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Abstract 

The transportation problem in operations research aims to minimize costs by optimiz‑
ing the allocation of goods from multiple sources to destinations, considering supply, 
demand, and transportation constraints. This paper applies the multi‑dimensional 
solid transportation problem approach to a private sector company in Egypt, aiming 
to determine the ideal allocation of their truck fleet.

In order to provide decision‑makers with a comprehensive set of options to reduce 
fuel consumption costs during transportation or minimize total transportation time, 
a multi‑objective approach is employed. The study explores the best compromise solu‑
tion by leveraging three multi‑objective approaches: the Zimmermann Programming 
Technique, Global Criteria Method, and Minimum Distance Method. Optimal solutions 
are derived for time and fuel consumption objectives, offering decision‑makers a broad 
range to make informed decisions for the company and the flexibility to adapt them 
as needed.

Lingo codes are developed to facilitate the identification of the best compromise 
solution using different methods. Furthermore, non‑dominated extreme points are 
established based on the weights assigned to the different objectives. This approach 
expands the potential ranges for enhancing the transfer problem, yielding more com‑
prehensive solutions.

This research contributes to the field by addressing the transportation problem practi‑
cally and applying a multi‑objective approach to support decision‑making. The find‑
ings provide valuable insights for optimizing the distribution of the truck fleet, reduc‑
ing fuel consumption costs, and improving overall transportation efficiency.

Keywords: Decision‑making, Multi‑objective, Solid transpiration

Introduction
The field of operations research has identified the transportation problem as an optimi-
zation issue of significant interest [1, 2]. This problem concerns determining the optimal 
approach to allocate a given set of goods that come from particular sources to the des-
ignated destinations to minimize the overall transportation costs [3]. The transportation 
problem finds applications in various areas, including logistics planning, distribution 
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network design, and supply chain management. Solving this problem relies on the 
assumption that the supply and demand of goods are known, as well as the transporta-
tion cost for each source–destination pairing [4, 5].

Solving the transportation problem means finding the right quantities of goods to be 
transported from the sources to the destinations, given the supply and demand restric-
tions. The ultimate goal is to minimize the total transportation cost, which is the sum 
of the cost for each shipment [6]. Various optimization algorithms have been developed 
for this problem, such as the North-West Corner Method, the Least Cost Method, and 
Vogel’s Approximation Method [7].

A solid transportation problem (STP) is a related transportation problem that cent-
ers around a single commodity, which can be stored at interim points [8]. These interim 
points, known as transshipment points, act as origins and destinations. The STP involves 
determining the most efficient means of transporting the commodity from the sources 
to the destinations, while minimizing transportation costs by going through the trans-
shipment points. The STP has real-world applications in container shipping, air cargo 
transportation, and oil and gas pipeline transportation [9, 10].

Multi-dimensional solid transportation problem (MDSTP) represents a variation on 
the STP, incorporating multiple commodities that vary in properties such as volume, 
weight, and hazard level [11]. The MDSTP aims to identify the best way to transport 
each commodity from the sources to the destinations, taking into account the capac-
ity restrictions of transshipment points and hazardous commodity regulations [12]. The 
MDSTP is more complex than the STP and requires specific algorithms and models for 
its resolution.

Solving the STP and MDSTP requires identifying the most effective routing of com-
modities and considering the storage capacity of transshipment points. The goal is to 
minimize total transportation costs while satisfying supply and demand constraints and 
hazardous material regulations. Solutions to these problems include the Network Sim-
plex Method, Branch and Bound Method, and Genetic Algorithm [13]. Solving the STP 
and MDSTP contributes valuable insights into the design and operation of transporta-
tion systems and supports improved sustainability and efficiency.

In the field of operations research, two critical research areas are the multi-objective 
transportation problem (MOTP) and the multi-objective solid transportation problem 
(MOSTP) [14]. The MOTP aims to optimize the transportation of goods from multiple 
sources to various destinations by considering multiple objectives, including minimiz-
ing cost, transportation time, and environmental impacts. The MOSTP, on the other 
hand, focuses on the transportation of solid materials, such as minerals or ores, and 
involves dealing with multiple competing objectives, such as cost, time, and quality of 
service. These problems are essential in logistics and supply chain management, where 
decision-makers must make optimal transportation plans by considering multiple 
objectives. Researchers and practitioners often employ optimization techniques, such 
as mathematical programming, heuristics, and meta-heuristics, to address these chal-
lenges efficiently [15].

Efficient transportation planning is essential for moving goods from their source to 
the destination. This process involves booking different types of vehicles and minimizing 
the total transportation time and cost is a crucial factor to consider. Various challenges 
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can affect the optimal transportation policy, such as the weight and volume of products, 
the availability of specific vehicles, and other uncertain parameters. In this regard, sev-
eral studies have proposed different approaches to solve the problem of multi-objective 
solid transportation under uncertainty. One such study by Kar et  al. [16] used fuzzy 
parameters to account for uncertain transportation costs and time, and two methods 
were employed to solve the problem, namely the Zimmermann Method and the Global 
Criteria Method.

Similarly, Mirmohseni et al. [17] proposed a fuzzy interactive probabilistic program-
ming approach, while Kakran et  al. [18] addressed a multi-objective capacitated solid 
transportation problem with uncertain zigzag variables. Additionally, Chen et  al. [19] 
investigated an uncertain bicriteria solid transportation problem by using uncertainty 
theory properties to transform the models into deterministic equivalents, proposing 
two models, namely the expected value goal programming and chance-constrained 
goal programming models [20]. These studies have contributed to developing different 
approaches using fuzzy programming, uncertainty theory, and related concepts to solve 
multi-objective solid transportation problems with uncertain parameters.

This paper presents a case study carried out on a private sector company in Egypt 
intending to ascertain the minimum number of trucks required to fulfill the decision-
makers’ objectives of transporting the company’s fleet of trucks from multiple sources 
to various destinations. This objective is complicated by the diversity of truck types and 
transported products, as well as the decision-makers’ multiple priorities, specifically the 
cost of fuel consumption and the timeliness of truck arrival.

In contrast to previous research on the transportation problem, this paper intro-
duces a novel approach that combines the multi-dimensional solid transportation prob-
lem framework with a multi-objective optimization technique. Building upon previous 
studies, which often focused on single-objective solutions and overlooked specific con-
straints, our research critically analyzes the limitations of these approaches. We iden-
tify the need for comprehensive solutions that account for the complexities of diverse 
truck fleets and transported products, as well as the decision-makers’ multiple priorities. 
By explicitly addressing these shortcomings, our primary goal is to determine the mini-
mum number of trucks required to fulfill the decision-makers’ objectives, while simul-
taneously optimizing fuel consumption and transportation timeliness. Through this 
novel approach, we contribute significantly to the field by advancing the understanding 
of the transportation problem and providing potential applications in various domains. 
Our research not only offers practical solutions for real-world scenarios but also dem-
onstrates the potential for improving transportation efficiency and cost-effectiveness in 
other industries or contexts. The following sections will present a comparative analy-
sis of the proposed work, highlighting the advancements and novelty introduced by our 
approach.

Methods/experimental
Aim

This study uses a case study from Egypt to find the optimal distribution of a private sec-
tor company’s truck fleet under various optimization and multi-objective conditions. 
Specifically, the study aims to optimize the distribution of a private sector company’s 
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truck fleet by solving a multi-objective solid transportation problem (MOSTP) and com-
paring three different methods for decision-making.

Design and setting

This study uses a case study design in a private sector company in Egypt. The study 
focuses on distributing the company’s truck fleet to transport products from factories to 
distribution centers.

Participants or materials

The participants in this study are the transportation planners and managers of the pri-
vate sector company in Egypt. The materials used in this study include data on the truck 
fleet, sources, destinations, and products.

Processes and methodologies

The study employs the multi-objective multi-dimensional solid transportation problem 
(MOMDSTP) to determine the optimal solution for the company’s truck fleet distribu-
tion, considering two competing objectives: fuel consumption cost and total shipping 
time. The MOMDSTP considers the number and types of trucks, sources, destinations, 
and products and considers the supply and demand constraints.

To solve the MOMDSTP, three decision-making methods are employed: Zimmermann 
Programming Technique, Global Criteria Method, and Minimum Distance Method. The 
first two methods directly yield the best compromise solution (BCS), whereas the last 
method generates non-dominated extreme points by assigning different weights to each 
objective. Lingo software is used to obtain the optimal solutions for fuel consumption 
cost and time and the BCS and solutions with different weights for both objectives.

Ethics approval and consent

This study does not involve human participants, data, or tissue, nor does it involve ani-
mals. Therefore, ethics approval and consent are not applicable.

Statistical analysis

Statistical analysis is not conducted in this study. However, the MOMDSTP model and 
three well-established decision-making methods are employed to derive the optimal dis-
tribution of the company’s truck fleet under various optimization and multi-objective 
conditions.

In summary, this study uses a case study design to find the optimal distribution of a 
private sector company’s truck fleet under various optimization and multi-objective 
conditions. The study employs the MOMDSTP and three methods for decision-making, 
and data on the truck fleet, sources, destinations, and products are used as materials. 
Ethics approval and consent are not applicable, and statistical analysis is not performed.

Multi‑objective transportation problem
The multi-objective optimization problem is a complex issue that demands diverse 
approaches to determine the most satisfactory solution. Prevalent techniques 
employed in this domain include the Weighted Sum Method, Minimum Distance 
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Method, Zimmermann Programming Technique, and Global Criteria Method. 
Each method offers its own benefits and limitations, and the selection of a specific 
method depends on the nature of the problem and the preferences of the decision-
makers [21].

This section discusses various methodologies employed to identify the most optimal 
solution(s) for the multi-objective multi-dimensional solid transportation problem 
(MOMDSTP), which is utilized as the basis for the case study. These methodologies 
encompass the Minimum Distance Method (MDM), the Zimmermann Programming 
Technique, and the Global Criteria Method [22].

Zimmermann Programming Technique

The Zimmermann Programming Technique (ZPT) is a multi-objective optimization 
approach that was developed by Professor Hans-Joachim Zimmermann in the late 
1970s. This technique addresses complex problems with multiple competing objectives 
that cannot be optimized simultaneously. Additionally, it incorporates the concept of 
an “aspiration level,” representing the minimum acceptable level for each objective. The 
aspiration level ensures that the solution obtained is satisfactory for each objective. If the 
solution does not meet the aspiration level for any objective, the weights are adjusted, 
and the optimization process is iterated until a satisfactory solution is obtained.

A key advantage of ZPT is its ability to incorporate decision-makers’ preferences 
and judgments into the decision-making process. The weights assigned to each objec-
tive are based on the decision-maker’s preferences, and the aspiration levels reflect 
their judgments about what constitutes an acceptable level for each objective [23].

The Zimmermann Programming Technique empowers decision-makers to incor-
porate multiple objectives and achieve a balanced solution. By assigning weights to 
objectives, a trade-off can be made to find a compromise that meets various criteria. 
For example, this technique can optimize cost, delivery time, and customer satisfac-
tion in supply chain management [24]. However, the interpretation of results may 
require careful consideration, and computational intensity can increase with larger-
scale and complex problems.

  In order to obtain the solution, each objective is considered at a time to get the 
lower and upper bounds for that objective. Let for objective, and are the lower (min) 
and upper (max) bounds. The membership functions of the first and second objective 
functions can be generated based on the following formula [25]:

Next, the fuzzy linear programming problem is formulated using the max–min 
operator as follows:

Maximize min µk(Fk(x))  
Subject to gi(x){≤,=,≥}biwhere i = 1, 2, 3, ...,m.  
Moreover, x ≥ 0.

µk(Fk(x)) =

1 if Fk(x) ≤ Lk
Uk−Fk (x)
Uk−Lk

if Lk < Fk(x) < Uk

0 if Fk(x) ≥ Uk
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Global Criteria Method

The Global Criteria Method is a multi-objective optimization method that aims to iden-
tify the set of ideal solutions based on predetermined criteria. This method involves 
defining a set of decision rules that assess the feasibility and optimality of the solutions 
based on the objectives and constraints [26]. By applying decision rules, solutions that 
fail to meet the predetermined criteria are eliminated, and the remaining solutions are 
ranked [27].

The Global Criteria Method assesses overall system performance, aiding decision-
makers in selecting solutions that excel in all objectives. However, it may face challenges 
when dealing with conflicting objectives [28]. Furthermore, it has the potential to over-
look specific details, and the choice of aggregation function or criteria can impact the 
results by favoring specific solutions or objectives.

Let us consider the following ideal solutions:

f1* represents the ideal solution for the first objective function,
f2* represents the ideal solution for the second objective function, and
n1* represents the ideal solution for the nth objective function.

Objective function formula:

Minimize the objective function F = 
∑n

k=1 (
fk(x∗)−fk (x)

fk (x
∗)

)
p

Subject to the constraints: gi(x) ≤ 0, i = 1, 2,.., m
The function fk(x) can depend on variables x1, x2, …, xn.

Minimum Distance Method

The Minimum Distance Method (MDM) is a novel distance-based model that utilizes 
the goal programming weighted method. The model aims to minimize the distances 
between the ideal objectives and the feasible objective space, leading to an optimal com-
promise solution for the multi-objective linear programming problem (MOLPP) [29]. 
To solve MOLPP, the proposed model breaks it down into a series of single objective 
subproblems, with the objectives transformed into constraints. To further enhance the 
compromise solution, priorities can be defined using weights, and a criterion is provided 
to determine the best compromise solution. A significant advantage of this approach is 
its ability to obtain a compromise solution without any specific preference or for various 
preferences.

The Minimum Distance Method prioritizes solutions that closely resemble the ideal or 
utopian solution, assisting decision-makers in ranking and identifying high-performing 
solutions. It relies on a known and achievable ideal solution, and its sensitivity to the 
chosen reference point can influence results. However, it does not provide a comprehen-
sive trade-off solution, focusing solely on proximity to the ideal point [30].

The mathematical formulation for MDM for MOLP is as follows:

The formulation for multi-objective linear programming (MOLP) based on the mini-
mum distance method is referred to[31]. It is possible to derive the multi-objective 
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transportation problem with two objective functions using this method and its cor-
responding formula.

Subject to the following constraints:

where:

f*1, f*2: the obtained ideal objective values by solving single objective STP.
w1, w2: weights for objective1 and objective2 respectively.
f1, f2: the objective values for another efficient solution.
d: general deviational variable for all objectives.
c1ij , c

2

ij
 : the unit cost for objectives 1 and 2 from source i to destination j.

x1ij , x
2

ij
 : the amount to be shipped when optimizing for objectives 1 and 2 from source 

i to destination j.

Mathematical model for STP

The transportation problem (TP) involves finding the best method to ship a specific 
product from a defined set of sources to a designated set of destinations, while adher-
ing to specific constraints. In this case, the objective function and constraint sets 
take into account three-dimensional characteristics instead of solely focusing on the 
source and destination [32]. Specifically, the TP considers various modes of transpor-
tation, such as ships, freight trains, cargo aircraft, and trucks, which can be used to 
represent the problem in three dimensions When considering a single mode of trans-
portation, the TP transforms into a solid transportation problem (STP), which can be 
mathematically formulated as follows:

Minimize the objective function F =
(

f1 − f ∗1
)

(1− w1)d +
(

f2 − f ∗2
)

(1− w2)d

m
∑

i=1

n
∑

j=1

c1ijx
1
ij ≤ f ∗1 + d(1− w1)

m
∑

i=1

n
∑

j=1

c2ijx
2
ij ≤ f ∗2 + d(1− w2)

m
∑

i=1

xij = ai, j = 1, 2, 3, . . . , n.

n
∑

j=1

xij = bi, i = 1, 2, 3, . . . ,m.

w1 + w2 = 1 and wl ≥ 0; and l = 1, 2.

xij ≥ 0, i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . n.
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The mathematical form of the solid transportation problem is given by [33]:

Subject to:

where:

Z = the objective function to be minimized
m = the number of sources in the STP
n = the number of destinations in the STP
p = the number of different modes of transportation in the STP
xijk represents the quantity of product transported from source i to destination j 
using conveyance k
cijk = the unit transportation cost for each mode of transportation in the STP
ai = the amount of products available at source i
bj = the demand for the product at destination j
ek = the maximum amount of product that can be transported using conveyance k

The determination of the size of the fleet for each type of truck that is dispatched 
daily from each factory to all destinations for the transportation of various products 
is expressed formally as follows:

where:

zik denotes the number of trucks of type k that are dispatched daily from factory i.
Ck represents the capacity of truck k in terms of the number of pallets it can trans-
port.
xijk denotes a binary decision variable that is set to one if truck k is dispatched from 
factory i to destination j to transport product p, and zero otherwise. The summation 
is performed over all destinations j and all products p.

Min Z =
∑m

i=1

∑n
j=1

∑p
k=1cijkxijk

∑n
j=1

∑p
k=1 xijk = ai i = 1, 2, . . . , m

∑m
i=1

∑p
k=1 xijk = bj j = 1, 2, . . . , n

∑m
i=1

∑n
j=1xijk = ek k = 1, 2, . . . , p

xijk ≥ 0 for all j, j, k

Zik =

(

∑

j∈J

∑

p∈P xijkp

)

/Ck for ∀ k=1 : K; i = 1 : I
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Case study
This case study focuses on an Egyptian manufacturing company that produces over 
70,000 pallets of various water and carbonated products daily. The company has 25 main 
distribution centers and eight factories located in different industrial cities in Egypt. The 
company’s transportation fleet consists of hundreds of trucks with varying capacities 
that are used to transport products from factories to distribution centers. The trucks 
have been classified into three types (type A, type B, and type C) based on their capaci-
ties. The company produces three different types of products that are packaged in pal-
lets. It was observed that the sizes and weights of the pallets are consistent across all 
product types The main objective of this case study is to determine the minimum num-
ber of each truck type required in the manufacturer’s garage to minimize fuel consump-
tion costs and reduce product delivery time.

The problem was addressed by analyzing the benefits of diversifying trucks and imple-
menting the solid transport method. Subsequently, the problem was resolved while 
considering the capacities of the sources and the requirements of the destinations. The 
scenario involved shipping products using a single type of truck, and the fuel consump-
tion costs were calculated accordingly. The first objective was to reduce the cost of fuel 
consumption on the one-way journey from the factories to the distribution centers. 
The second objective was to reduce the time of arrival of the products to the destina-
tions. The time was calculated based on the average speed of the trucks in the company’s 
records, which varies depending on the weight and size of the transported goods.

To address the multiple objectives and the uncertainty in supply and demand, an 
approach was adopted to determine the minimum number of trucks required at each 
factory. This approach involved determining the maximum number of trucks of each 
type that should be present in each factory under all previous conditions. The study 
emphasizes the significance of achieving a balance between reducing transportation 
costs and time while ensuring trucks are capable of accommodating quantities of any 
size, thus avoiding underutilization.

Figure 1 presents the mean daily output, measured in pallets, for each factory across 
three distinct product types. Additionally, Fig.  2 displays the average daily demand, 
measured in pallets, for the distribution centers of the same three product types.

Results and discussion
As a result of the case study, the single objective problems of time and fuel consump-
tion cost have been solved. The next step is to prepare a model for the multi-objective 
multi-dimensional solid transportation problem. Prior to commencing, it is necessary to 
determine the upper and lower bounds for each objective.

Assuming the first objective is fuel consumption cost and the second objective is time, 
we calculate the upper and lower bounds as follows:

• The lower bound for the first objective, “cost,” is generated from the optimal solu-
tion for its single-objective model, denoted as Z1(x1), and equals 70,165.50 L.E.

• The lower bound for the second objective, “time,” is generated from the optimal 
solution for its single-objective model, denoted as Z2(x2), and equals 87,280 min.



Page 10 of 16Abdelati et al. Journal of Engineering and Applied Science           (2023) 70:82 

• The upper bound for the first objective is obtained by multiplying  cijkp for the sec-
ond objective by xijkp for the first objective. The resulting value is denoted as Z1(x2) 
and equals 73,027.50 L.E.

• The upper bound for the second objective is obtained by multiplying tijkp for the 
first objective by xijkp for the second objective. The resulting value is denoted as 
Z2(x1) and equals 88,286.50 min.

As such, the aspiration levels for each objective are defined from the above values 
by evaluating the maximum and minimum value of each objective.

The aspiration level for the first objective, denoted as F1, ranges between 70,165.50 
and 73,027.50, i.e., 70,165.50 <  = F1 <  = 730,27.50.

The aspiration level for the second objective, denoted as F2, ranges between 87,280 
and 88,286.50, i.e., 87,280 <  = F2 <  = 88,286.50.

Fig. 1 No. of pallets in each source

Fig. 2 No. of pallets in each destination
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The objective function for the multi-objective multidimensional solid transport 
problem was determined using the Zimmermann Programming Technique, Global 
Criteria Method, and Minimum Distance Method. The first two methods directly 
provided the best compromise solution (BCS), while the last method generated non-
dominated extreme points by assigning different weights to each objective and find-
ing the BCS from them. The best compromise solution was obtained using the Lingo 
software [34]. Table  1 and Fig.  3 present the objective values for the optimal solu-
tions of fuel consumption cost and time, the best compromise solution, and solutions 
with different weights for both objectives. Figure 4 illustrates the minimum required 

Table 1 Objective value in different cases

Fuel cost (LE) Time (min)

Optimal fuel cost 70,165.5 88,286.5

Optimal time 73,027.5 87,280

MDM (w1 = 0.1) 70,174 88,236

MDM (w1 = 0.2) 70,313 87,928.5

MDM (w1 = 0.3) 70,433.5 87,796.5

MDM (w1 = 0.4) 70,520 87,741.5

MDM (w = 0.5) 70,597.7 87,712.2

MDM (w1 = 0.6) 70,485.94 87,760.64

MDM (w1 = 0.7) 70,399.71 87,826.5

MDM (w1 = 0.8) 70,324.07 87,914.28

MDM (w1 = 0.9) 70,248.86 88,030.27

BCS MDM 70,475.56 87,767.24

BCS ZPT 71,017.19 87,579.51

BCS GCM 70,433.5 87,796.5

Fig. 3 Objective value in different cases
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number of each type of truck for daily transportation of various products from 
sources to destinations.

The primary objective of the case study is to determine the minimum number of trucks of 
each type required daily at each garage for transporting products from factories to distribu-
tion centers. The minimum number of trucks needs to be flexible, allowing decision-mak-
ers to make various choices, such as minimizing fuel consumption cost, delivery time, or 
achieving the best compromise between different objectives. To determine the minimum 
number of required trucks, we compare all the previously studied cases and select the larg-
est number that satisfies the condition: min Zik (should be set) = max Zik (from different 
cases). Due to the discrepancy between the truck capacity and the quantity of products to 
be transported, the required number of trucks may have decimal places. In such cases, the 
fraction is rounded to the nearest whole number. For example, if the quantity of items from 
a location requires one and a half trucks, two trucks of the specified type are transported 
on the first day, one and a half trucks are distributed, and half a truck remains in stock at 
the distribution center. On the next day, only one truck is transferred to the same distribu-
tion center, along with the semi-truck left over from the previous day, and so on. This solu-
tion may be preferable to transporting trucks that are not at full capacity. Table 2 and Fig. 5 
depict the ideal distribution of the company’s truck fleet under various optimization and 
multi-objective conditions.

Conclusions
In conclusion, this research paper addresses the critical issue of optimizing transporta-
tion within the context of logistics and supply chain management, specifically focusing 
on the methods known as the solid transportation problem (STP) and the multi-dimen-
sional solid transportation problem (MDSTP). The study presents a case study con-
ducted on a private sector company in Egypt to determine the optimal distribution of its 
truck fleet under different optimization and multi-objective conditions.

Fig. 4 Ideal distribution of the company’s truck fleet
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The research utilizes the multi-objective multi-dimensional solid transportation prob-
lem (MOMDSTP) to identify the best compromise solution, taking into account fuel 
consumption costs and total shipping time. Three decision-making methods, namely the 

Table 2 Ideal distribution of the company’s truck fleet

Var Fuel Time BCS MDM BCS ZPT BCS GCM Final No

Z11 63.33 63.33 63.33 63.33 63.33 64
Z12 1.67 ‑ 1.67 ‑ 1.67 2
Z13 ‑ 1.00 ‑ 1.00 ‑ 1
Z21 24.00 24.00 24.00 24.00 24.00 24
Z22 ‑ ‑ ‑ ‑ ‑ 0
Z23 ‑ ‑ ‑ ‑ ‑ 0
Z31 26.00 24.67 25.79 24.67 26.67 27
Z32 9.33 9.50 8.94 9.50 8.50 10
Z33 1.00 1.30 1.30 1.30 1.30 2
Z41 53.33 45.33 45.33 45.33 45.33 54
Z42 7.33 8.17 11.67 12.00 11.33 12
Z43 2.60 4.50 2.40 2.20 2.60 5
Z51 40.67 48.00 49.33 48.00 49.33 50
Z52 14.33 7.33 10.17 8.82 10.50 15
Z53 0.40 2.40 0.30 1.51 0.10 3
Z61 9.33 11.67 11.67 11.67 11.67 12
Z62 5.33 4.17 4.17 4.17 4.17 6
Z63 ‑ ‑ ‑ ‑ ‑ 0
Z71 16.67 16.33 13.88 16.33 13.00 17
Z72 12.00 8.83 13.39 12.17 13.83 14
Z73 ‑ 2.00 ‑ ‑ ‑ 2
Z81 ‑ ‑ ‑ ‑ ‑ 0
Z82 ‑ 12.00 ‑ 3.35 ‑ 12
Z83 36.00 28.80 36.00 33.99 36.00 36

Fig. 5 Min. No. of trucks should be set for different cases
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Zimmermann Programming Technique, the Global Criteria Method, and the Minimum 
Distance Method, are employed to derive optimal solutions for the objectives.

The findings of this study make a significant contribution to the development of 
approaches for solving multi-objective solid transportation problems with uncertain 
parameters. The research addresses the complexities of diverse truck fleets and trans-
ported products by incorporating fuzzy programming, uncertainty theory, and related 
concepts. It critically examines the limitations of previous approaches that often focused 
solely on single-objective solutions and overlooked specific constraints.

The primary objective of this research is to determine the minimum number of 
trucks required to fulfill decision-makers objectives while optimizing fuel consump-
tion and transportation timeliness. The proposed approach combines the framework 
of the multi-dimensional solid transportation problem with a multi-objective optimi-
zation technique, offering comprehensive solutions for decision-makers with multiple 
priorities.

This study provides practical solutions for real-world transportation scenarios and 
demonstrates the potential for enhancing transportation efficiency and cost-effective-
ness in various industries or contexts. The comparative analysis of the proposed work 
highlights the advancements and novelty introduced by the approach, emphasizing 
its significant contributions to the field of transportation problem research.

Future research should explore additional dimensions of the multi-objective solid 
transportation problem and incorporate other decision-making methods or optimi-
zation techniques. Additionally, incorporating uncertainty analysis and sensitivity 
analysis can enhance the robustness and reliability of the proposed solutions. Investi-
gating the applicability of the approach in diverse geographical contexts or industries 
would yield further insights and broaden the potential applications of the research 
findings.
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