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Abstract 

A technique is presented for shifting the manufacturing quality control of complex 
biomechanical catheters away from destructive testing of finished parts. This tech-
nique uses a more efficient real-time in-process monitoring through the application of 
machine vision inspection of patient critical quality parameters. The approach acknowl-
edges the challenge of this industry operating in a strict regulated environment. The 
higher standards of built-in quality are achieved by developing automated inspection 
solutions that are more accurate and repeatable. Machine vision system and associ-
ated inspection job tools are developed and used to detect defects at crucial stages 
of manufacturing. The vision system is then tested for its robustness using a statistical 
approach to ensure its measurement capability is within the allowable process range 
and tolerances. The integrated solution developed is proven to be robust and highly 
precise in maintaining the manufacturing process stable. It enabled the manufactur-
ing process to move away from a destructive double sampling plan with a standard 
LTPD of 5% to an otherwise real-time 100% non-destructive verification of units. This 
technique provides an alternative to otherwise cost-inefficient quality control inspec-
tions utilized in regulated manufacturing environment. It gives confidence to these 
conservative industries to move towards adopting digital manufacturing and Industry 
4.0 practices.

Keywords:  Machine vision inspection, Stent delivery catheters, Measurement system 
analysis, Industry 4.0

Introduction
The coronary drug-eluting stents (DES) and stent delivery catheters (SDC) have been 
categorized as class III medical devices, i.e., a device that poses the highest risk to 
patient’s safety as per US Food and Drug Administration (FDA) [1]. The global cardio-
vascular stent market has been projected to grow at a compounded annual growth rate 
(CAGR) of 3.8% over the period of next 5 years [2]. The catheters are complex device 
in themselves, and manufacturing of these high-volume devices must comply with tight 
tolerances to avoid damage to the patient’s blood vessels while these devices are steered 

*Correspondence:   
Bikash.Guha@ul.ie

1 School of Engineering, 
University of Limerick, 
Limerick V94 T9PX, Ireland
2 Eindhoven University 
of Technology, 5600 
MB Eindhoven, the Netherlands

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-023-00242-4&domain=pdf
http://orcid.org/0000-0002-3411-8635


Page 2 of 19Guha et al. Journal of Engineering and Applied Science           (2023) 70:72 

into position during an angioplasty procedure [3]. Maintaining high quality and man-
ufacturing standards are an utmost priority and extremely difficult given the high vol-
umes. A central issue in ensuring quality of these devices is the industry being regulated 
in nature hinders the readily adoption of new age technologies. Any drawback of these 
technologies would mean a huge cost setback, damage to the brand reputation, and, in 
extreme cases, forcing for product recalls or banning of these products by the regulators. 
Facing the twin challenge of high quality and high volume, the industry is forced to shun 
manual processes and cautiously adopt more automation, digital manufacturing, and 
Industry 4.0 practices. It is a key challenge for the industry which is otherwise known 
to have a conservative outlook in embracing new technologies. As a result, the industry 
lags far behind the current digital manufacturing curve meaning product manufacturing 
and inspections are still predominantly manual.

This paper attempts to bridge one such gap within the quality control aspect in manu-
facturing of these devices. The manufacturers have till date clung to the almost a cen-
tury-old end of line, acceptable sampling methods. It is partly due to either destructive 
nature of the tests and mainly business conservatism and hesitancy in adopting new 
technologies [4]. FDA suggests the manufacturers to have extensive understanding of 
their processes and critical product and process parameters along with the ability to 
control processes through quality systems and strive for continuous improvement [5]. It 
continues to emphasize the need for industries to move away from classical batch release 
and control strategies towards real-time release testing (RTRT) through utilization of 
process analytical technologies and tools (PAT) [6]. FDA and other international bodies 
have also established regulations and guidance where automated process or automated 
PAT have been deployed within the manufacturing process. As per its Code for Federal 
Regulations (CFR) Title 21 part 11—Electronic Records; Electronic Signatures—scope 
and application provide guidance on maintaining records and information in an elec-
tronic format [7]. It further states that for computerized systems, the agency intends to 
exercise enforcement discretion regarding specific requirements for validation of these 
systems. Title 21 CFR part 820—Quality System regulation Chapter I subchapter H—
Medical Devices (21 CFR Part 820.70(i)) [8] specifically applies to automated processes. 
It states that “When computers or automated data processing systems are used as part 
of production or the quality system, the manufacturer shall validate computer software 
for its intended use according to an established protocol. All software changes shall be 
validated before approval and issuance. These validation activities and results shall be 
documented.” The International Society for Pharmaceutical Engineering under a tech-
nical subcommittee Good Automated Manufacturing Practice (GAMP) is the golden 
standard for manufacturing and users of automated systems in regulated industries such 
as pharma or medical devices [9, 10].

The aim for this research is to develop a non-contact non-destructive vision inspec-
tion system for the inspection of patient critical parameters of catheter manufacturing 
process. The system is validated to the stringent requirements of statistical measurement 
system analysis (MSA) to guarantee system’s robustness to natural process variation, a 
regulatory requirement for deploying PAT. A head-to-head comparison of the measure-
ment results from the developed system is also made to the results obtained from cur-
rent standard measurement techniques.
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Machine vision inspection is nothing very new in the manufacturing space. Over the 
last decade or so, it has found application in almost all manufacturing environments, 
especially within high volume manufacturing such as electronic industry [11, 12], addi-
tive manufacturing [13], remanufacturing industry [14], and general manufacturing 
applications [15–17]. Catheter manufacturing, however, has seen very limited appli-
cation of machine vision inspection, given the associated complications of operating 
within the regulated environment. Evidence of vision inspection application as a PAT 
within this industry has been so far very limited and scarce [3]. During review of aca-
demic literature, international patents and commercially available systems, very lim-
ited information is available for such vision system applications. A systematic attempt, 
therefore, has been made to develop and validate a vision inspection system for carrying 
out automatic inspection of catheter tip post laser bonding process. The novelty of this 
research lies in developing the automated system and proving its robustness as per the 
stringent standards of regulatory bodies.

Catheter tip welding, specifications, and testing
An important step of the catheter manufacturing process is the tip welding. The cath-
eter tip welds together the inner to the balloon along with the tip. The tip is formed by a 
laser bonding process on a semi-automated cell. During the welding process, the poly-
mer components supported over a metallic mandrel, are heated to create a local melt 
pool. The heat is created via concentrating the laser spot on the intended region with 
the heat being constrained over by a heat shrink tubing. Post welding, a distinct bonded 
tip is outputted with some typical post bonding features as shown in Fig. 1, namely, tip 
past inner, tip inner overlap, balloon waist inner weld, lesion entry profile diameter, and 
unbonded length. The specifications of these features are 1 ± 0.6 mm for balloon waist 
inner weld bond length, 0.350–5 mm for lesion entry profile diameter, 1 mm to 3.5 mm 
for tip inner overlap bond length, 0.5 to 5 mm for unbonded length, and 0.40 to 3 mm 
for tip past inner length (note: some specification data has been altered deliberately to 
protect proprietary information).

Post weld testing of the bond includes primarily destructive tensile test where the part 
is held in between jaws of a standard tensile tester and put to tensile stress to determine 
the tensile strength of the bonded components. Classical double-sampling plan are put 

Fig. 1  Catheter tip post weld bond specifications
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in place with a standard Lot Tolerance Percent Defective (LTPD) rate of 5% for batch 
release activities. As part of the developing this new PAT for post bond testing of the 
components, regression analysis and correlation studies were done to establish rela-
tion between typical post bond features to the tensile strength. When new non-contact 
vision system is deployed, an indirect indicative approximation can be made on the bond 
strengths based on the precise and accurate measurement of post weld bond features.

Test cell design and optics
A test rig is constructed to assemble the various components needed to develop the 
overall vision inspection system as shown in Fig.  2. The system consists of a Cog-
nex Insight Micro 8402 camera with C-mount lens with an optical focal length of 
17.526 mm lens [18]. It has adjustable/locking focus and f-stop, associated lighting (2 
red front lights and 1 back light), and a blue strobe or spotlight. The lens is fitted onto 
the camera with a 35-mm spacer to adjust the lens working distance. The C-mount 
lens is chosen to provide the required field of view within the physical constraints of 
the inspection area.

The camera is a high-speed high-resolution monochrome and color-capable 
complementary metal-oxide semiconductor (CMOS) sensor with a resolution of 
1600 × 1200 pixels. The CMOS sensor size is 9 mm diagonal, 4.5 × 4.5 μm sq. pixels 
[19]. The hierarchical organization within the vision sensor consists of three layers. 
The first layer is the system level where all the system parameters are stored com-
mon to all the inspections. These parameters affect the overall behavior of the vision 
system rather than that of a particular inspection. The second layer is then that of a 
product level. The product level parameters are directly associated with an inspection 
and affects a whole inspection that the sensor is performing. The third layer is the 
tool level. The tool parameters set by the user perform part of an inspection. It is at 
this level where all parts of the inspection are defined [20].

The inspection requires back lighting for measuring part feature outside diameter 
(OD) and front lighting for bond edge illumination. Strobe light-emitting diodes (LED) 
are chosen for light output stability driven by a strobe light controller. The strobe dura-
tion times are set as short as reasonably possible (few milliseconds) to limit vibration 
and ambient lighting impact on the inspection and long enough to achieve the required 
illumination on the part. Red front lights are found to provide the best composite con-
trast for all the required bond edges. The front lights are located on the tip side of the 
balloon, as far forward and close to the part as possible, given the constraints of the 
mechanical test cell layout. Two lights are used to increase illumination and reduce the 
sensitivity of the inspection to part variation.

Custom inspection job files
For catheter tip inspection, custom scripts (inspection job files) are developed to per-
form specific inspection tasks as shown in Fig. 3. The control of the test cell is gov-
erned by Visual Basic Application (VBA) which also dictates the vision inspection run 
sequence.
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(a)

(b)

(c)

Fig. 2  a Test cell. b Camera and lens assembly. c Cell design layout
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The below list details in brief the different scripts developed to carry out tip inspec-
tion as per the product design specifications in the format Tool Name – Inspec-
tion Output – Description of the tool. Figure 3 is the culmination of all the different 
scripts as indicated below and also other sub-scripts that run in parallel to generate 
appropriate results for the main scripts.

	 1.	 Part Profile – N/A—The outside diameter (OD) of the entire part is measured, pro-
viding edge profile data for subsequent inspection tools. This measurement tool cov-
ers the entire image.

	 2.	 Vertical—Part Position Y value, Heat Shrink presence, Part presence—Finds the ver-
tical Y location and diameter of the mandrel at the far-left edge of the image. The 
OD is used to determine if the heat shrink has been removed.

	 3.	 Find Tip—Find part Tip horizontal position—This tool searches along the mandrel 
from left to right to find the leading (distal) edge of the tip.

	 4.	 Mandrel at Tip—Find part vertical position Y value for inspection tool placement at 
Tip—Finds the vertical Y location and diameter of the distal mandrel left of the Tip 
edge. The OD and position are used to precisely place edge tools for measuring the 
tip lead in.

	 5.	 Tip Bond—Find part Tip Bond horizontal position—This tool searches along the Tip 
from left to right to find the leading (distal) edge of the tip bond.

	 6.	 Mid Bond Edge—Find part Mid Bond horizontal position—This tool searches along 
the Bumper Tip from left to right to find the leading (distal) edge of the Mid bond.

	 7.	 Bump OD—Max OD value—This script is designed specifically to find a convex cur-
vature in the OD profile of a part. The lack of a weld bump suggests a possible cold 
weld and a weak bond.

	 8.	 Balloon Cone Trans—Finds the X-axis location of the balloon cone transition—This 
script is designed specifically to find the transition point of the maximum slope 
change in the OD profile of a part. The maximum slope change in the edge profile 
occurs at the beginning of the balloon cone.

Fig. 3  Vision inspection tool script inspection results
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	 9.	 Min OD – Finds the X-axis location and minimum diameter of the part between the 
bump position and balloon cone—This tool extracts OD values from the Part Profile 
edge data to find the minimum OD value. The tool searches the data from left to 
right, beginning at the Bump maximum OD position and searching into the balloon 
cone area.

	10.	 Tip Bttm, Tip Top, Tip Lead In OD—Tip OD value—Tip Bottom—This tool searches 
a narrow area from left to right, along the bottom half of the mandrel at the tip loca-
tion, to precisely locate the bottom edge of the tip. Tip Top: This tool searches a 
narrow area from left to right, along the top half of the mandrel at the tip location, 
to precisely locate the top edge of the tip. Tip Lead In OD: This tool checks for valid 
edge data from the lead in edge find tools and calculates the Lead-In OD measure-
ment and displays the OD value.

	11.	 Intensity—Intensity Avg BL, Intensity Left FL, Intensity Right FL—This tool meas-
ures the image intensities on the part and the in the background. These are light 
intensities from the backlight and the two red front lights.

System calibration
The proposed vision system test rig is calibrated using a custom built standardized 3 mm 
x 3 mm glass reticule fixture (see Fig. 4) placed within the field of view (FOV) of cam-
era. The focus is adjusted using the adjustment rails on the rig and camera lens inter-
nal focus. The exposure of the camera system is set to default 8 ms for the purpose of 
calibration.

A custom calibration visual basic script is run on the system PC that generates a cali-
bration window on screen. The aim is to fit the calibration square on the reticule within 
the calibration window generated until crosshairs on the corners of the window turn 
green confirming the FOV is set correctly (see Fig. 5a).

Fig. 4  Calibration fixture
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The process is repeated to achieve the highest edge gradient with a similar window 
appearing on the edge of the square and fine tuning the system till the highest edge gradient 
is achieved and the software prompting the user with a pass notification (see Fig. 5b).

On completion of both tasks, the values are saved on the system. The script running in the 
background records a corresponding mm to pixel ratio on the camera memory. That figure 
is used every time the camera measures a feature on screen in terms of number of pixels 
and a corresponding measurement value in mm gets stored in the recording database.

Measurement system analysis
For systems designed to carry out 100% inspections of critical patient safety parameters, 
it is required to prove out the measurement system’s capability in being able to carry 
out the job satisfactorily. Industry standard to accomplish this is through measurement 
system analysis (MSA). The objective of MSA is to determine how much of the total 
variability observed in the process is due to measurement error and to establish if the 
measurement system variability is acceptable and within the consumer’s risk appetite.

The total variability of the parts measured are always increased by the measurement 
system [21] and is given by:

where σ 2
pv is process variation arising from production process, material, machine, pro-

cess environment, and operator training, and σ 2
ms is measurement system variation or 

variation due to gage [22]. MSA determines the error in measurement which can be 
further classified in two categories: accuracy and precision [23]. Accuracy is the ability 
to produce on target results (difference between measured value and reference value) 
whereas precision is the ability to produce consistent results (dispersion between meas-
ured values). Table 1 shows the various components of the measurement error.

Numerically, the computation of errors of measurements can be determined as 
follows:

Bias for individual measurement can be given by:

(1)σ 2
T = σ 2

pv + σ 2
ms

(2)Bij = xij − Ri

Fig. 5  a FOV correction. b Edge gradient tuning
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where Bij is the bias for jth replication of the part i, xij is the individual measurement 
value for jth replication of the part i, and Ri is the reference value for part i.

Average bias for n readings of an individual part can be given by:

For linearity, first, a regression line is plotted between the individual bias and reference 
values. The equation of the line is given by:

where m is the slope of the line, and c is the intercept. m and c thereafter are given by:

where a is no. of subgroups, and b is the subgroup size.
Ideal scenario would have slope m equal to zero meaning the bias is same at all reference 

values. In practice, there is always some bias because of the within system variation. For 
determining if the slope m is significantly different from zero, t-statistic is calculated and 
p-value associated with the t-statistic is determined. The t-statistic is given by

where s is the standard deviation given by:

Once the regression line has been established, confidence limits, bounds, or intervals 
around the regression line is determined. Confidence interval is “the interval between two 
statistics that includes the true value of parameter with some probability [24].” The equa-
tions for calculating the lower (LCB) and upper (UCB) confidence bounds (for 95% confi-
dence interval) is given by:

(3)Bi =

∑ni
ij=1

Bij

ni

(4)Bi = mRi + c

(5)m =
RB− 1

ab
R B

R2 − 1

ab
R

2

(6)c = B−mR

(7)t =

|m|

s
√

∑
(

R− R
)2

(8)s =

√

∑

B2 − c
∑

B−m
∑

(R ∗ B)

ab− 2

Table 1  Components of measurement error in MSA

Accuracy Precision

Bias: Accuracy of measured value compared to refer-
ence value
Linearity: Accuracy of measured value through 
expected range of readings
Stability: Accuracy of measured values over time

Repeatability: Ability to produce same measured value in 
repeated measurements by the same appraiser
Reproducibility: Ability to get same measured value by 
different appraisers
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Stability can only be analyzed graphically by establishing control limits and evaluating for 
out of tolerance conditions using normal control chart analysis. There is no specific numer-
ical analysis or index for stability [22].

Repeatability or appraiser’s agreement with themselves is given by:

Reproducibility or agreement between appraisers is given by:

Percent repeatability and reproducibility (%RandR), percent tolerance (%P/T), and num-
ber of distinct categories (DC) are given by:

where σ 2
gage is the standard deviation due to the gage or the measurement system, and 

σ 2
part is the standard deviation of the parts being measured. The acceptance criteria for 

Gage RandR (GRR) as per Automotive Industry Action Group (AIAG) standards are as 
below (GRR%—decision):

1.	 Under 10%—Generally considered to be an acceptable measurement system
2.	 10%–30%—May be acceptable for some applications
3.	 Above 30%—Considered to be unacceptable

Number of distinct categories (Ndc), which is the smallest detectable increment 
between two measured values or the discrimination of the measurement resolution, is 
also an important factor to consider for a variable measure gage. The Ndc for a measure-
ment system needs to be at least one tenth of the range to be measured.

(9)LCB = c +mRi − t(0.05,df )s





1

ab
+

�

Ri − R
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(10)UCB = c +mRi + t(0.05,df )s
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(11)Rpt =
# of appraisals that matched for ith appraiser

# of appraisals made by the ith appraiser
× 100

(12)Rpd =
# of all appraiser

′

assessment agree with each other

# inspected
× 100

(13)%RandR =
σ 2
gage

σ 2
part

(14)%P/T =
σgage

Tolerance
× 5.15

(15)DC =
σ 2
part

σ 2
gage

× 1.41
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Results
Once the test cell system integration is completed following amalgamation of hardware 
and software elements, the system is put to rigorous statistical validation testing. For this 
paper, the Minitab statistical software package was used to analyze the test data.

Gage linearity and bias

The test rig is first put to bias and linearity study to analyze the accuracy of the vision 
inspection system. Three samples from low, mid, and high end of the product size matrix 
are selected and measured on a master calibrated and qualified tri-axis measurement 
system to determine the reference values for tip past inner (TPI) length, tip inner over-
lap bond (IBL) length, balloon waist inner weld bond length (BL), and unbonded length 
(UBL). The parts are then measured on the vision system and results are fed to a statisti-
cal analysis software package Minitab for further analysis. Every part a = 3 is measured 
b = 30 times on the vision system producing n = 90 readings which is sufficient for gage 
bias and linearity study as per AIAG standards [22]. Results from Minitab are as below 
in Table 2 and Fig. 6a–d.

Gage linearity and bias study could not be conducted for lesion entry profile diameter 
(EPD) for various reasons. The primary reason being EPD diameter of the catheter tip is 
constant across all product sizes of the catheter to be able to fit onto the guide wire and nar-
row blood vessels. Also, EPD is a dimensional parameter non-indicative of the tensile prop-
erties of the tip bond. This has a low-risk index as per the design failure modes and effect 
analysis (DFMEA) of the catheter and most of the times has other secondary downstream 
controls within the overall catheter manufacturing process. Nevertheless, this measure-
ment tool has been incorporated within the vision inspection cycle to act as an additional 
engineering control rather than a process control and is only significant from a process 
yield point of view at this work step.

Gage repeatability and reproducibility

Post accuracy test, the vision inspection system is tested for precision by undertaking a 
Gage RandR analysis. For non-destructive tests such as these inspections, a crossed Gage 
RandR is recommended using the analysis of variance (ANOVA) method. Test strategy is 
determined wherein the smallest (2.25 mm balloon size) and the largest (4.00 mm balloon 
size) is selected to analyze the precision of the vision system across the operating range of 
the inspection system. Gage RandR matrix was created to determine number of samples, 
repeats, and operators as per Eq. 16; 30 is the minimum required criteria for n for crossed 

Table 2  Gage linearity and bias results

Process output Parameter p-value Null hypothesis Ho

Unbonded length Linearity 0.370 Accept

Average bias 0.595 Accept

Bonded length Linearity 0.319 Accept

Average bias 0.000 Reject

Inner bond length Linearity 0.889 Accept

Average bias 0.237 Accept

Tip past inner length Linearity 0.261 Accept

Average bias 0.840 Accept
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Gage RandR ANOVA accepted as per AIAG standards. Results from Minitab are as below 
in Tables 3, 4 and Fig. 7a-j.

The MSA of the developed vision system puts it under a robust statistical test that 
tests out the system performance under extreme operating conditions. It is to prove its 
consistency in measurements done at the limits of the scale and when being used by 

(16)(#samples)x(#operators)x(#repeats) ≥ 30(minimum)

Fig. 6  Minitab reports for gage linearity and bias study for a UBL, b BL, c IBL, and d TPI

Table 3  Gage RandR results for small balloon size

Smallest Balloon size - 2.25mm Gage RandR test summary

Process output % P/T Ndc GRR decision GRR report

Unbonded length UBL 22.07 1 Limited use Figure 7a

Bonded length BL 3.18 29 Acceptable Figure 7b

Inner bond length IBL 1.10 16 Acceptable Figure 7c

Tip past inner TPI 9.08 4 Limited use Figure 7d

Entry profile diameter EPD 8.67 5 Acceptable Figure 7e

Table 4  Gage RandR results for large balloon size

Largest Balloon size - 4.00mm Gage RandR test summary

Process output % P/T Ndc GRR decision GRR report

Unbonded length UBL 2.40 2 Limited use Figure 7f

Bonded length BL 4.20 12 Acceptable Figure 7g

Inner bond length IBL 3.45 3 Limited use Figure 7h

Tip past inner TPI 12.12 2 Limited use Figure 7i

Entry profile diameter EPD 7.92 4 Limited use Figure 7j
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Fig. 7  Gage RandR reports for a–e small balloon size and f–j large balloon size
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different personnel at different times. The test also aims to establish the reliability of the 
test methods developed to measure various features of the catheter bonding process. By 
conducting this test, it would establish the fact from a regulatory point of view that the 
PAT can reliably be utilized for in process inspections and that the manufacturing can 
move away from classical batch release testing practices.

Gage performance evaluation

To ascertain the performance of the developed system, a statistical test is performed 
where a sample of N units are measured on a calibrated Smartscope (see Fig. 8), and the 
same units are measured on the vision system over the test rig. For this test, it was deter-
mined that the measurements for inner overlap bond length (IBL) would be put to head-
to-head comparison. This is the most critical of all parameters and the hardest to detect 
by the vision system due to the gradient transition between IBL and tip past Inner (TPI) 
length. First, the means of the sample size from the two measurement systems are com-
pared using the standard statistical techniques of 2-sample T-test and 2-sample equiva-
lence test. Thereafter, measurement data of each sample from standard Smartscope is 
compared directly with the measurement data of the same part from the vision system 
for a direct comparison. This is because comparing means is not always the best means 
of comparison for two different measurement systems [25, 26].

A power and sample size estimation were run on the Minitab software to determine 
number of samples needed. The statistical tests are required to have at least 80% power 
and 95% confidence or the p-value to be 0.05 [27]. The 2-sample T-test determines that 
there is no statistically significant difference in the sample mean values of the two pop-
ulations. Also, a 2-sample equivalence test is conducted for determining if the sample 
means of the two populations are equivalent.

The historical variation or the standard deviation for the IBL measurement is 
0.066 and the desired minimum detectable difference limit is set to be 0.50  mm. The 

Fig. 8  Catheter tip measured manually on a Smartscope
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evaluations returned that a sample size of N = 15 is sufficient to detect the difference of 
at least 0.50 mm with 100% power for the T-test and at least 0.43 mm with 80% power 
for the equivalence test (see Fig. 9a and b).

Prior to conducting the 2-sample T-test, the data from the sample populations are 
verified to have met the basic assumptions necessary for the test, namely, (i) depend-
ent variables are continuous, (ii) measurements are independent of each other, (iii) 
data to be normally distributed, and (iv) equal variances in both sample populations 
[28, 29]. The first two assumptions are met by the nature of the experiment and data 
collection itself. Both sets of sample measurements are then put through Anderson–
Darling normality test and are found to be normally distributed with corresponding 
p-values of 0.121 and 0.105 (see Fig. 9c). Thereafter, the two datasets are checked for 
test of equal variances. The data set passed the Levene’s test with a p-value of 0.932 (see 
Fig. 9d), thus accepting the null hypothesis that the two sample populations have equal 

Fig. 9  a Power and sample size estimate for 2-sample T-test. b Power and sample size estimate for 2-sample 
equivalence test. c Anderson–Darling normality test. d Test for equal variances. e Results for 2-sample T-test. f 
Results for 2-sample equivalence test
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variances. Having met all the assumptions, the comparison/equivalence tests are then 
run on the two datasets.

The results for the 2-sample T-test returned a p-value of 0.910 which is greater than 
the α level of 0.05 (see Fig. 9e). Therefore, the null hypothesis Ho : µ1 - µ2 = 0 is accepted 
for the test where µ1 and µ2 are the sample mean of the two populations.

The results for 2-sample Equivalence test returned a p-value of 0.0 which is less than 
the α level of 0.05 (see Fig.  9f ). Therefore, the null hypothesis is rejected for this test 
which means that the alternative hypothesis of test mean µ1 − reference mean µ2 < 
0.50 mm is accepted. This would mean that the two-sample means can be statistically 
deemed equivalent.

Using the graphical methods for comparing each data point, where the difference 
between the two measurement systems is plotted against the average of two systems, the 
results are found to be consistent as only one data point is outside the limits of agree-
ment (see Fig. 10).

This is deemed to be acceptable as the difference is in order of 0.01  mm which is 
acceptable for the measurement type. Limitation to note for this test is that the standard 
Smartscope only measures up to 4 decimal places, whereas the vision system can meas-
ure up to 9 decimal places when converting pixel value to mm. The rounding effect or 
lack of resolution would have normalized the differences; however, it is still deemed to 
be not so significant for the result. The output from the automated test cell is thus con-
sidered to be at par with that of a standard measurement system.

Fig. 10  Bland–Altman test on differences between two systems
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Discussion
The automated vision system showed good results for gage linearity and bias for all 
parameters of interest except for average bias, where there is likely a potential measure-
ment issue and warrants further investigation. For Gage RandR results, all the results 
for %P/T for both the extreme product sizes are acceptable. As per the industry stand-
ards, some results for Gage RandR and gage resolution restrict the system to limited use 
and the acceptance of which depends on the risk associated with the measured outputs 
or end user discretion. Furthermore, performance evaluation of the developed system 
against a standard measurement system is conducted, and the results are found to be 
consistent overall. Overall, the developed system shows promising results; however, it is 
recommended for more fine tuning of the inspection job files/apparatus set up if to be 
utilized for critical parameters such as the discussed application.

This paper has attempted to narrow down the gap that currently exists within the 
catheter manufacturing industry for adoption of PAT by proving with confidence that 
such technologies are robust and capable to meet the stringent requirements of the 
regulatory bodies. Very few similar attempts have been made to develop and adopt 
such technologies. The focus so far only has been on developing the technology but 
not proving its effectiveness to instill confidence for adoption. A close example would 
be an automated inspection system for stents [3] where the system has been devel-
oped under Matlab® in C +  + using the machine vision library HALCON; however, no 
evidence has been provided on the repeatability/reproducibility, accuracy, and preci-
sion of the developed system. Some commercial systems that claim to have regulatory 
compliance 21 CFR Part 11 [30] have only attempted to inspect non-complex catheters 
such as urethral and intravenous with simple measurement features. A similar attempt 
in developing and proving system consistency was seen in an example of developing 
a vision inspection system for electronics failure analysis [11]. The system, however, 
is only attempting to find defects based on attribute features. It is not attempting to 
measure product feature data and testing for consistency is done on limited number of 
parts without a clear indication of statistical significance or reliability of the test.

Conclusions
Non-conformances in complex biomechanical catheter manufacturing is common. Tra-
ditional destructive acceptance sampling plans are not as robust and cost-efficient as 
100% non-destructive machine vision inspections. This paper investigated into develop-
ing an automated vision system of critical process outputs to replace an old variable data 
destructive tensile testing acceptance plan. The PAT system developed is then put through 
rigorous statistical testing for measurement system errors to ensure the error is within per-
missible overall process variation. The outcome of the research is promising where the sys-
tem demonstrated positive results in terms of feature detection and overall measurement 
variation; however, further efforts are needed to optimize the system for better resolution 
and expand the possibilities of the deployment to more critical applications.

This research work is one more milestone in the direction of adoption of PAT within 
complex biomedical device manufacturing in general. It aims to instill the confidence 
that highly regulated industries too can move forward towards embracing Industry 4.0 
standards and practices.
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