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Abstract 

Decline curve analysis (DCA) is a widely used method to estimate the production per-
formance and ultimate recovery of conventional and unconventional reservoirs. Due 
to the unconventional nature of shale wells, traditional decline curve methods are not 
ideal for analyzing their production decline behavior. In response, different empirical 
methods have been developed and used which rely on different mathematical and 
statistical approaches and can result in varying forecasts.

This study compares fourteen decline curve methods, along with the traditional Arps 
method, in terms of their ability to match production history, sensitivity to data size, 
effect of flow type, production forecast, and ultimate recovery estimation.

The methods were tested on three wells from Haynesville Shale (Lorikeet Field), Marcel-
lus Shale (Ostrich Field), and Marcellus-Upper Shale (Penguin Field) respectively. The 
study concludes that each method may be useful in different cases, and engineers 
should choose the method that best models their wells based on their specific char-
acteristics and circumstances. Recommendations were also provided for an effective 
evaluation of uncertainty and application of DCA. The primary objective of this study is 
to improve the accuracy and reliability of DCA predictions for different reservoir types 
with different declining modes.

Keywords:  Decline curve analysis production performance, Ultimate recovery, Oil and 
gas reservoirs, unconventional reservoirs, Shale gas, Uncertainty evaluation, Haynesville 
shale, Marcellus shale, Prediction tool

Introduction
Arps’ Decline Analysis equations are a reliable tool for estimating the ultimate recov-
ery of conventional oil and gas wells by fitting and extrapolating production rate-
time plots during Boundary Dominated Flow (BDF) to abandonment. However, these 
equations are not suitable for estimating reserves in shale wells because shale wells 
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often exhibit long transient flow regimes due to their low matrix permeability. Tra-
ditional decline methods tend to overestimate reserves when applied to the transient 
flow regimes of shale wells. To address this issue, fifteen empirical equations from 
the literature were used, which produce different fitting and predicting performance. 
These methods are classified into methods that considers the flow behavior of shale 
gas and methods that do not considers the flow behavior of shale gas. The paper sum-
marizes and critiques these methods, addressing their major differences, assump-
tions, and conditions.

In this study, a Microsoft excel using Visual Basic Application (VBA) was developed 
to automatically run and compare the methods on reliable field data. The program 
uses non-linear regression to find the best match between the production data and 
the equations, and the least squares method was employed, which involved minimiz-
ing the sum of the squared differences between the actual values and the calculated 
values of the field data. Also, the study proposes valuable conclusions and recommen-
dations aimed at improving the understanding of uncertainties and enhancing the 
effective use of DCA.

Challenges related to analyzing the producing shale gas wells
To produce shale gas reservoirs, horizontal wells are drilled with multiple stages of 
fracture stimulation, resulting in a stimulated reservoir volume (SRV). The size of the 
SRV depends on the length of the horizontal well and the number of stages. How-
ever, this creates a complex system consisting of interconnected natural fractures, 
hydraulic fractures, and ultra-low permeability matrix, which resulting in various 
flow regimes. The decline trends of shale gas wells are impacted by the different flow 
regimes that may occur as shown in Fig. 1.

Fig. 1  Identifying the different flow regimes based on the slope value on the log–log plots
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The various flow regimes that can occur during the production of shale gas wells 
can affect the decline trends, and these cases are as follows [1, 2]:

•	 Linear flow: which can dominate during the entire life of the well, occurs perpendicu-
lar to the hydraulic fractures from the matrix. This type of transient linear flow can 
be identified by plotting flow rate versus time on a Log–Log plot. The resulting plot 
exhibits a -1/2 slope if there are no natural fractures in the reservoir.

•	 Linear-BDF” refers to a combination of two flow regimes in shale gas wells. The ini-
tial flow regime is transient linear flow, which is followed by a boundary dominated 
flow (BDF). This transition is usually related to reaching the boundaries of the stimu-
lated reservoir volume (SRV). On a log–log plot, this flow regime can be identified 
when a deviation from the -1/2 slope of the transient linear flow regime begins to 
appear.

•	 Bilinear-Linear flow: refers to a flow regime where the initial assumption is bilinear 
flow, which is followed by another linear flow. This type of flow is typically associated 
with the presence of natural fractures and lasts for a brief period during the early 
stages of production. In bilinear-linear flow, the fluid moves linearly from the frac-
tures to the well and simultaneously from the matrix linearly to the fractures. On a 
Log–Log plot, it is identified by a slope of -1/4, followed by a slope of -1/2 that signi-
fies the bilinear flow.

•	 Bilinear-linear-BDF flow: The Log–Log plot shows a deviation from the -1/2 slope 
once again when the flow reaches the boundaries of the stimulated reservoir volume 
(SRV). This flow regime starts with bilinear flow, followed by linear flow, and then 
transitions to boundary dominated flow (BDF) as the SRV is depleted

Methods
Empirical methods are classified into two categories:

•	 Methods that neglect the flow behavior of shale gas.
•	 Methods that take into account the flow behavior of shale gas

Methods that neglect the flow behavior of shale gas

Arps model

The Arps model comprises exponential, hyperbolic, and harmonic methods [4] that are 
characterized by the decline exponent b, which typically falls between 0 and 1 as demon-
strated in Eq. 1 through 3. This model is applicable when the well is in BDF, and physical 
properties and BHP are nearly constant. However, b is always greater than 1 in shale 
gas reservoirs, rendering the super-hyperbolic model (where b > 1) necessary. The super-
hyperbolic model employs the same expression as Eq. 2 but has different ranges for b.

Exponential Decline:

(1)qt = qiexp(−Dit),
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Hyperbolic Decline:

Harmonic Decline:

where; qt = gas flow rate at time t (Mscf/day), qi = initial gas flow rate (Mscf/day), t = time 
(Day), Di = initial decline rate (Day−1), b = Arps’ decline-curve exponent.

Matthews‑Lefkovits Model (MLM)

Matthews and Lefkovits (1956) [28] (MLM) studied the performance of depletion-type 
reservoirs in the stage where gravity is the primary driving force due to low gas pressure. 
They conducted both theoretical analysis and experiments using scaled methods. They also 
developed a straightforward theoretical model that explains the scaled model experiments 
and matches some field data as shown in Eq. 4 [28],

where; aMLM is a constant; and nMLM is a fitting coefficient.
The similarity between the model and Arps’s hyperbolic relationship is significant. It can 

be said that they are almost identical, as nMLM approaches 1/bA and aMLM approaches DA.

Generalized Weng’s prediction model

Weng’s prediction model is a mathematical model that is utilized to depict the increase and 
decrease of phenomena. The model was initially proposed by [39], and it has been further 
developed and studied by other researchers, including [43] as expressed in Eq. 5.

where; aGW and bGW are fitting coefficients.

Extended КOПЫTOB (K) Model

The КOПЫTOB model is originally expressed as in Eq. 6 [24]. However, this model cannot 
be used directly because as t approaches 0, NP approaches negative infinity instead of 0. 
To address this issue, the extended КOПЫTOB model (K) was modified to better fit actual 
production data [24] and is expressed as Eq. 7. The cumulative production can be obtained 
by from Eq. 8.

(2)qt =
qi

(1+ bDit)
1/b

,

(3)qt =
qi

(1+ Dit)
,

(4)q = qi ·
1

(aMLM · t/nMLM + 1)nMLM
,

(5)q = qi · t
aGWexp(−t/bGW),

(6)GP = aK −

bK

t
,

(7)q = qi ·
bK

bK + t

2
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where; aK and bK are fitting coefficients.

Stretched Exponential Decline Production Model (SEDP)

Kisslinger utilized the stretched exponential function to model aftershock decay rates 
in 1993 [20]. This stretched decay can be viewed as a combination of pure exponen-
tial decay, as discussed [17]. Valkó and Lee applied this concept to design their novel 
model for predicting the decline rates of production data from unconventional res-
ervoirs, as presented in [21, 34, 35]. Despite bearing similarity to PLE, this model 
does not rely on single parameter interpretation and instead uses gamma functions. 
Parameters (n) and (τ) represent multiple exponential declines summations instead 
of being single parameters. Moreover, EUR is no longer an infinite but bounded value 
and is independent of time or rate, as noted by [47]. This model can fit both transient 
and BDF and is empirical, lacking any physical basis. It was derived by analyzing pro-
duction data from over 12,800 wells of the Barnett Shale Play and expressed through 
a differential equation [3]. Eqs. 9, 10 and 11 demonstrate the mathematical methods 
derived from this model.

where; nSEDP is the model parameter (dimensionless), τSEDP = model parameter (day), 
Ŵ

(

1
n

)

 is gamma function and Ŵ
[

1
n
,
(

t
τ

)n
]

 is the incomplete gamma function.

It is worth noting that the model takes into account reservoir heterogeneity, as dis-
cussed in [12]. Accurately estimating the parameters (n) and (τ) requires a significant 
amount of production data, typically over 36 months, as emphasized in [27].

Weibull’s model

A statistical distribution model known as the Weibull distribution was proposed 
by Weibull in 1951 [38] and further studied by Tabatabai et  al. in 2005 [33] and Yu 
in 1994. This model has been extensively utilized for life testing purposes. In the 
petroleum industry, a modified version of this model, as demonstrated in Eq.  12, is 
employed for predicting well production [33, 41]:

where; aWB and nWB are fitting coefficients.

(8)GP =
aK

bK
−

aK

t + bK

(9)q = qi · exp
[

−(t/τSEDP)
nSEDP

]

,

(10)GP = qi

(

τSEDP

nSEDP
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nSEDP
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,

(11)EUR =
qiτSEDP

nSEDP
τSEDP

[

1

nSEDP

]

(12)q = qi · exp

(

−
tnWB
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,
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Weng and Weibull’s methods depend on the statistical behaviors as they are con-
sidered probability density functions. They are sensitive to the data sample and the 
coverage range of that sample. Therefore, the production data size available for fitting 
by these two methods could be essential before forecasting the production.

Logistic Growth Model (LGM)

The logistic methods operate on the principle that growth can occur only up to a certain 
limit, referred to as the carrying capacity. LGMs are employed for modeling population 
growth and were initially adapted for use in the petroleum industry by Hubbert in 1956. 
Hubbert’s model was utilized for predicting the production of a field or region. Clark 
et al. [7] developed a new LGM that focuses on the production of an individual well. This 
model was derived from another LGM that methods liver regrowth using hyperbolic 
functions. The rate and cumulative equations for this model are as in Eq. 13.

where; aLGM is a constant; and nLGM is a hyperbolic exponent.
The two regression variables, ( aLGM ) and ( nLGM ), significantly influence the shape and 

direction of the decline curve, either upward or downward. K, which represents the car-
rying capacity or the maximum achievable limit, can be the EUR or the initial maximum 
rate, as indicated in Eq. 14 [8].

Methods that take into account the flow behavior of shale gas

Hsieh model

Hsieh et  al. [13] proposed a Darcy relationship that is time-dependent to account for 
unique reservoir properties of a well that vary with pressure over time. Equation 15 of 
this model incorporates three fitting parameters that regulate the well’s declining behav-
ior within a specific geographic region. This model offers simplicity and versatility as 
it can analyze various decline scenarios without prior knowledge of the decline type. 
It can be viewed as a modification of Arps’s model, aimed at making the decline more 
comprehensive.

where; mH is a time-dependent hysteresis decline exponent, and nH is a decline exponent.

Power‑law equation (PLE) Model

According to [15, 16], the use of a hyperbolic relationship in tight gas reservoirs is not a 
reliable method for estimating reserves through extrapolation. Instead, they proposed 
a more general relationship, which is deemed to be more accurate. They introduced a 
new approach called the "Power-Low loss-ratio" rate decline model, and its details can 
be found in Eqs. 16 and 17.

(13)q =
K · nLGM · aLGM · tnLGM−1

(aLGM + tnLGM)2
,

(14)q = qi ·
nLGM − aLGM · tnLGM −1

(aLGM + tnLGM )2
,

(15)q = qi · t
−(nH+mH .t),
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when D∞ ≈ 0,

where; D∞ is a constant at “infinite time”(d−1), D1 is a constant “intercept” at 1-time unit 
(d−1), and nPLE is a time exponent.

This approach offers the advantage of accurately matching production data in both 
flow regimes, without being overly sensitive, as noted by [29]. It also methods a range 
of different flow periods typically seen in shale gas reservoirs, including linear, bilin-
ear, BDF, and transient linear flow regimes, as discussed in [19, 32]. Figure 4 illustrates 
the typical production behavior of shale reservoirs, with a fast decline rate in the early 
stages, a long-tail of production with a smaller decline rate in the late stages.

However, it should be noted that the PLE model can sometimes provide overly opti-
mistic recovery estimates, even when the flow regime changes within the first ten years 
of production, as observed by [36]. Additionally, the model assumes that BDF is reached 
at a late time when reservoir properties become constant, which can make it challenging 
to accurately determine (D∞) and obtain (Di) with noisy production data, as noted in 
[12]. Moreover, the PLE model involves solving for four parameters, which can be cum-
bersome, although these extra variables do allow flexibility to match transient and BDF 
behaviors, as discussed in [14, 18, 31]

Duong approach

Tight or shale gas reservoirs are characterized by their extremely low permeability, 
which results in a prolonged production period that could last for years in transient flow. 
The fracture system contributes significantly to the production, while the matrix con-
tribution is negligible. To model the decline behavior of shale gas, Duong proposed an 
approach that is not dependent on fracture type (finite conductivity, infinite conductiv-
ity, natural or artificial), well type (vertical or horizontal), or completion type (single or 
multi-stage) [9, 10]. This model was developed under the assumption of constant bot-
tom-hole flowing pressure [24], and its mathematical expression is shown in Eqs. 18 and 
19, as presented in the works of [14, 22].

where; aD is an intercept constant (d−1), and mD is the slope.
It is important to note that the exponent "m" is always a positive number in all calcula-

tions. However, Paryani et al. [31] highlighted two issues related to this model: extended 
shut-in periods and water breakthrough. To accurately determine the (a) and (m) param-
eters, proper initialization of the rate after shut-ins is required, and water breakthrough 

(16)q(t) = qie

[

−D∞t− D1
nPLE

tnPLE
]

(17)q(t) = qie

[

−
D1

nPLE
tnPLE

]

(18)
qg
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= at−m,

(19)q = qi · t
−mDexp
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1−mD

(

t1−mD − 1
)

]
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can cause a sudden decrease in the production rate, resulting in an increase in the per-
meants value.

Similar to the PLE model, changes in flow regimes within the first ten years can result in 
an overestimation of the EUR using this model. However, the model provides a reasonable 
recovery estimation for non-horizontal non-hydraulic fractured shale wells, as observed by 
Vanorsdale [36].

Extended Exponential Decline Curve Model (EEDCM)

Zhang et al. presented a revised model with easily adjustable parameters to represent the 
production behavior of shale gas wells during both transient and boundary-dominated flow 
periods [45]. The proposed model appears to be a modification of Fetkovich et al.’s work, as 
demonstrated in Eq.20 [11]. In their modification, Zhang et al. updated the (a) parameter by 
including the sum of two constants to represent the decline rate, which is shown in Eq.21. 
The proposed model’s mathematical expression is presented in Eq.22.

where βe is a constant to account for the early (fully transient) period, βl is a constant to 
account for the later period, and nE is an empirical exponent, with a recommended range 
of 0–0.7.

It is worth noting that βe should be greater than βl, as recommended, since βe accounts 
for late-time behavior, whereas βl does not affect the fitting of the production data and is 
therefore fixed. The model fitting process results in a smooth curve that encompasses the 
entire flow system [23, 24, 31].

For short-term production data, this approach is the most effective for forecasting in the 
absence of recurring variations [27]. However, one assumption inherited from Fetkovich’s 
model is the constant bottom hole pressure, which is not applicable in shale reservoirs.

Fractional Decline‑Curve (FDC)

The long-tail production behavior, also known as the long-range dependence phenomenon, 
has been extensively studied in geology and is statistically referred to as anomalous diffu-
sion [30]. To predict this anomalous diffusion, fractional diffusion equations are used to 
model this phenomenon, and this concept has been applied to various scientific fields [5, 
6, 25, 26, 46]. Shale gas production decline curves exhibit the same long-tail behavior, and 
Zuo et al. utilized this concept to develop a new approach for matching shale gas well pro-
duction [47]. The proposed model is presented in Eq.23, and its simplified form is shown in 
Eq. 24.

(20)q = qie
−at ,

(21)a = βl + βe,

(22)q = qi · exp
[

−
(

βl + βe · e
−tnE

)

t
]

,

(23)q = m

∞
∑

k=0

(−�tα)k

Ŵ(αk + 1)
,
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where; λ is the eigenvalue, α is a fitting coefficient (dimensionless), and Γ(t) is the gamma 
function.

The gamma function concept has been utilized in other decline curve methods, such 
as the Weng and Weibull methods. These methods are dependent on statistical behavior 
as they are considered probability density functions. They are sensitive to the size and 
range of the data sample used for fitting, making the available production data size criti-
cal before forecasting production using these methods.

Hyperbolic–Exponential Hybrid Decline (HEHD) model

Yadong et  al. suggested a hybrid model that combines hyperbolic and exponential 
decline methods to address the early-time hyperbolic decline and late-time exponential 
decline observed in production data. The hybrid model, shown in Eq. 25 [44], was found 
to provide better fitting accuracy for historical data than the PLE model by 8.1%. This 
model is primarily intended for application to horizontal shale gas wells [12].

where; mHEHD is a time coefficient (dimensionless).

Wang model

Wang et al. developed a new model, which they believed was more general than Duong’s 
model and could estimate estimated ultimate recovery (EUR) for short or long produc-
tion periods. The model, expressed in Eq. 26 [37], is based on the same assumptions as 
Duong’s model and takes into account the time effect on the fracture time exponent.

where; λW is an empirical coefficient (dimensionless).
Plotting Ln(q) versus (Ln t)2 on a Cartesian plot would yield a straight line with the 

slope =—λW, which is later on used to calculate the Gp and EUR. skin effect can also be 
inferred from this plot.

Variable Decline Modified Arps (VDMA) model

Gupta et  al. proposed a modified Arps’s model to account for various flow regimes 
in fractured wells during the early stages of production [12]. They suggested that the 
decline in fracture permeability with time or any linear flow could be modeled using the 
power-law exponential (PLE) approach. Additionally, they approximated the boundary 
dominated flow (BDF) regime to either a constant decline rate or an exponential model. 
The modified model introduced variable exponential decline in Arps’s constant decline 
model, as shown in Eq. 27.

(24)q =
qi

� · Ŵ(1− α)ta
,

(25)q = qi ·
exp(−D∞ · t)

(1+mHEHD · Di · t)

(

1−D∞
Di

)

/mHEHD

,

(26)q = qi · exp
[

−�W (lnt)2
]

,
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where; nVDMA is a decline-rate exponent

Uncertainties related to decline curve studies

There are numerous uncertainties associated with the application of DCA methods, par-
ticularly for shale gas wells, resulting in the creation of various empirical correlations to 
match the decline behavior. Yehia et al. [40–42] summarizes the uncertainties associated 
with DCA into the following sources:

The uncertainties related to determining the parameters

The parameters of each decline curve model play a crucial role in controlling the ini-
tial decline value, the curvature shape, and the declining behavior. However, determin-
ing these parameters can be a challenging task. Several authors have proposed graphical 
methods for this purpose, but these methods can be time-consuming, particularly when 
dealing with a large number of wells. Non-linear regression is the most commonly used 
technique to determine these parameters, but it is also a challenging task.

The size of the historical data

DCA is based on fitting the production history before predicting the EUR. The larger the 
data the more trust we have in the declining trend and the more reliable the prediction 
using a certain DCA model. However, some methods are much more sensitive to the 
data size than others. Table 1 categorized some of these methods.

The flow regime variations through the production life

The behavior of decline is affected by the type of flow regime present in a reservoir. In 
conventional reservoirs, BDF is the dominant flow, while unconventional reservoirs are 
dominated by transient flow, which can last for a significant period before transition-
ing to BDF. Unconventional reservoirs often exhibit bilinear and linear flow regimes. 
The transition from one transient flow regime to another is associated with a significant 
change in decline behavior. Not all methods can consider the various flow regimes, lead-
ing to differences and modifications in their structure. Proposed methods can be classi-
fied based on flow regime characteristics as shown in Table 2. These methods are often 
correlated and can be transformed into each other under specific conditions [24].

(27)q = qi · exp
[

−Di · t
(1−nVDMA)

]

,

Table 1  Decline curve methods’ sensitivities to data size and data quality

Sensitivity to Data Size

Less Sensitive Moderate Sensitive Highly Sensitive

K-Model Arps Weng

Duong MLM Weibull

HEHD T-Model Hsieh

Wang LGM SEPD

FDC EEDCA

VDMA
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Cases study

This study is based on actual data that was released in 2021 on the SPE official web-
site. The data consists of more than forty wells of dry gas in shale gas reservoirs. Three 
wells were selected. The selection was based on choosing wells from different field, 
different reservoirs and different flow regime time. The reservoirs are Haynesville 
Shale (Lorikeet Field), Marcellus Shale (Ostrich Field), and Marcellus-Upper Shale 
(Penguin Field).

Calculation and matching procedure

This is a description of the calculation and matching procedure for each model,

1. A log–log plot of rate versus time is done for each well to know their flow behavior 
and the time at which the flow reached the boundary.
2. All methods were programmed using the visual basic in excel.
3. The matching procedure for each case was performed using a semi-log basis (log 
q vs. t).
4. In each of the data cases, data size was tested using different number of days for 
fitting data (30,90,180,360,500,800, and 1000 days).
5. To determine the best fit for each case, the least squares method was employed, 
which involved minimizing the sum of the squared differences between the actual 
values and the calculated values of the field data.
6. Comparison and analysis is done for all the three cases in order to investigate the 
effect of the data size, the effect of the time at which the flow reaches the boundary 
(early during the first year or late).

Results and discussion

Case 1_Bilinear‑linear‑boundary dominated flow

Well_1 is a dry gas well that is located in US and produces from Haynesville shale with 
an initial rate of 11,900 MSCFD. A log–log plot of rate versus time indicates the pres-
ence of all the difference flow regimes together as shown in Fig.  2. A bilinear quarter 
slope is observed during the early time followed by linear flow regimes of -1/2 slope. 
Also, it’s shown that the fluid reaches the boundary at early time during the first year of 
production.

Table 2  Classifying the empirical DCA methods based on considering the flow behavior or not

Model consider the flow behavior Model do not consider the flow behavior

Hsieh (2001)
PLE (2008)
Duong (2010, 2011)
EEDCA (2015)
FDC (2016)
HEHD (2016)
Wang (2017)
VDMA (2018)

Arps (1945
MLM (1956)
K (1970)
Weng (1984)
Weibull (1995)
SEPD (2010)
LGM (2011)
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A semilog plot of rate versus time was plotted for different data size (30,90,180,360,50
0,800,1000 days) to test the response of the different methods as shown in Fig. 3A to G. 
The arrows on the figures indicates the method that gave the best fitting.

The methods that consider the flow behavior and the methods that neglect the flow 
behavior are analyzed based on the data length, reserves estimation and the time at 
which the flow reaches the boundary as shown in Tables 3 and 4.

Case 2_ Linear‑BDF

Well_2 is a dry gas well that is located in US and produces from Marcellus shale with 
an initial rate of 6,800 MSCFD. A log–log plot of rate versus time indicates the pres-
ence of linear flow followed by a BDF as shown in Fig. 4. A linear flow regime of -1/2 
slope is observed during the first three years of production. Also, it’s shown that the fluid 
reaches the boundary at the end of the third year of production.

A semilog plot of rate versus time was plotted for different data size 
(30,90,360,500,800,1000 days) to test the response of the different methods as shown in 
Fig. 5A to F. The arrows on the figures indicates the method that gave the best fitting.

The methods that consider the flow behavior and the methods that neglect the flow 
behavior are analyzed based on the data length, reserves estimation and the time at 
which the flow reaches the boundary as shown in Tables 5 and 6.

Case 3_ bilinear‑linear flow

Well_3 is a dry gas well that is located in US and produces from Marcellus-Upper shale 
with an initial rate of 9,200 MSCFD. A log–log plot of rate versus time indicates that 
the well still in the transient flow and didn’t reach the boundary as shown in Fig. 6. A 
bilinear flow with quarter slope is observed during the early time followed by linear flow 
regimes of -1/2 slope.

Fig. 2  Identifying the different flow regimes of well_1 based on the slope value on the log–log plots
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Fig. 3  a Fitting 30 Days (Transient Flow) of Data length. b Fitting 90 Days (Transient Flow) of Data length. C 
Fitting 180 Days (Transient Flow) of Data length. D Fitting 360 Days (BDF) of Data length. E Fitting 500 Days 
(BDF) of Data length. F Fitting 1000 Days (BDF) of Data length. G Fitting 1000 Days (BDF) of Data length
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A semilog plot of rate versus time was plotted for different data size 
(30,90,360,500 days) to test the response of the different methods as shown in Fig. 7A to 
D. The arrows on the figures indicates the method that gave the best fitting.

The methods that consider the flow behavior and the methods that neglect the flow 
behavior are analyzed based on the data length, reserves estimation and the time at 
which the flow reaches the boundary as shown in Tables 7 and 8.

Conclusions
This paper provides a review of 14 decline curve analysis (DCA) models that have been 
developed for both conventional and unconventional hydrocarbon wells. Each model 
has its own unique structure and set of assumptions. Based on this review and on the 
cases study, the following conclusions can be drawn:

(1)	 All methods were developed under specific assumptions or conditions; it is not 
possible to utilize a single or general model for all types of reservoirs or decline 
modes. For instance, Duong’s model was developed with the assumption of con-
stant bottom-hole pressure, and LGM was specifically developed for extremely 
tight shale gas unconventional reservoirs.

(2)	 Certain models can be transformed into others under specific assumptions. For 
instance, the MLM model can be transformed into Arps’s hyperbolic model, while 
the SEPD model can be transformed into the PLE model.

(3)	 Although many models account for different flow regimes, particularly for uncon-
ventional reservoirs, this does not necessarily ensure reliable predictions, even 
when the historical data fit well.

Fig. 4  Identifying the different flow regimes of well_2 based on the slope value on the log–log plots
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Fig. 5  A Fitting 30 Days (Transient Flow) of Data length. B Fitting 90 Days (Transient Flow) of Data length. C 
Fitting 360 Days (Transient Flow) of Data length. D Fitting 500 Days (Transient Flow) of Data length. E Fitting 
800 Days (Transient Flow) of Data length. F Fitting 1000 Days (BDF) of Data length

Table 5  Decline curve models of well_2 that do not consider the flow behavior of shale gas for 
prediction performance according to data size

(a) ( +) means that the model tends to be over estimator of the reserve. (-) means that the model tends to be under 
estimator of the reserve. (*) means that the model tends to be good estimator of the reserve

(b) Yellow is recommended methods, blue is not recommended methods, green is transient flow period, pink is BDF
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(4)	 For the case study of the Haynesville shale, when the BDF is reaches at early time 
(at the first year), some methods like Duong and Wang gives a good estimation of 
the reserves from the early time of matching. However, SEPD and Weibull methods 
gives a good estimation of the reserve after 360 days.

Table 6  Decline curve models of well_2 that consider the flow behavior of shale gas for prediction 
performance according to data size

(a) ( +) means that the model tends to be over estimator of the reserve. (-) means that the model tends to be under 
estimator of the reserve. (*) means that the model tends to be good estimator of the reserve

(b) Yellow is recommended methods, blue is not recommended methods, green is transient flow period, pink is BDF

Fig. 6  Identifying the different flow regimes of well_3 based on the slope value on the log–log plots
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(5)	 For the case study of the Marcellus shale, when the BDF is reaches at later time (at 
the end of the third year), most of the methods started to give a good matching for 
the data after 360 days. PLE is the most recommended method for this case. Also, 
Duong and Wang gives a good matching but at late time when the flow started to 
reach the boundary.

(6)	 For the case study of Marcellus-Upper when the flow still in the transient regime. 
Duong, Wang and SEPD methods gives a good matching after 360 days which can 
indicate that the flow is closer to the boundary.

Fig. 7  A Fitting 30 Days (Transient Flow) of Data length. B Fitting 90 Days (Transient Flow) of Data length. C 
Fitting 360 Days (Transient Flow) of Data length. D Fitting 500 Days (Transient Flow) of Data length

Table 7  Decline curve models of well_3 that do not consider the flow behavior of shale gas for 
prediction performance according to data size

(a) ( +) means that the model tends to be over estimator of the reserve. (-) means that the model tends to be under 
estimator of the reserve. (*) means that the model tends to be good estimator of the reserve

(b) Yellow is recommended methods, blue is not recommended methods, green is transient flow period, pink is BDF



Page 20 of 22Coutry et al. Journal of Engineering and Applied Science           (2023) 70:69 

(7)	 From all the three cases it can be concluded that as the boundary is reached at the 
early time as more methods will give a good match and a good reserve estimation. 
Also, as the boundary is reached at late time, in order to have a good reserve esti-
mation, 360 days of data length is needed at least in order to fit the data.

Recommendations
There are several uncertainties associated with DCA, including the fitting process, data size, 
and data quality. To ensure effective DCA, the following recommendations are suggested:

(1) It is highly recommended to use multiple DCA models and compare their fore-
casting reliability. Probabilistic DCA is also recommended to create intervals of con-
fidence rather than a deterministic value of the reserve.
(2) The Ordinary least square (OLS) fitting technique should be used with pessimis-
tic DCA models that underestimate the reserve, as it results in optimistic forecasting. 
Conversely, the weighted least square regression (WLS) fitting technique should be 
used with optimistic DCA models that overestimate the reserve, as it results in pes-
simistic forecasting.
(3) Improving data quality before conducting DCA by removing noise can enhance 
the model’s goodness of fitting and prediction reliability.

Nomenclature
 b Decline-Curve Exponent
D Decline Rate (Day-1)
DiInitial Decline Rate (Day-1)
Gp Gas Cumulative Production (Mscf )
q Gas Flow Rate (Mscf/D)
t Time (day)

Table 8  Decline curve models of well_3 that consider the flow behavior of shale gas for prediction 
performance according to data size

(a) ( +) means that the model tends to be over estimator of the reserve. (-) means that the model tends to be under 
estimator of the reserve. (*) means that the model tends to be good estimator of the reserve

(b) Yellow is recommended methods, blue is not recommended methods, green is transient flow period, pink is BDF
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