced via higher rates by 
increase of piezoelectric constituent volume. Jahanghiry et al. [29] studied the mechani-
cal behavior of an FGM microgripper under the effect of DC voltage and temperature 
variation the found that the static pull-in voltage of the FGM microgripper, which is ini-
tially subjected to the initial temperature variation, decreases by increasing the ceramic 
volume, and instability occurs at lower DC voltage. Maleki and Mohammadi [30] inves-
tigated study effect of piezoelectric patches and crack parameters on stability of the 
cracked FGM columns their Results show that the crack significantly reduces buckling 
load of the column.

Description of current problem

This article investigates the thermo-electro-mechanical analysis of the FGPM beam 
using FEM while the FGPM beams features are considered and investigated in most of 
the researches, in present paper, a new type of multilayer piezoelectric beam introduced 
by adding two piezoelectric layers to FGPM beam. The introduced beam was investi-
gated under variety of loading and boundary conditions. There are noticeable papers 
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dealing with the FGPM beams, however majority of them overlooked the impact of dif-
ferent volume fraction index on the static deflection in thermal and electrical loadings. 
In this paper the optimum response of multi-layered FGP beams studied and the results 
shows that there is a particular power law index in which the deflection of beam maxi-
mized or minimized so that be used for design of sensors and actuators. Although the 
natural frequency of the beam is affected by altering the power law index so the effects 
of volume fraction index on the deflection of the FGPM beam become important when 
the FGPM device has to perform efficiently in electrical or thermal environments, the 
results of this study could certainly take steps to address these issues.

Methods
In this paper, the static deflection and natural frequency of multilayer FGPM beams 
were investigated based on the Euler–Bernoulli beam theory. The deflection of the beam 
was calculated under thermo-electro-mechanical loading. The FE method based on lin-
ear elements was used to study the beam. The beam equation was obtained using the 
equilibrium equation of mechanical and electrical imbalance forces. The beam behavior 
was studied for different laminate configurations and volume fraction indices, and an 
optimal volume fraction index was determined to design multilayer smart structures in 
a thermal environment. The first three natural frequencies of the multilayer FGPM beam 
were determined for different boundary conditions and different laminate configura-
tions as a function of the volume fraction index. Our aim is to find a specific value of 
volume fraction index that the beam deflection is maximized or minimized.

Functionally graded piezoelectric beams
Various models have been presented to simulate material distribution throughout the 
thickness of the beam. However, usually the power law distribution is used to simulate 
the distribution of material properties. For FGM structures made of two different mate-
rials, material “a” on the top side and material “b” on the bottom side of the beam, the 
effective properties of the FGPM profile in the thickness direction of the beam can be 
described as follows [31]:

The effective material property: of the FGPM beam, denoted as “Peff” and “Pa” is the 
upper surface property of the FGPM beam, “Pb” is the lower surface property of the 
FGPM beam, and “Va” is the volume fraction of the functionally graded piezoelectric 
upper material, which can be expressed as

The volume fraction of the bottom surface of the beam, denoted as Vb and “n” is the 
power law index. Thus, the material properties can be written as

(1)Peff (z) = PaVa(z)+ Pb(1− Va(z))

(2)Va =
z

h
+

1

2

n

, n ≥ 0

(3)Va + Vb = 1
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The distance from the neutral axis of the beam, denoted as "z" and “h” represents the 
beam thickness. In this article, all of the material properties differ throughout the thick-
ness by following the simple power law distribution (Eq. 4) excluding Poisson’s ratio.

Theoretical formulations
Euler–Bernoulli beam theory

The displacement field for Euler–Bernoulli beam is [32]

Here, u and w are the displacements in the x and z directions, respectively. The dis-
placement field in vector form can be written as follows:

In Eq. (6), the variable ℜ defined as follows:

Additionally, the strain field can be written as

Force and moment resultants formulation

In each lamina, the stresses can be integrated throughout the laminate thickness to 
determine the resulting forces and moments. Let ‘n’ represent the number of plies in the 
laminate. Therefore, suppose a laminate consists of ’n’ plies and each ply has a thickness 
of “tk”. The resultant force and moment in the laminate are written in matrix form as 
[33]:

The normal force per unit length, defined as Nx and Mx is the bending moment per 
unit length.

The global stress in each lamina is

(4)Peff = Pb + (Pa)

(

z

h
+

1

2

)n

(5)
u = u0 − z

∂w0

∂x

w = w0

(6)
→
U =

{

u
w

}

=

{

u0
w0

}

−

{

z ∂w0

∂x
0

}

= [ℜ] {u }

(7)[ℜ] =

[

1

0

0

1

−z
0

]

(8)εx =
∂u0

∂x
− z

∂2w0

∂x2

(9)

Nx =

n
∑

k=1

hk
∫

hk−1

σx dz

Mx =

n
∑

k=1

hk
∫

hk−1

σx zdz
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Constitutive equations of piezoelectric material

Based on the linear theory of piezoelectricity, the constitutive equation for piezoelectric 
beam can be written as [34]

The stress and strain tensors, denoted as σij and εkl , respectively and CE
ijkl is the elastic-

ity matrix, eijk is the piezoelectric coefficient tensor, Ek is the electrical field vector, �ij is 
the thermal expansion tensor, �θ is the temperature difference from the reference tem-
perature, Dl is the electrical displacement vector, ξlk is the electrical permittivity, and pl 
is the pyroelectric vector. Also, �ij can be written as

In Eq.  (12), αkl is the thermal expansion coefficient. The thermal load considered in 
this analysis is assumed to be constant at the top and bottom surfaces. The temperature 
field is changed only in the thickness direction. Therefore, the heat transfer equation is 
[35]

The thermal conductivity, denoted as “K” that is assumed to obey the simple power 
law distribution. The temperature field is obtained throughout the thickness of the beam 
by solving Eq. (13) as follows:

Weak form of equilibrium equations

Using the divergence theorem and neglecting the inertial effects, the variational figure of 
the equations of motion is written as follows [36]:

The vectors ψu and ψe shows unbalances between internal and external forces. Also, 
parameters b, τ , q and v describe the body force, surface traction on the bounding sur-
face and φ is the electric potential.

(10)σx = Q11εx = Q11(
∂u0

∂x
− z

∂2w0

∂x2
) = Q11(ε0 + zk0) = Q11ε0 + zQ11k0

(11)
σij = CE

ijkl εkl − eijk Ek − �ij�θ

Dl = eljεj + ξlkEk + pl�θ

(12)�ij = CE
ijkl
αkl

(13)
∂

∂z
(K (z)

∂θ

∂z
) = 0

(14)θ =
θtopKtop

h

h/2
∫

−h/2

∂z

K (z)

(15)

δuTψu = −

∫

v
δεTσ dv +

∫

v
δuTb dv +

∫

Ŵτ

δuT τ dŴ +

∫

v

ρ ∂uT ü dv = 0

δφTψe = −

∫

v
δETD dv +

∫

Ŵq

δφTq dŴ = 0
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The combination of Eq. 15 and Eq. 11 the final equation can be achieved as

Here N  describes the number of piezoelectric layers, G is electrical permittivity. In addi-
tion, T is the pyroelectric component. The other matrices can be represented as

Finite element formulation

In this article, two-node linear element is applied in order to analyze the FGPM beam. Each 
node has four degrees of freedom { �u , φ } . The displacement field represented as:

The Lagrangian shape function “ ψ ” is used to interpolate “u0”, along with Hermit cubic 
shape function “N” which is interpolating function for deflection “w”. These approximations 
are defined as

(16)

δuTψu = −

∫

A0

(ρ ∂uT ü)dA−

∫

A0

( δ ε0
T

[A ] ε0 + δ ε0
T

[B ] k0

+ δ k0
T

[B ] ε0 + δ k0
T

[D ] k0 +
∑

m

δ ε0
T
[

E
m
]

Em +
∑

m

δ k0
T

[

∧
E
m]

Em

−
∑

m

δ ε0
T [

�
m ]

θm −
∑

m

δ k0
T

[

∧
�

m]

θm ) dA +

∫

A0

(δuTbT + δβTbT )dA

+

∫

Ŵτ

δuT τdτ = 0

δφTψe = −

∫

A0

(
∑

m

δ EmT
[

E
m
]

ε0 +
∑

m

δ EmT
[

E
m
]

k0 + δ EmT [

Gmn
]

En

+ δ EmT [

Tmn
]

θn)dA+

∫

Ŵq

δφqd Ŵ = 0

m, n = 1, ...N

(17)

[

E
m
]

= [e].(hk − hk−1)
[

∧
E
m]

=
1

2
[e].(h2k − h2k−1)

[

Gmn
]

= [ξ ].(hk − hk−1)
[

∧
�

m]

= [�].(hk − hk−1)

[

�
m]

=
1

2
[�].(h2k − h2k−1)

[

Tmn
]

= [p].(hk − hk−1)

(18){ �u } =
{

u0 w0
∂w0

∂x

}
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And for each element, the displacement vector is interpreted as

In this case, {ue} and [Nu] are the nodal displacement and interpolation matrixes 
that are written as

The strain relation could be written as

Here L and  Bu are defined as

[Ra] and [Rb] represent the strain operators. These operators can be written as

Using the linear Lagrangian interpolation function Nφ , the potential φ and the elec-
tric vector E are interpreted the nodal variables as [37]

And the electrical field can be written as

The electric field varies in the direction of thickness as (Ez = ∂ϕ
∂z ) . Assuming that the 

electric potential remains constant across the beam thickness, the electric field can be 
defined as follows:

(19)

u =

2
∑

i=1

ψiui

w =

4
∑

i=1

Niwi

(20){U} = [ℜ][Nu]
{

ue
}

(21)
{

ue
}

=

{

u1,w1,
dw1

dx
,u2,w2,

dw2

dx

}T

(22)Nu =





ψ1 0 0 ψ2 0 0

0 N11 N12 0 N21 N22

0 dN11

dx
dN12

dx
0 dN21

dx
dN22

dx





(23)εx = [Bu]
{

ue
}

= [Ra]{u
e} − z [Rb]{u

e}

(24)[Bu] = [L][Nu]

(25)[L] =
[

d
dx

0 −z d
dx

]

(26)
[Ra] =

[

∂ψ1

∂x 0 0
∂ψ2

∂x 0 0

]

[Rb] =
[

0 ∂2N11

∂x2
∂2N12

∂x2
0 ∂2N21

∂x2
∂2N22

∂x2

]

(27)φ =
[

Nφ

]

φe

(28)E = −∇φ = −∇
[

Nφ

]

φe =
[

Rφ

]

φe
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In this case, thickness of piezoelectric layer is shown by “hp”.
Placing Eq. 16 in Eq. 23 and integrating throughout the thickness and length direction of 

the beam, the equation of motion of FGPM beam in matrix form can be acquired [5]

Here submatrices Kee, Kde, and Kdd demonstrate the permittivity stiffness, piezoelectric 
and elasticity matrices, respectively.

The sensory electrical potential is obtained as

By combining Eq.  31 and Eq.  30, the following equation for displacement could be 
obtained:

Here [F ] is the mechanical force vector. In addition, thermal, coupled thermal, and electri-
cal load vectors can be defined as

The abstract form the of final equation of motion of FGPM beam can be written as

Equation 31 can be written as

By solving above equations, displacement field in the FGPM beam can be obtained. 
In addition, by solving the Eigen-value problem, the natural frequencies of the beam are 
calculated:

(29)Ez = −
ϕ

hp

(30)
[Mdd]

[

Ü
]

+ [Kdd][U ]+ [Kde]
[

φs
]

+ [Kde]
[

φa
]

− [Kdθ ][θ ] = [F ]

[Ked][U ]− [Kee]
[

φs
]

− [Kee]
[

φa
]

+ [Keθ ][θ ] = 0

(31)
[

φs
]

= [Kee]
−1

(

[Ked][U ]+ [Keθ ][θ ]− [Kee]
[

φa
])

(32)

[Mdd]
[

Ü
]

+ ([Kdd]+ [Kde] [Kee]
−1

[Ked]) [U ] =

[F ]+ [Kdθ ] [θ ]− [Kde] [Kee]
−1

[Keθ ] [θ ]

+ [Kde] [Kee]
−1

[Kee]
[

φa
]

− [Kde]
[

φa
]

(33)

Fθ = [Kdθ ][θ ]

Fθp = [Kde][Kee]
−1

[Keθ ][θ ]

Ffi = [Kde][Kee]
−1

[Kee]
[

φa
]

− [Kde]
[

φa
]

(34)[Mdd][U ]+
(

[Kdd]+ [Kde][Kee]
−1

[Ked]

)

[U ] = [F ]+ [Fθ ]−
[

Fθp
]

+
[

Ffi
]

(35)[Mdd]
[

Ü
]

+
[

Kf

]

[U ] =
[

Ff
]

(36)
∣

∣

∣

[

Kf

]

− ω2
[Mdd]

∣

∣

∣
= 0
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Results and discussion
Comparison studies

To substantiate the results obtained in the present study, four examples are used to 
compare the data with the results of Lee and Saravanos [5], Yang and Xiang [9], and 
Phung et al. [38]:

Example 1: Multiple piezoelectric layers consider the present example under a lin-
ear thermal gradient (120  °C at the bottom and 20  °C at the top) acting on the 
beam. Then, two different electrical voltages (100 and 200  V) are applied to the 
beam. Although the beam has a symmetrical laminate configuration including the 
piezoelectric layers, the applied temperature gradient causes the beam to bend. 
The beam has a length of (L = 25.4 cm) and a width of (b = 2.54 cm) and consists 
of different orientations of graphite/epoxy layers connected to piezoelectric lay-
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Fig. 1 Non-dimensional deflection of the beam under thermal gradient loading and different applied 
voltage 0, 100, and 200 V

Table 1 Maximum dimensionless deflection of free end of a clamped-free FGPM beam under 
electrical and mechanical loading

n = 0.2

L
/

h
25

Yang and Xiang 764.572

Present 764.571
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ers, with each graphite/epoxy layer and piezoelectric layer having a thickness of 
(hl = 0.0127 cm). The deflection of the beam is given as 10 (w/b) without dimen-
sions. From Fig. 1, it can be seen that the present analysis agrees very well with the 
results of Lee and Saravanos [5].
Example 2: In this section, a clamped-free FGPM beam is considered. The top 
of the beam is made of PZT-4 and the bottom is made of PZT-5. The mate-
rial properties of the piezoelectric materials are based on a simple power law. 
Table 1 shows the deflection of the tip of the FGPM beam under mechanical load 
q = 10KN/m2 and electrical load V = 20 V in the volume fraction index of n = 0.2. 
The non-dimensionalized results are shown as (w/h). It is observed that the results 
obtained are in good accordance with the data reported by Yang and Xiang [9].
Example 3: To verify the results, the data are compared with the results of Yang and 
Xiang [9]. An FGPM beam consisting of (PZT-4 and PZT-5) is assumed. The natural 
frequencies of the beam are determined and compared with the results reported by 
Yang and Xiang. Table 2 shows the results for the natural frequency in this work and 
in Yang and Xiang. It can be seen that these results agree well with those of Yang and 
Xiang.
Example 4: A piezoelectric bimorph clamped-free beam with a width of 5  mm, a 
length of 100 mm, and a thickness of 1 mm is considered. The material of the piezo-
electric beam consists of two PVDF layers. The beam is loaded with different voltages 
(50 V and 200 V). The deflection of the beam is shown in Fig. 2. These results show 
high match with the data of Phung et al. [38].

Table 2 Non-dimensional natural frequency for clamped-free FGPM beam (L/h = 25)

n ω1 ω2 ω3

Yang and Xiang [38] 0.2 0.0395 0.2452 0.6773

Present 0.2 0.0395 0.2470 0.6897
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Fig. 2 Deflection of the piezoelectric bimorph beam under different applied voltages
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Table  3 shows the errors reduction by increasing the number of element, thus in 
order to convergence the results and demonstrate the independence from the mesh, 
the results compared to the deflection of the tip of the FGPM beam under mechanical 
load q = 10KN/m2 and electrical load V = 20 V in the volume fraction index of 0.2 which 
mentioned before in Table 1. Consequently, in all the calculation in the present study 25 
elements are used.

Static analysis of multilayered FGPM beams

In this section, the static bending of functionally graded piezoelectric beam under elec-
trical, thermal and mechanical loading is studied. The length to thickness ratio of the 
beam is L/h = 25. In this beam the thickness of each piezoelectric layer is 5% of total 
thickness of the beam “h” and the thickness of FGPM layer is 90% of total thickness of 
the beam. Figure 3 shows the laminate configuration of such beam. The material proper-
ties of mid layer obey the power law distribution, in which the bottom surface is made 
up of PZT-5 and the top surface is made up of PZT-4. The material properties of piezo-
electric materials are listed in Table 4. In which Q11 and Q55 is the stiffness of the beam 
and dij is the electrical displacement and “p’ is the pyroelectric coefficients. The beam 
deflection is defined as, w = w

h , where “h” and “w” are the beam thickness and the beam 
deflection, respectively.

Table 3 Calculation errors in different number of elements

Volume fraction index n = 0.2 and L/h = 25

Maximum dimensionless deflection of free end of a clamped-free FGPM beam under electrical and 
mechanical loading by Yang and Xiang [9] is about = 764.572

Number of elements Present tip deflection Error 
10000*(Yang-
Present)/Yang

5 764.5576 0.1883

10 764.5696 0.0314

15 764.5704 0.0209

20 764.5709 0.0144

25 764.5711 0.0092

30 764.5713 0.0092

Fig. 3 Illustration of problem schematic and three types of laminate configuration
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In this paper, for simplification, the three types of laminate configuration of the beam 
are considered and shown by “A” for FGPM beam with PZT-4 and PZT-5 layers, “B” for 
FGPM beam with both PZT-5 layers and “C” for FGPM beam with both PZT-4 layers.

Multilayered FGPM beam under mechanical loading

Figure 4a, b illustrates the dimensionless central deflection of a simply supported and tip 
deflection of a clamped-free Multilayered FGPM beam under uniform mechanical load-
ing (q = 5KN/m) for all type of laminate configuration. According to the observation by 
raising the value of volume fraction index, the beam deflection is increasing. This phe-
nomenon can be explained as the elastic modulus of PZT-5 piezoelectric is less than the 
elastic modulus of PZT-4. In addition, the deflection in the beam, type “B” is more than 
the other types of configurations.

Multilayered FGPM beams under uniform thermal loading

In this section, the beam in both bottom and top sides undergo a uniform (ΔT = 10 °C) 
thermal loading. Figure  5a, b describes the maximum dimensionless deflection of the 
simply supported and dimensionless tip deflection of multilayered FGPM beam versus 
volume fraction index in different types of configurations, respectively. From Fig. 5a, b, it 
is deduced that by increasing the volume fraction index, in types “B” and “C”, the deflec-
tion is increasing initially and then decreasing. It is seen that there is a particular value 
of volume faction index in which the beam deflection is maximized in both boundary 
conditions “n = 1.5”. In type “B” for both boundary conditions, the deflection is decreas-
ing at the first, until the deflection is getting to zero in “n = 0.126”, and from this point 
the deflection is increasing and getting maximized in “n = 1.5”, and then, is decreasing. 
This phenomenon can be justified by the diversity in the value of the thermal expansion 
coefficient of PZT-4 and PZT-5 materials that can cause this type of deflection in differ-
ent volume fraction indices.

Multilayered FGPM beams under thermal gradient loading

In this section the beam undergoes a 10 °C thermal gradient load, in which the bottom 
surface temperature is 10 °C and the top surface temperature is 0 °C. Figure 6a, b depicts 
the maximum deflection of FGPM beam that has simply supported or clamped bound-
ary condition. From Fig. 6a, b, it can be induced that for both boundary conditions by 

Table 4 Material properties of PZT-4 and PZT-5 [6]

Property Pzt-4 Pzt-5

Q11 81.3GPa 60.6GPa

Q55 25.6GPa 23GPa

d31 −123× 10
−12 C

N
−274× 10

−12 C
N

d15 496× 10
−12 C

N
741× 10

−12 C
N

ξ T
33

1300 ε0 3400 ε0

ξ T
11

1470 ε0 3130 ε0

p3 2.5× 10
−5 C

m2K
0.548× 10

−5 C
m2K

ρ 7500 Kg.m−3
7500 Kg.m−3

ε0 8.85× 10
−12 C2

m2N
8.85× 10

−12 C2

m2N
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increasing the power law index, the deflection is reducing at the first and then, increas-
ing. There is a particular value of volume fraction index that the deflection is minimized. 
The value of this power law index in simply supported boundary condition is “n = 0.25” 
for type “B” and “C”, and n = 0.15” for type “A”. In case of clamped-free boundary condi-
tion, the value of this index is “n = 0.75″ for type “B” and “C”, and n = 0.6″ for type “A”.

Fig. 4 a Dimensionalized maximum deflection of center of the multilayered FGPM beam under mechanical 
loading q = 5KN/m in simply supported boundary condition. b Dimensionalized maximum deflection of free 
end of a clamped-free multilayered FGPM beam under mechanical loading q = 5KN/m
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Multilayered FGPM beams under electrical loading

In this section, an electrical loading (V = 100  V) is applied on the beam. Figure  7a, b 
shows the maximum dimensionless deflections of the multilayered FGPM beam with 
simply supported and clamped-free boundary condition in comparison with volume 
fraction index for different types of configuration, respectively. From Fig.  7a, b, it is 
inferred that by growing the power law index, deflection is raising first, and then, reduc-
ing. Also, there is a particular value of volume faction index “n = 1.6” that the deflection 
is maximized. It can be explained by the difference in the value of the piezoelectric con-
stants of the constituents (PZT-4 and PZT-5) that can cause this type of deflection.

Fig. 5 a Dimensionalized maximum deflection of center of the multilayered FGPM beam under uniform 
thermal loading for different types of configuration versus power law index in simply supported boundary 
condition. b Dimensionalized maximum deflection of free end of clamped-free multilayered FGPM beam 
under uniform thermal load for different types of configurations versus power law index
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Beams under electrical and thermal loading

In the this section, The uniform thermal loading (ΔT = 10  °C) and electical loading 
(V = 100 V) is applied to the multilayered FGPM beam. In Fig. 8a, b, it can be seen that 
for both boundary conditions, the deflection is decreasing at the first until it reaches 
zero around “n = 0.30” for type “A” and “n = 0.1” for type “B” and “C” of laminate config-
uration, respectively and then, the deflection is increasing until it reaches its maximum 

Fig. 6 a Dimensionalized maximum deflection of center of the multilayered FGPM beam under thermal 
gradient loading for different types of configuration versus power law index in simply supported boundary 
condition. b Dimensionalized maximum deflection of free end of clamped-free multilayered FGPM beam 
under thermal gradient loading for different types of configurations versus power law index
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value and then it is decreasing. The deflection is maximized around “n = 0” for model “A” 
and “n = 1.6” for model “B” and “C” of laminate configuration.

As it is seen from Figs.  7 and 8, an optimum point of deflection is occurred due 
to thermal and electrical loading. This phenomenon is deeply depend on the Young 
modulus, thermal expansion and piezoelectric coefficients of the materials of the 
beam. It means that by increasing of power law index, the thermal expansion coeffi-
cients decreases while Young modulus increases and this event lead to optimum point 

Fig. 7 a Dimensionalized maximum deflection of center of simply supported multilayered FGPM beam 
under electrical loading V = 100 V. b dimensionalized maximum deflection of free end of clamped-free 
multilayered FGPM beam under electrical loading V = 100 V
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in the deflection of the FGPM plate in thermal loading. For electrical loading, differ-
ence in piezoelectric constants of two type of piezoelectric materials in each surface 
of the FGPM plate causes deflection under electrical loading. In the FGPM plate, the 
piezoelectric constants are different in thickness direction. So when an electric volt-
age applies to FGPM plate the deflection occurs.

Fig. 8 a Maximum dimensionless central deflection of simply supported multilayered FGPM beam 
under uniform thermal loading (ΔT = 10 C) and electrical loading (V = 100 V). b Maximum dimensionless 
tip deflection of clamped-free multilayered FGPM beam under uniform thermal loading (ΔT = 10 C) and 
electrical loading (V = 100 V)
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Natural frequency analysis of multilayered FGPM beams

In this section, the natural frequency of multilayered FGPM beam is obtained for differ-
ent boundary conditions, laminate configuration and volume fraction indexes. The 
results are non-dimensionalized as ωi = �iL

√

(

I0
A11

)

PZT−4
.

The first three natural frequencies of multilayered FGPM beam for different laminate 
configuration and bounady conditions is obtained and presented in Tables 5, 6, and 7 for 

Table 5 The first three dimensionless natural frequencies for the FGPM beam type “A”

n ω1 ω2 ω3

Multilayered FGPM beam with simply supported boundary condition

 0 0.1179 0.4711 1.0576

 0.2 0.1156 0.4618 1.0368

 1 0.1121 0.4476 1.0048

 2 0.1108 0.4427 0.9940

 10 0.1085 0.4332 0.9726

Multilayered FGPM beam with clamped-free boundary condition

 0 0.0420 0.2630 0.7349

 0.2 0.0412 0.2578 0.7204

 1 0.0399 0.2499 0.6981

 2 0.0395 0.2472 0.6906

 10 0.0387 0.2419 0.6758

Multilayered FGPM beam with clamped–clamped boundary condition

 0 0.2673 0.7356 1.4380

 0.2 0.2621 0.7213 1.4097

 1 0.2540 0.6991 1.3661

 2 0.2513 0.6916 1.3514

 10 0.2459 0.6767 1.3224

Table 6 The first three dimensionless natural frequencies for the FGPM beam type "B"

n ω1 ω2 ω3

Multilayered FGPM beam with simply supported boundary condition

 0 0.1201 0.4795 1.0760

 0.2 0.1177 0.4701 1.0550

 1 0.1141 0.4557 1.0225

 2 0.1129 0.4509 1.0118

 10 0.1107 0.4420 0.9919

Multilayered FGPM beam with clamped-free boundary condition

 0 0.0428 0.2677 0.7478

 0.2 0.0419 0.2625 0.7332

 1 0.0407 0.2544 0.7107

 2 0.0402 0.2518 0.7033

 10 0.0394 0.2468 0.6894

Multilayered FGPM beam with clamped–clamped boundary condition

 0 0.2721 0.7488 1.4638

 0.2 0.2668 0.7342 1.4352

 1 0.2586 0.7116 1.3912

 2 0.2559 0.7042 1.3767

 10 0.2509 0.6903 1.3494
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type “A”, type “B”, and type “C” respectively. It is observed that by increasing the value of 
volume fraction index, the natural frequency is decreasing in the multilayered FGPM 
beam and this phenomena can be explained by the variation of modulus of elastisity by 
increasing of power law index.

Figures  9, 10, and 11 demonstrate the first natural frequency of the FGPM beam in 
different bounday conditions and various laminate configuration. It is observed that 
for differenet boundary conditions the type “C” of laminate configuration that consists 
of FGPM beam with two PZT-4 layers has higher natural frequency and the type “B” 

Table 7 The first three dimensionless natural frequencies for the FGPM beam type “C”

n ω1 ω2 ω3

Multilayered FGPM beam with simply supported boundary condition

 0 0.1158 0.4627 1.0388

 0.2 0.1134 0.4530 1.0169

 1 0.109 0.4380 0.9833

 2 0.1084 0.4330 0.9722

 10 0.1061 0.4237 0.9513

Multilayered FGPM beam with clamped-free boundary condition

 0 0.0413 0.2583 0.7218

 0.2 0.0404 0.2529 0.7066

 1 0.0391 0.2445 0.6832

 2 0.0386 0.2418 0.6755

 10 0.0378 0.2366 0.6610

Multilayered FGPM beam with clamped–clamped boundary condition

 0 0.2626 0.7227 1.4138

 0.2 0.2571 0.7075 1.3841

 1 0.2486 0.6842 1.3386

 2 0.2458 0.6765 1.3235

 10 0.2405 0.6619 1.2948

0 1 2 3 4 5 6 7 8 9 10

volume fraction index , n

0.037

0.038

0.039

0.04

0.041

0.042

0.043

D
im

en
si

o
n

le
ss

 f
re

q
u

en
cy

Clamped-Free Boundary condition

Type B

Type C

Type A

Fig. 9 The first dimensionless natural frequency for clamped-free boundary condition
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laminate configuration has lower natural frequency. The reason is related to the modulus 
of elasticity of constituent.

Conclusions
In this paper, a new configuration of multilayered FGPM beam was introduced and also 
the static and natural frequency of multilayered FGPM beam was investigated in thermo-
electro-mechanical loading and different laminate configurations. The material proper-
ties are assumed to obey the simple power law distribution. The static deflection of the 
beam was calculated by using finite element method based on two-node linear element 
and the natural frequency was obtained by solving the related Eigen-value problem. The 
multilayered FGPM beams behavior was studied under different loading type and vol-
ume fraction indices. It was inferred that there is an spacific value of volume fraction 
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index that the beam deflection is maximized or minimized. For a multilayered FGPM 
beam under electrical or uniform thermal loading, there is an specific volume fraction 
in which the deflection is maximized. Also, for an FGPM beam under thermal gradiant 
loading, there is an spacific volume fraction in which the deflection is minimized. This 
feature can be used as a design criterion in the selection of appropriate power law index 
for the FGPM sensors and actuators based on the maximum or minimum deflection.
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