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Abstract 

The impact of the COVID pandemic has resulted in many people cultivating a remote 
working culture and increasing building energy use. A reduction in the energy use of 
heating, ventilation, and air‑conditioning (HVAC) systems is necessary for decreasing 
the energy use in buildings. The refrigerant charge of a heat pump greatly affects its 
energy use. However, refrigerant leakage causes a significant increase in the energy 
use of HVAC systems. The development of refrigerant charge fault detection models 
is, therefore, important to prevent unwarranted energy consumption and CO2 emis‑
sions in heat pumps. This paper examines refrigerant charge faults and their effect on 
a variable speed heat pump and the most accurate method between a multiple linear 
regression and multilayer perceptron model to use in detecting the refrigerant charge 
fault using the discharge temperature of the compressor, outdoor entering water tem‑
perature and compressor speed as inputs, and refrigerant charge as the output. The 
COP of the heat pump decreased when it was not operating at the optimum refriger‑
ant charge, while an increase in compressor speed compensated for the degradation 
in the capacity during refrigerant leakage. Furthermore, the multilayer perception was 
found to have a higher prediction accuracy of the refrigerant charge fault with a mean 
square error of ± 3.7%, while the multiple linear regression model had a mean square 
error of ± 4.5%. The study also found that the multilayer perception model requires 7 
neurons in the hidden layer to make viable predictions on any subsequent test sets fed 
into it under similar experimental conditions and parameters of the heat pump used in 
this study.

Keywords: Refrigerant charge amount, Fault detection, Heat pump, Variable speed 
compressor, Energy consumption

Introduction
One of the difficult times the world has been through in the past decade is the era of the 
COVID pandemic. Businesses had to close down, death took a toll on families, schools 
shut down, and economies got shuttered. However, COVID taught the world a beauti-
ful lesson of people working remotely. The culture of working remotely has become the 
new normal for most businesses, giving rise to increased building energy consumption 
through the continuous use of lighting, computers, electronics, and HVAC systems.
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Building energy use is an important subject of discussion since it contributes signifi-
cantly to the world’s energy use and is directly linked to environmental sustainability. 
Therefore, the most recent researches on building energy systems have been dedicated 
to efficient and environmentally friendly technologies [1–3]. Building cooling and heat-
ing systems are at the heart of building energy use, contributing to about 38% of the 
building energy consumption [4].

Compared to a typical air-conditioning system or electrical heater, geothermal heat 
pumps (GSHP) have been found to be an energy-efficient and renewable energy tech-
nology for building, heating, cooling, and hot water generation [5]. However, most heat 
pumps operate with various faults that negatively affect the system performance and 
operation [6]. When detected and diagnosed earlier, the energy lost due to various faults 
in heat pumps can be reduced by about 40% [7]. This has resulted in the development of 
fault detection and diagnosis (FDD) models to spot various faults early, before they dete-
riorate further in heat pumps.

Refrigerant charge faults greatly affect the energy use of heat pumps [8, 9] and cause 
severe  CO2 emissions. Du et al. [10] assessed the impacts of common faults on vapor 
compression cycles and observed that a reduction in the performance of these cycles at 
refrigerant undercharge conditions and refrigerant overcharge greater than 20% of the 
optimal charge. Shamandi and Jazi [11] investigated various faults, including refrigerant 
charge faults, in a fixed orifice vapor compression cycle. Authors found that refrigerant 
overcharge results in higher electric consumption and decreased COP, while refrigerant 
undercharge causes a decrease in compressor power consumption.

Over the years, there has been enormous research efforts to develop algorithms for 
detecting faults in HVAC systems [12–15]. Eom et al. [16] used regression and classifica-
tion models as refrigerant charge FDD models for a heat pump. The regression method 
had a root-mean-square error of about 3% and was found to be the best FDD model. Yoo 
et  al. [17] used heat exchanger mid-point temperature and inlet secondary fluid tem-
perature to develop a refrigerant fault detection methodology for an air-conditioning 
unit and established that the refrigerant charge is sensitive to the temperature differ-
ence in the evaporator. The methodology was able to highly predict refrigerant charges 
below 70% of the optimal value. Zhu et al. [18] examined the use of a gray box model, a 
machine learning model, and their combination to predict refrigerant charge faults in 
a data center air-conditioning unit. The study found the hybrid FDD model to be the 
best in predicting the refrigerant charge fault under a root-mean-error margin of 2.5%. 
Guo et  al. [19] used deep learning to model an FDD algorithm for an air-conditioner. 
The study found that the selection of the number of epochs, hidden layer nodes, learn-
ing rate, and neural network layers greatly affects the prediction rate of the FDD model. 
Chintala et al. [20] predicted faults in an air-conditioner using a Kalman filter approach 
that related electrical properties to thermodynamic properties. The FDD algorithm used 
the residential thermostat and outdoor temperature to predict refrigerant leaks and air 
leaks with a success rate of 87%. Hu and Yuill [21] experimentally investigated the use 
of a virtual sensor in finding refrigerant charge faults existing in multiple simultaneous 
faults in a heat pump. The virtual sensor was able to detect the existence of refrigerant 
faults but could not accurately predict the extent and magnitude of the refrigerant faults 
as part of a combination of multiple simultaneous faults. To develop an efficient FDD 
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model for heat pumps in cold China, Sun et al. [22] employed a Kalman filter gray-based 
model to predict the heat pump parameters and their variance from real data, while a 
statistical process control method was used to reduce the FDD error margin as it devel-
oped dynamic control limits for the heat pump parameters. Liu et  al. [23] used expo-
nentially weighted moving average control charts, principal component analysis, and 
their combinations to predict refrigerant charge fault in an air-conditioner. A combina-
tion of statistical methods was found to efficiently predict the refrigerant charge faults. 
A rule-based FDD method was developed by Guo et al. [24] for an air-conditioner with a 
focus on the indoor and outdoor units. The FDD method used a regression algorithm to 
detect faults in real time. The authors validated the proposed FDD model and achieved 
an overall predicting rate of about 85% in diagnosing faults occurring in the outdoor 
unit, temperature sensors, and the air-conditioning unit. Kim and Lee [25] posited that 
the implementation of existing FDD models is expensive due to the cost of adding new 
sensors to the air-conditioning system. The authors, therefore, developed an FDD model 
using virtual sensors and found that the use of virtual sensors accurately predicts refrig-
erant charge faults within a 10% error margin notwithstanding the operating condition 
or the existence of other faults. Many researchers have also used software-based systems 
to detect faults [26–29]. The softwares are installed in residential facilities to measure 
the power consumption of HVAC systems. A change in the power measurement with 
time raises an alarm of a potential fault in the HVAC system.

Most FDD algorithms use direct measuring sensors [30–32]. In detecting refrigerant 
charge faults, temperature sensors for measuring heat pump parameters have been used 
[33]. However, most of these studies have focused on constant speed heat pump units. 
The few FDD works on variable speed heat pumps in the open literature use rule-based 
FDD models to compare performance trends to that of the baseline [34, 35]. This study, 
therefore, experimentally investigates faults in refrigerant charge, their effects on a vari-
able speed water-to-water heat pump unit, and proposes an FDD model to predict these 
faults. Development of the fault detection model is accomplished using multiple regres-
sion analysis and multilayer perceptron analysis by training the experimental data with 
artificial neural networks in MATLAB.

Methods
Figure  1 provides a representation of the setup built to analyze the refrigerant charge 
fault and its consequences on a variable-speed heat pump unit. The heat pump unit com-
prised of a variable-speed compressor, condenser, expansion device, and evaporator. The 
experiment was done considering summer outdoor conditions using the condenser and 
evaporator as outdoor and indoor heat exchangers, respectively. R410A and brine were 
used as refrigerant and secondary fluid, respectively. The brine was controlled using a 
pump in the evaporator and condenser flow loops. In operating the test rig, the refriger-
ant got compressed, went through the condenser, exchanged heat with the secondary 
fluid, and got expanded by the expansion device into a liquid refrigerant that entered the 
evaporator, absorbed heat from the brine, and entered the compressor as superheated 
refrigerant for a continuation of the cycle.

In performing the experiment, the heat pump’s optimum charge was first obtained at 
standard temperature conditions of 25 ◦C to the condenser and 12 ◦C to the evaporator 
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using ISO 13256–2 [36] and NR GT 101 [37]. Expansion device was used to control the 
experiment to ensure a constant superheat of 7 ◦C . The optimum charge amount was 4700 g 
and was represented as a 100% refrigerant charge ratio (RCR). The RCR is a percentage of 
the charge amount at a particular condition and time to the optimum charge. Afterwards, 
the heat pump’s performance was studied by varying the charge amount from 70 to 120% 
RCR at various compressor speeds and outdoor entering water temperature ( TOD ) of 25 ◦C 
and 35 ◦C as shown in Table 1. A refrigerant charge ratio lower than the optimum value 
is called refrigerant undercharge or regarded as refrigerant leakage, and that higher than 
the optimum value is called refrigerant overcharge. The measurement of the heat pump’s 
performance was done by measuring the heat pump parameters using sensors mounted 
at vantage positions in the experimental setup. Thermocouples of accuracy ± 0.2 ◦C , and 
pressure transducers and refrigerant flowmeter with accuracy ± 0.5%, were used in meas-
uring refrigerant temperature, pressure, and flow rate, respectively, while power meter of 

Fig. 1 Experimental setup of the heat pump
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accuracy ± 0.5% was used to measure compressor power. Resistance temperature detector 
sensors with ± 2% accuracy and flow meter with ± 0.15 ◦C accuracy were used in measur-
ing the brine temperature and flow rate, respectively. The test data were recorded every 3 s 
after steady state on a computer using a Yokogawa MX100 data acquisition device. The heat 
pump’s capacity was calculated using Eq. 1 with density ( ρ ), specific heat capacity ( Cp ), volu-
metric flow rate (LPM), and temperature of brine entering the evaporator (EWT) and tem-
perature of brine leaving the evaporator (LWT), while COP was determined as the capacity 
(Q) divided by the compressor power (W) as indicated in Eq. 2. The Pythagorean uncer-
tainty principle was used to determine the uncertainty of measured parameters as shown in 
Eq. 3 [38]. The capacity and COP had uncertainties of 2.7% and 2.9%, respectively.

Results and discussion
Performance analysis of the heat pump according to refrigerant charge faults

Performance characteristics of heat pumps are affected by the charge quantity, tem-
perature of brine entering the condenser, and in variable-capacity heat pumps, the 
compressor speed. The heat pump’s capacity with respect to charge amount, com-
pressor speed, and TOD are shown in Fig. 2. A 100% RCR corresponds to the optimum 
charge value, RCR lower than 100% represents refrigerant undercharge or leak, while 
RCR higher than 100% represents an overcharge condition. The capacity reduced at 
undercharge states and slightly increased at overcharge conditions. Generally, the 
capacity was higher as RCR increased since the amount of heat transferred between 

(1)Q =
ρ × Cp × LPM × (LWT − EWT )

60, 000

(2)COP =
Q

W

(3)U =

n

i=1

Ui

xi

2

Table 1 Test map

Item Unit Baseline conditions Test conditions

Test mode ‑ Cooling Cooling

Refrigerant type ‑ R410A R410A

Optimum charge g 4700 4700

Refrigerant charge ratio % 100 70, 80, 90, 100, 110, 120

Temperature of brine entering evaporator ◦
C 12 12

Temperature of brine entering condenser ◦
C 25 25, 35

Compressor speed Hz 60 50, 60, 70, 80

Flow rate of brine in condenser LPM 8 8

Flow rate of brine in evaporator LPM 8 8

Expansion device % Adjusted Adjusted
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the refrigerant and the brine in the evaporator increased. This caused a decrease in 
evaporating temperature as the RCR increased as seen in Fig.  3. Capacity is greatly 
affected by the flow rate of the refrigerant and the amount of heat transferred between 
the refrigerant and the brine in the evaporator, which has a direct effect on the 

Fig. 2 Change in capacity according to RCR and compressor speed

Fig. 3 Evaporating temperature with change in RCR and compressor speed
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difference in the temperature of the brine in the evaporator. Flow rate of the refriger-
ant remained fairly the same as the RCR increased as shown in Fig. 4. This is because 
the opening of the expansion device was decreased to ensure a constant superheat. 
However, the difference in the temperature of the brine in the evaporator increased as 
the refrigerant charge amount increased as seen in Fig. 5, as a result of the rise in the 
amount of heat transferred between the brine and refrigerant in the evaporator.

In real systems, the capacity of heat pump units needs to be modulated to meet the 
cooling load of buildings at part load conditions. The use of variable speed compressors 
has been found to be an energy-efficient method for capacity control in heat pumps [39]. 
As presented in Fig. 2, the capacity was higher as the compressor speed increased from 
50 to 60 Hz, 70 Hz, and 80 Hz at all refrigerant charge ratios and OD EWT. While com-
pressor speed increased, evaporating temperature decreased to cause a rise in the rate 
of the R410A. This gave rise to the amount of heat transferred between the brine and 
the R410A in the evaporator, resulting in an increase in the difference in temperature of 
brine across the evaporator and a rise in capacity.

The COP is optimized at 100% RCR. Therefore, any charge amount rather than the 
optimum value will reduce the COP, as shown in Fig. 6, and make the heat pump energy 
intensive. The variation in COP was largely due to the change in the pressure difference 
across the compressor as the refrigerant charge varied. Figure 7 shows that the differ-
ence in pressure across the compressor decreased during undercharge conditions and 
increased during overcharge conditions. This directly affected the compressor power as 
presented in Fig. 8. Thus, the compressor power reduced during refrigerant undercharge 
and increased during refrigerant overcharge. However, the cooling capacity decreased 
during undercharge conditions and slightly decreased during overcharge conditions. 
This decreased the COP since the decreasing rate in cooling capacity was above that of 
the compressor power at undercharge conditions.

Fig. 4 Change in mass flow rate according to RCR and compressor speed
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Furthermore, an increase in the compressor speed decreased the COP. As seen in 
Fig. 9, increasing the compressor speed increased the condensing temperature, while 
the evaporating temperature decreased. This caused a significantly increased temper-
ature lift, which decreased the COP.

Fig. 5 Change in the temperature difference of brine in evaporator according to RCR and compressor speed

Fig. 6 Change in COP with RCR and compressor speed
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The effect of refrigerant leaks on the capacity greatly increased; the percentage leak-
age increased. At the reference compressor speed (60 Hz), the capacity reduced by 4.3%, 
18.4%, and 30.3% as the refrigerant charge ratio decreased from 100 to 90%, 80%, and 
70%, which corresponds to 10%, 20%, and 30% leak, respectively.

During times when variable-capacity heat pumps are not operating at the reference 
capacity or set temperature, the variable speed compressor always cycles to meet the 
set cooling temperature. Thus, when variable speed heat pumps experience refrigerant 

Fig. 7 Change in pressure difference with RCR and compressor speed

Fig. 8 Variation of compressor power according to charge ratio and compressor speed
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charge faults, the compressor speed increases to meet the cooling load. This greatly 
increases the energy consumed by the heat pump and decreases the COP. For instance, 
at 90% and 80% refrigerant charge ratios, the compressor speed increased to 70 Hz and 
80 Hz, respectively, to meet the baseline capacity. However, the COP decreased by 10.2% 
and 20.7% from the reference value at 70% and 80% compressor speeds to match the ref-
erence cooling capacity at 90% and 80% refrigerant undercharge respectively. This shows 
that there is a sharp increase in the energy consumption of variable speed heat pumps 
as refrigerant leak levels increase. It is, therefore, important to model refrigerant charge 
FDD algorithms for variable speed heat pumps to detect refrigerant leakage as early as 
possible to prevent these high-energy consumption levels.

Refrigerant charge FDD model

Refrigerant leakage or overcharge constitutes faults in heat pumps. Refrigerant leak-
age mostly occurs due to wears and tears in heat pump components, while overcharge 
faults are related to human errors during charging. Aside from refrigerant leakage, an 
increase in outdoor temperature conditions also degrades the heat pump’s performance. 
However, the outdoor temperature cannot be controlled in real systems. It is, therefore, 
expedient to consider it when developing a refrigerant FDD algorithm. Furthermore, the 
most recent heat pumps adopt variable speed compressors to meet the required cool-
ing load of buildings due to their energy-efficient nature compared to other heat pump 
capacity control methods. The variable-speed compressor is engaged to produce the 
baseline capacity when the heat pump is operating at off-design conditions. At refrig-
erant undercharge, or increased outdoor temperature conditions, increasing the com-
pressor speed increases the capacity to the baseline value. Therefore, the variable speed 
compressor needs to be considered when developing a refrigerant charge FDD model 

Fig. 9 Variation in condensing temperature according to charge ratio and compressor speed
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for a variable-capacity heat pump. The heat pump’s performance trend with respect to 
the refrigerant charge faults, condenser inlet water temperature ( TOD ), and compres-
sor speed is presented in Table 2. The discharge temperature and pressure of the com-
pressor, subcooling, condensing temperature, change in temperature of brine across 
the condenser and evaporator reduced at undercharge condition, and increased dur-
ing overcharge, while the evaporating temperature increased at refrigerant undercharge 
but reduced during refrigerant overcharge. The evaporating and condensing tempera-
tures, and the discharge pressure and temperature of the compressor, increased as TOD 
increased and decreased as TOD decreased, while the change in temperature of the brine 
across the condenser and evaporator decreased as TOD increased. However, the degree 
of subcooling was insensitive to changes in the TOD . Furthermore, the discharge pressure 
and temperature of the compressor, subcooling, condensing temperature, and change in 
temperature of the brine across the evaporator and condenser decreased as the com-
pressor speed decreased, while the evaporating temperature decreased as the compres-
sor speed increased and increased as the compressor speed decreased.

The discharge temperature of the compressor has been used to predict refrigerant 
charge faults since it is easier and cheaper to measure and is sensitive to the refriger-
ant charge [31]. Subcooling has also been used by researchers in detecting refrigerant 
charge faults because it is insensitive to the outdoor entering water temperature. How-
ever, its measurement in real systems is a bit tedious and costly due to the need for pres-
sure sensors, temperature sensors, and refrigerant property tables. This study, therefore, 
focuses on the use of compressor discharge temperature to predict refrigerant charge 
faults in a heat pump equipped with a variable speed compressor. Figure 10 shows the 
relationship between the discharge temperature of the compressor with respect to 
changes in refrigerant charge, compressor speed, and the temperature of brine entering 
the condenser. The compressor discharge temperature increased as the charge amount 
and TOD increased. Since the compressor discharge temperature is sensitive to the TOD 

Table 2 Parameter trend with variation of refrigerant fault, TOD , and compressor speed

Refrigerant 
undercharge

Refrigerant 
overcharge

Increase 
in TOD

Decrease 
in TOD

Increase in 
compressor 
speed

Decrease in 
compressor 
speed

Evaporating tempera‑
ture

↑ ↓ ↑ ↓ ↓ ↑

Compressor discharge 
pressure

↓ ↑ ↑ ↓ ↑ ↓

Subcooling ↓ ↑ ≈ ≈ ↑ ↓
Compressor discharge 
temperature

↓ ↑ ↑ ↓ ↑ ↓

Condensing tempera‑
ture

↓ ↑ ↑ ↓ ↑ ↓

Change in temperature 
of brine across the 
evaporator

↓ ↑ ↓ ↑ ↑ ↓

Change in temperature 
of brine across the 
condenser

↓ ↑ ↓ ↑ ↑ ↓
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and cannot be controlled in real systems, it is considered in the development of the 
FDD algorithm.

Artificial neural network (ANN)‑based versus regression‑based approaches

Motivation for using ANN

The motivation for settling on a machine learning approach stems from the fact that 
the FDD problem is one that takes a while to diagnose if reliance on just the tradi-
tional linear regression model is the only instantiated solution. Today, with the ubiq-
uity in computational processing power and lower cost in the acquisition of sensors 
and microprocessors, a data-driven paradigm realizable via ANN provides a better 
approach than the static, nonflexible experimental-based approach of basic linear 
regression.

In the deployment of such environments, logging the FDD statistical data, analyzing it, 
and reconfiguring the parameters of the system for optimal performance is also both a 
highly time-consuming and laborious venture, particularly for real-time deployable set-
ups. The data points obtainable through consistent supervision are not commensurate 
with the time invested, so a linear learning model is not appealing. A machine learning 
approach remedies these problems.

Fig. 10 Changes in compressor discharge temperature with RCR, compressor speed, and TOD of a 20 ◦C , b 25 
◦
C , c 30 ◦C , and d 35 ◦C
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Weka‑based analysis (preprocessing and rapid prototyping)

The data was initially preprocessed using the Weka software with a number of models 
tested to get a cursory view of which various machine learning models and regression 
models would be viable. This sped up the stages of data preprocessing and rapid proto-
typing. Two models were eventually decided upon for comparison based on our under-
standing of [16] and [17]. We settled on the traditional linear regression model and the 
multilayered perceptron model.

Linear regression model

The refrigerant charge FDD model for the variable compressor speed heat pump was 
developed using linear regression. The compressor speed ( Cs ), compressor discharge 
temperature ( Tdis ), and outdoor entering water temperature ( TOD) were selected as inde-
pedent variables for the model. The FDD algorithm was modelled to be a second-order 
polynomial as presented in Eq. 4 and is able to predict the charge quantity with a root-
mean-square error of 4.5 as shown in Fig. 11.

Comparison of linear regression model and Weka‑based ANN model

Based on the results of the cross-validation summary  presented in Table 3, it is deduc-
ible that an artificial neural network (ANN) solution would offer a better approach to 
addressing the FDD problem. The preprocessing and rapid prototyping phases were 
done using 96 samples from the experimental data. Weka offers an API extensible via 

(4)
RCR = 137.9 − 2.089Cs + 0.00502Cs

2
+ 2714Tdis − 0.005306Tdis

2
− 6.554TOD

+ 0.06188TOD

2
− 0.004208CsTdis + 0.02397CsTOD − 0.005838TdisTOD

Fig. 11 Prediction of refrigerant charge fault using linear regression model
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Python to implement any final solution on a microprocessor or microcontroller. How-
ever, for better control over the tuning of our parameters, we instead chose to imple-
ment our final solution in MATLAB.

MATLAB‑based analysis

Table 4, referred to as Algorithm 1, captures the simulation steps involved in determin-
ing the optimal number of neurons needed for the hidden layer. Based on the results of 
this rapid prototyping phase, a neural network model was designed in MATLAB [40]. 
Since the dataset used in our simulations is hyper-dimensional, obtaining a 3D plot 
would be difficult. However, a good measure of the performance of the artificial neural 
network (ANN) is possible via RMSE values. The RMSEtrain and RMSEval represent the 
error measure between the true output value ( youtput) and the corresponding predicted 
values from the training set ( ytrain ) and cross-validation set ( yval ), respectively. The 
training set and cross-validation set were generated by using a 70%/30% split on the 
generated dataset. The number of neurons for the hidden layer was therefore selected 
based on the observation of the decrease in the error due to training ( RMSEtrain ) from 
0.08 to 0.03, which afterwards became relatively stable as shown in Fig. 12. However, 

Table 3 Performance comparison of linear regression model and ANN model with Weka

Metric Linear regression Multilayer 
perceptron 
(ANN)

Correlation coefficient 0.96 0.977

Mean absolute error 3.5592 3.0164

Root‑mean‑square error 4.5175% 3.7453%

Relative absolute error 23.5615% 19.968%

Root relative square error 26.2995% 21.804%

Total number of instances 96 96

Table 4 Algorithm 1: ANN simulation algorithm for determining optimal number of neurons for 
hidden layer

1 Xinput, youtput  ← Initialize x matrix and y vector with input and output dataset

2 RMSEtrain, RMSEval  ← Initialize the RMSE vectors for the train set and the cross‑validation set

3 Normalize Xinput, and youtput

4 Set the number of neurons, the total number of experiments

5 For Each experiment e in E

6 For Each selected number of neurons n in N

7 Sizehidden  ← Set the number of neurons in hid‑
den layer to the selected number

8 Split the data set into train, cross‑
validation, and test sets

9 Train ANN to get the predicted value 
based on the training set and cross‑val‑
idation sets ytrain and yval, respectively

10 RMSEtrain  ← Update RMSE vectors using ytrain 
and yval

11 End for

12 End for
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an increase in the cross-validation error ( RMSEval ) from its lowest of 0.06 with an 
increase in the number of hidden layer neurons meant that a problem of overfitting 
would occur if the number of neurons exceeded 7. Hence, the initial Monte Carlo sim-
ulation of 100 iterations arrived at a value of 7 neurons for the hidden layer. This indi-
cates a saturation in the performance of the system, and hence no additional benefit 
from adding more neurons. The insight then is that the ANN requires 7 neurons in the 
hidden layer to make viable predictions on any subsequent test sets fed into it under 
similar experimental conditions and parameters. Therefore, for testing the perfor-
mance of the trained ANN on any test set, one only needs to fix the selected number of 
neurons (n) variable of Algorithm 1 to the optimal number of neurons (7 in this case). 
The experimental parameters used for the simulation are captured in Table. 5.

In terms of deployment of the ANN, it could either work in real time or be deployed 
after pre-training. For this work, the pre-training scenario is assumed due to the 
length of time needed to accumulate and preprocess the data for training. Thus, the 
weights used after deployment could change after periodically retraining the ANN 

Fig. 12 Plot of root‑mean‑square error values against the number of neurons in the hidden layer

Table 5 Simulation parameters

Parameter Value

Input features Tdis , TOD,Cs
Output feature RCR 

Number of neurons 50

Number of Monte Carlo experiments 1000

% dataset for training 70

% dataset for cross‑validation 30
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with more data. This is also one of the reasons why the ANN is preferable to the linear 
regression model as it is more adaptable to changes in data and less prone to problems 
such as under-fitting and over-fitting which could affect a regression-based model.

Conclusions
The performance of a variable-speed heat pump as affected by refrigerant charge faults 
was studied at different outdoor entering water temperatures ( TOD) and the perfor-
mance trends used for the development of a refrigerant charge FDD model. The refrig-
erant charge FDD model was developed using a multiple linear regression model and 
multilayer perception model to ascertain which of the models will accurately predict 
the refrigerant charge fault using the compressor discharge temperature, TOD, and com-
pressor speeds as input data. The following conclusions are drawn from the study:

• The refrigerant charge amount, outdoor entering water temperature, and com-
pressor speed significantly affected the heat pump’s performance.

• An increase in compressor speed was found to compensate for the degradation 
in the capacity during refrigerant leak. However, this resulted in a decrease in the 
COP, leading to higher energy consumption.

• The FDD model using multilayer perception showed higher prediction accuracy 
with a mean square error of ± 3.7%, while the multiple linear regression model 
predicted the refrigerant charge fault with a mean square error of ± 4.5%.

• A Monte Carlo simulation ran showed that the multilayer perceptron model 
requires 7 neurons in the hidden layer to make viable predictions on any subse-
quent test sets fed into it under similar experimental conditions and parameters.

• The FDD models discussed are applicable to the heat pump studied in this work. 
Nonetheless, the approach can be used in future works that would seek to develop 
a generic FDD model for water-to-water heat pumps.
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