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Abstract 

The expanding proliferation of components for engineering applications requires 
greater optimisation of parameters, which consequently increases the need for more 
efficient boring practices. The Taguchi Pareto-Box Behnken design is an effective 
optimisation procedure for the process parametric optimisation of the IS 2062 E250 
steel plates. However, the weakness of the Taguchi method in its inability to distinguish 
which parameters have greater effects on the boring process needs to be further sup-
pressed. Consequently, this study investigates the coupling of the firefly algorithm to 
the Taguchi-Pareto-Box Behnken design method for the processing of the IS 2062 E250 
steel plates during the boring operation. Linear programmes were developed for the 
problem formulation with two variants of the objective function definition. In the first 
variant, the Box Behnken design optimized parameters and the firefly-oriented opti-
misation procedure was addressed to attain optimal solutions. For the second variant, 
a regression equation was substituted as the objective function and the firefly proce-
dure was implemented to obtain the optimal solutions. Based on a defined popula-
tion for the problem, an initial test of convergence was actualized and 50 iterations 
were found as an effective convergence point for the iterations. Numerical simulation 
coupled with experimental data analysis was conducted to ascertain the effectiveness 
of the proposed method. Literature data on IS 2062 E250 steel plate processing on the 
CNC machine was used in the testing. The results revealed that the proposed method 
exhibits good performance for boring operations in machine shops. Using the Taguchi-
Pareto-Box Behnken-firefly algorithm, the obtained results are promising. The applica-
tion of this proposal would aid machining to better decisions that improve the quality 
of products and reduces the cost of production.
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Introduction
Optimization research in boring operations is presently an area of vast interest 
because it aids more efficiency by minimizing boring errors, material and manhour 
losses and costs, leading to profit improvement and the accomplishment in business 
competition [1–3]. Furthermore, the theoretical bases for optimization approaches 
are widespread with applications in several methods such as integrated harmony 
search and grey relational analysis [4], particle swarm optimization [5], Taguchi 
method [6] and differential evolution [7] response surface methodology coupled 
with firefly method [8]. However, of the available optimization methods in this arti-
cle, preference is given to the Taguchi-Pareto and Box Behnken design method, 
which has been proposed in previous research by Abdullahi and Oke [9]. The Tagu-
chi-Pareto method is subscribed to as it aids efficient and reliable processes. Then, 
the Box Behnken design is chosen as it permits the assessment of the influence of 
several boring parameters and the possible interfaces of these parameters on the 
outcomes such as the surface roughness. But the combination of these methods had 
been demonstrated in the literature to handle critical parameters that determine the 
success of the boring operation in overcoming resistance in the machining market 
competitive fight as the operations maintain efficiency [9].

Furthermore, a review of available literature on the further optimisation of process 
parameters while boring the IS 2062 E250 steel plates on CNC machines while an evo-
lutionary algorithm is appended to the Taguchi-Pareto-Box Behnken design method 
reveals poor results when the objective function was formulated from the Box Behnken 
design results and introduced into the genetic algorithm procedure for optimisation 
using the python codes. This may be primarily due to the evolutionary method utilized 
for the optimisation procedure [10]. Thus, the type of evolutionary algorithm used 
may be changed. Interestingly, the substitution of the genetic algorithm with the firefly 
algorithm may enhance the optimisation performance of the surface roughness out-
come and the corresponding process parameters of speed, feed, depth of cut and nose 
radius. The attributes of the firefly algorithm, which entails absorption, randomness 
and attractiveness were deployed to optimize the outcome and the process parameters 
of the IS 2062 E250 steel plates during the boring operation. In the literature on the 
firefly algorithm, these attributes were found to be favourable, yielding optimal results 
for the problems solved.

Furthermore, integrating the firefly algorithm with the emerging method of Tagu-
chi-Pareto-Box Behnken design may be a productive investigation route to enhanc-
ing the performance of both the boring parameters of speed, feed, depth of cut and 
nose radius as well as the surface roughness outcome. Based on this motivation, the 
objective of this study is to introduce a new method called the Taguchi-Pareto-box 
Behnken design-firefly method and test it with experimental data from the literature 
using Patel and Deshpande’s [11] study. This goal was pursued to see if any enhance-
ment could be achieved with the replacement of the genetic algorithm component of 
the integrated method with the firefly algorithm using a previously announced method 
as the benchmark.
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Literature review
General

There is a pressing need to improve manufacturing performance, particularly in grow-
ing and developing economies, so that industrial pollution and material and energy 
usage are reduced. Energy efficiency and product quality have become essential indus-
try criteria [3]. Where optimization of machining process parameters is properly per-
formed, there is the likelihood of significantly reducing industrial pollution, material 
usage and energy consumption in the manufacturing processes, making optimization of 
machining parameters critical for manufacturing industries. On the other hand, opti-
mization of machining parameters is also required for the production of high-quality 
goods at reasonable prices. In this literature review, a summary of the literature is pre-
sented for an understanding of the progress made in the present area of study. This is 
shown in Table 1.

Research gap

In this article, a literature review was presented, which reveals an overview of the stud-
ies conducted by various engineers and scientists on firefly optimization and optimiza-
tion regarding conventional machining systems. Such aspects as the machining types, 
materials and others were treated. Besides, some investigators attempted to optimize 
the boring parameters while machining different materials. Moreover, few investigators 
attempted to study the IS 2062 E250 steel plates such as the evaluation of the perfor-
mance of the material using the Taguchi method by Patel and Deshpande [11]. More 
recently, very few investigators analysed the various optimization schemes in the boring 
of the IS 2062 E250 steel plates. Notwithstanding, very few investigators have attempted 
to use the combined Taguchi method and the Box Behnken design method as frame-
work optimization schemes are deployed for further improvement of the method’s per-
formance. Thus, extremely limited information is available in the machining literature 
associated with the introduction of evolutionary algorithms in the boring process of 
IS 2062 E250 steel plates on the CNC machine. The unique introduction of the firefly 
algorithm to the established optimization scheme of the Taguchi/Taguchi-Pareto-Box 
Behnken design method for the IS 2062 steel plate is the principal novelty of the present 
study. Thus, the firefly algorithm is used as an additional optimizer while focusing on the 
surface roughness improvement and the parameters to be optimized are the speed, feed, 
depth of cut and nose radius in the processing of IS 2062 E250 steel plates for the boring 
operation on the CNC machine.

Furthermore, the firefly algorithm is introduced as an innovative metaheuristic into 
an objective function that accounts for flashing patterns and behaviour of fireflies at 
night. Fireflies produce sparks of light in the air. They are often found in gardens con-
taining flowers. Experiences of people revealed that fireflies have been found in rice 
fields particularly when searching under the light of the moon. The objective function 
is introduced into an already developed amalgamated model of the Taguchi method 
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and Box Behnken Design (BBD) plan for the minimization of surface roughness of 
the IS 2062 E250 steel plates undergoing the boring process [26–28]. An alternative 
computational procedure is set forth such that the regression model replaces the BBD 
plan earlier stated to make the Taguchi method-regression model. In the past years, 
surface roughness has been optimized in the machining process and boring process, 
in particular, using the Taguchi method [11], integrated artificial neural network and 
bat algorithm [28], artificial neural network and fuzzy inference system [27], fuzzy 
analytic hierarchy process and mark or chain WSM, WPM/WASPAS approaches [26]. 
However, a drastic change in the literature on surface roughness in machining took 
place in recent years when researchers introduced the integrated Taguchi-Pareto Box 
Behnken design method. Also, unlike Patel and Deshpande [11] that concentrated on 
the experimental plans of the Taguchi method to improve the surface integrity of the 
mentioned steel, Abdullahi and Oke [10] directed attention to the optimization and 
selection of parameters using the combined Taguchi-Pareto Box Behnken-genetic 
algorithm method. This article introduces the firefly algorithm that leverages the 
flashing characteristics of the fireflies. This utilizes how a firefly flashes another using 
the flashing light to attract mates in courtships and also to establish predators [22, 
29]. This handles the surface roughness behaviour by the introduction of attractive 
constant, absorption coefficient and the cooling factor into the boring operational 
interpretation of the firefly algorithm in the Taguchi-BBD and Taguchi-regression 
model interfaces. Both the BBD and regression models were employed, offering a 
wide solution to the minimization of the surface roughness phenomenon for the bor-
ing operation. The approaches offer a flexible yet effective solution to boring opera-
tors to minimize the surface roughness of IS 2062 E250 steel plates. Eventually, the 
effectiveness of the approaches is established using experimental data derived from 
Patel and Deshpande [11] thus offering understanding for machining stakehold-
ers and practitioners to design and install cost-effective and sustainable machining 
operations.

Methods
This section focuses on the methodology of research introduced to achieve the stated 
objectives earlier mentioned in the article. It also solves the problem formulated 
through a research gap analysis of the present literature on the boring of IS 2062 E250 
steel plates. The analysis of the parameters for the boring operation involving speed, 
feed, depth of cut and nose radius was done in this article while keeping in focus the 
optimisation of the surface integrity of the IS 2062 E250 steel plate through the reduc-
tion of surface roughness of the bored material. To attain a detailed understanding of 
the method, the steps followed to satisfy the objectives and the outcomes of the study 
are elaborated here.
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Procedure for Taguchi‑Pareto‑Box Behnken design‑firefly approach

Step1a Implement step 1a to step 3a in the Procedure for Taguchi-Pareto-Box Behnken Design-TLBO Approach 
of the work of Abdullahi and Oke [30] to establish the objective function, the constraints, population 
size, number of iterations, firefly population based on the chosen population size and computed fitness 
values of fireflies in the population
Take the objective function as
F(x) = 20S + 0.002F + 0.01DC + 0.003NR (1)
And the constraints as 5 ≤ S ≤ 50, 0.001 ≤ f ≤ 0.005, 0.01 ≤ dc ≤ 0.07, and 0.1 ≤ S ≤ 0.005
Also take the population size and number of iterations as 4 and 3, respectively
Furthermore, take an instance of a firefly in the population as [15, 0.004, 0.05, 0.01], there should be four 
of such instances of a firefly in the population as the chosen population size is 4
Lastly assuming the computed fitness value of fireflies in the population are 300.0014, 280.0022, 
503.0450 and 412.7902

Step 1b Compare the first firefly to all other fireflies in the population using the fitness value as the basis of 
comparison for instance, the fitness value of the first firefly in the population is 300.0014 compar-
ing it with the next firefly’s fitness value in the population to minimize the objective function that is 
(minimization problem). Observe that the next firefly fitness value which is 280.0022 is less than the first 
firefly fitness value in the population, with this the first firefly would tend to be attracted to the next or 
second firefly thereby moving toward it the aid of the mathematical function
Xt+1

i = Xti + β0e
−yr2ij X tj − Xti + αtε

t
i  (2)

 where
Xt+1

i  is the new position of a parameter component of a firefly
Xti  is the old or former position
Xtj  is the position a firefly is attracted to
αt is the randomized parameter, which is α0δt 
where α0 is the initial randomness given by (0.01 × U-L), U and L are the upper and lower bounds of a 
factor
δ is the cooling factor, which is taken between 0.95 and 0.97 though generally in application αt ranges 
between 0 and 1
εti  is a random number drawn from normal or other distribution
β0 is called the attractive constant, it controls attractiveness and is usually taken as 1 in most applica-
tion
γ is the absorption coefficient usually taken as 0.01
r2ij  is the distance between the current firefly and the firefly that the current firefly moves towards

Step 1c Assuming the first firefly position in the population is as [15, 0.004, 0.05, 0.01], and the next firefly 
position in the population is [12, 0.0042, 0.03, 0.012] using the above mathematic function for firefly 
movement, we compute a new position for the first firefly in the population by substituting values as 
thus; the term r2ij   is given by
r2ij =

√

(15− 12)2 + (0.004− 0.0042)2 + (0.05− 0.03)2 + 0.01− 0.012
2
= 3.0000

The term β0e
−γ r2ij  is computed as 1× e−0.01×3.000

= 0.9704

The term αtεti  is computed as thus and it should be recomputed as each factor in the new firefly posi-
tion is computed; αtεti = α0δ × rand − 0.5

Take rand = 0.32
0.45× 0.97× 0.32− 0.5 = −0.3603 , with all necessary terms values in the movement function gotten, 
the new firefly position is computed as thus;

Step 1d The first parameter for the new firefly position is
x1 = 15+ 0.9704(12− 15)+ (−0.3603) = 11.7285

Recompute αtεti = α0δ × rand − 0.5 for the next factor in the new firefly position using a different 
random number, take rand = 0.67
αtε

t
i = 0.45× 0.97× 0.67− 0.5 = −0.2075

 Therefore,
x2 = 0.004+ 0.9704(0.0042− 0.004)+ (−0.2075) = −0.2033

Again recompute αtεti = α0δ × rand − 0.5 for the 3rd factor in the new firefly position using a different 
random number, take rand = 0.12
αtε

t
i = 0.45× 0.97× 0.12− 0.5 = −0.44762

 Therefore,
x3 = 0.005+ 0.9704(0.03− 0.05)+ (−0.2075) = −0.1769

 Once more recompute αtεti = α0δ × rand − 0.5   for the 3rd factor in the new firefly position using a 
different random number, take rand = 0.55
αtε

t
i = 0.45× 0.97× 0.55− 0.5 = −0.2599

 Then
x4 = 0.01+ 0.9704(0.012− 0.01)+ (−0.2599) = −0.2479

Therefore, the new firefly position is Xnew = [11.7285, − 0.2033, − 0.1769, − 0.2599]
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Step 2a Check the if new firefly position is within the bounds of the search space of each parameter. If a param-
eter in the new firefly position is less than the lower bound of that particular parameter, then the value 
of the lower bound of that parameter replaces the computed value of that particular parameter in the 
newly computed firefly position and if a parameter in the new firefly position is greater than the upper 
bound of that particular parameter, then the value of the upper bound of that parameter replaces the 
computed value of that particular parameter in the newly computed firefly position
Therefore, applying the boundary check to Xnew gives Xnew = [11.7285, 0.001, 0.01, 0.1]

Step 2b Compute the fitness value of Xnew
F(x) = 20× 11.7285+ 0.002× 0.001+ 0.01× 0.01+ 0.03× 0.1 = 234.5704

Step 3 Perform greedy selection by checking if the new firefly position fitness value is better i.e. lower than the 
fitness value of the first firefly in the population being considered since our objective is minimization, 
if Xnew fitness value i.e. the new firefly position fitness value is less than Xi the current firefly position 
fitness value then Xi is discarded and replaced by Xnew including their fitness values. On the other hand, 
if Xnew fitness value is greater than Xi fitness value, then Xnew and its corresponding fitness value are 
discarded thereby retaining the Xi and its fitness value. This concludes the movement and processes of 
the first firefly toward the more attractive second firefly

Step 4 Next, similarly, the first firefly fitness value is compared to the third (3rd) and 4th firefly fitness value in 
the population and step 1b to step 3 is repeated each time to complete the comparison of the first 
firefly with the rest of the firefly in the population

Step 5 Again the second firefly in the population goes through step 1b to step 3; likewise, the 3rd and the 
4th firefly would go through the same procedure of step 1b to step 3 accordingly to complete the first 
iteration

Step 6 After the first iteration the fitness value of the new population is computed and the procedure from 
step 1b to step 3 is then repeated for the set or fixed numbers of iterations, which is set as 3, so the 
whole firefly algorithm would run 3 times, at the end of each iteration the best firefly fitness value and 
the corresponding firefly position are capture and stored

Step 7 The firefly optimization approach explained above is then coded using the python programming 
language

Extending the TP‑BBD method to the TP‑BBD‑FF method

The details of the TP-BBD method for the optimization of the boring process while 
considering the IS 2062 E250 steel plates on the CNC machine were considered in 
Abdullahi and Oke [9]. As explained in the work, this kind of problem relies on the 
signal-to-noise ratio, which evaluates the desirable values of the signal and the unde-
sirable values of noise. The signal-to-noise ratios are then used to produce higher-
level surface roughness values with few essential runs. Thus, by applying the firefly in 
the integration of the Taguchi-Pareto and Box Behnken design problems, the attrib-
utes of the new method can be discerned from the experimental runs of the IS 2062 
E250 steel plates on the CNC machine. The optimized method is set with the maxi-
mum iterations of 50, a firefly population of 200, initial randomness (alpha) of 1, a 
cooling factor (delta) of 0.97, an attractive constant (beta) of 1 and an absorption 
coefficient (gamma) of 0.01.

The new TP-BBD-FF method is similar to a previously developed method of TP-BBD-
GA, which was discussed in detail in Abdullahi and Oke [10]. The TP-BBD-FF method 
has been validated using literature results from Patel and Deshpande [11]. The contribu-
tion of the present article shows the results of adjustment in the evolutionary algorithm 
from a replacement of the genetic algorithm to the firefly algorithm. Tables 1 and 2 show 
the results of the optimal solutions as the objective function produced depends on the 
Box Behnken design optimized parameters and regression equation optimized param-
eters, respectively.

The experimental plan started with the use of literature data from Patel and Desh-
pande [11] which we analyzed to obtain the optimal parametric setting using the various 
steps in the Taguchi method. We now expanded by using the Box Behnken method to 
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get the optimal solution of the parameters, including spindle speed, feed rate, depth of 
cut and nose radius. But still, we were not satisfied with the results of the Box Behnken 
method. So we further used the basic idea of linear programming to generate the objec-
tive function, which we used in the firefly optimization algorithm. But meanwhile, there 
is another scenario where we used the regression equation during the process of solving 
the problem with the Box Behnken method. We also solved the regression equation that 
was created with the firefly algorithm. In the end, the two scenarios were compared. It 
happened that the solution for the linear programming generated as the objective func-
tion was not as good as the regression equation generated during the process of solving 
using the Box Behnken Design method.

Results and discussion
Simulation results

The starting point of analysis is to set the population size, number of iterations and 
β0 at some values. But population size often describes the number of individuals in 
a population. In the integrated TBB-FF method considered in this work, population 
size directly affects the ability of the firefly algorithm to search for an optimum solu-
tion within the search space. However, the number of iterations is the requirement 
to achieve optimal boring process parameters when the neutral population is chosen 
through random search. Moreover, β0 is the attractive coefficient. Notice that these 
tiny-winged beetles called fireflies produce light (i.e. cold light as it has little or no 
heat generated when the light is flashed). On producing the light flashes, mates are 
attracted to this light generator and the value of the attractiveness is represented by a 
coefficient termed the attractiveness coefficient. So, in the work, the population size 
was set at 200. Although the population size in this implementation does not change 
throughout the program implementation, however, it is known that if convergence is 
not obtained satisfactorily, a resizing of the population size would be embarked upon 
to correct this unsatisfactory result. Next, the number of iterations is set as 50. Also, 
β0, referred to as beta or the attractiveness coefficient, is set at 1. The gamma symbol 
γ is set at 0.01 as it is common in the literature. Then, the α0 is set at 1. This could be 
interpreted from the randomness strength. Also, the delta value is 0.97. However, in 
the literature, the delta value is always set to be any number between 0.95 and 0.97. 
Furthermore, in the firefly algorithm, the goal is to calculate and update values, whose 
calculation platform is laid as two matrices termed solution and F(x), respectively. 
The solution contained values based on the variables considered in the objective func-
tion. In the present instance, consider the objective function given in Eq. (3):

Table 2 Summary of values of variates s, f, doc and nr

Random
values

s (rpm) f (mm/rev) doc (mm) nr (mm) f (s,f,doc,nr)

1st 842 0.084 1.37 0.84 918,547.7

2nd 824 0.784 1.32 0.82 898,911.3

3rd 878 0.084 1.41 0.88 957,820.5

4th 923 0.0692 1.13 0.92 1,006,911

5th 1166 0.0703 1.25 1.17 1,272,002



Page 13 of 23Fasina et al. Journal of Engineering and Applied Science           (2023) 70:47  

where s is the speed, f is the feed rate, doc is the depth of cut and nr is the nose radius.
The coefficients of (s, f, doc, nr) in Eq. (3) is the optimized parameters from the Box 

Behnken part of the research.
Equation (3), which is a linear programming-based objective function, was obtained 

from the optimal parameters of the BBD method. During the implementation of BBD, 
we optimized parameters using the Minitab software (2020). These optimized param-
eters are then used to generate the objective function using the basic principles of 
linear programming whereby we used the optimized parameters as the coefficients of 
each of the decision variables.

Looking closely at Eq. (3), where f(s, f, doc, nr) has four variables which should be 
accounted for in the solution matrix, equivalent to four columns of variables with the 
starting variable beings, the next is f, this is followed by doc and the last variable is 
the nr. However, the values generated under each of these variables will be 200 items. 
But this is tedious for manual computation while the Python programming language 
is then used to do the computation. Besides, for an explanation, a population of 5 is 
used, indicating that there will be five rows of values for each variable under solutions 
and also for the function f(s,f, doc, nr). Now, the first variable, s, is considered. By con-
sidering the experimental data on the cutting parameters with the associated levels 
indicated in Patel and Deshpande [11], the variable, speeds are of interest to us at this 
point. It is observed that there are four levels of speed, notably 800 rpm, 1000 rpm, 
1200  rpm and 1400  rpm, respectively, for levels 1 to 4, it then implies that ran-
dom members should be generated 200 times and values of speed between 800 and 
1200 rpm are predicted. But for the simplicity of computations, we limit this manual 
explanation to the generation of five random speeds between 800rom and 1200rpnm. 
Therefore, to proceed, random numbers are generated through the calculator, in 
reality, codes were written in Python to generate the 200 random numbers needed 
at this time. But in this manual computation, only five random numbers are gener-
ated. Alternatively, a random number table, obtainable using the search word random 
number table from the Google search engine was used. For the table, depending on 
the version used, 13 columns of numbers running into 24 rows for each of the second 
to the thirteenth column was observed. In reading these numbers, the first number 
of the first column is read through to the last number in that column before morning 
to the first number in the second column. Thereafter, the movement continues along 
the column-wise then wisely until the numbers are exhausted, and then, you start 
again in that manner until will the necessary random numbers are exhausted. In this 
instance of obtaining randomly generated speeds, the first random number is 36,518. 
But comparing these numbers running with our range of numbers running from 80 
to 120 rpm, it is outside it as the number must start with “80” and end with a number 
less than “1200”. Next, 46,132 is outside the range and ignored. We move down to the 
fourth number in the first column of the random number table to have 84,180. This 
number can be modified as 842  rpm where the first three distances are recognized. 
But we need four more numbers which are then 8214 rpm from the eighth random 

(3)
Objective_functionZ = 1090.9091∗s+0.06∗f+1.250∗doc+0.6061∗nr(linearprogrammingconcept)
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varieties of 82,448. The third, fourth and fifth random variates are 878 rpm, 923 rpm 
and 1166  rpm obtainable from the random numbers 87,789, 92,320 and 11,666, 
respectively. Remember that you are to generate 200 variates. But only five are used 
for illustration here. Next, we move to generate feed variate in the range 0.06mnm/
rev. Here, we start over again from the first random number in the table. The random 
numbers used are 84,180, 78,435, 82,448, 69,226 and 0.0703 number for the depth 
of cut, represented by “doc”, the range of values from the factor-level table is 1 mm, 
1.24 mm, 1.4 mm and 1.5 mm. The generated random variates are 1.37 mm obtainable 
from the random numbers, approximated to 37 is put in front of 1 to make 1.37 mm 
and 1.25 mm. For the nose radius, the range of values is 0.08 mm and 1.2 mm. The 
random variates generated are 0.084 mm, 0.82 mm, 0.88 mm, 0.92 mm and 1.17 mm.

To apply the firefly algorithm, we have to compare each of the fireflies i.e. function 1 with 
the second function 2. Notice that for the first firefly, the f(s, f, doc, nr) obtained is 918,547.7. 
The second, third, fourth and fifth fireflies have the following values: 898,911.3, 957,820.5, 
1,006,911, and 1,272,002, respectively. Since f1 > f2, 918,547.7 > 898,911.3 notice that the taste 
of the researcher is to minimize the surface roughness.

Notice that f1 = 918,547.7 and f2 = 898,911.3
The task is to minimize when the first firefly is considered at 918,547.7
Since f1 > f2, we move firefly 1 towards 2. But note that the condition for minimiza-

tion is that f1 > f2. Furthermore, notice that firefly 1 means xi while firefly 2 is xj but 
xi = [8420.7841.320.82]while

Now, r2ij is to be calculated as follows:
We have (x1, x2) and (y1, y2), then rij =

√

(

x1 − y1
)2

+
(

x2 − y2
)2

But in this specific case, x1 = 842, x2 = 0.084, x3 = 1.37 and x4 = 0.84. Also y1 = 824, 
y2 = 0.784, y3 = 1.32 and y4 = 0.82. Then, rij is calculated as follows:

rij = 18.01 while r2ij = 324.49 . We substitute this into Eq. (2) but with the interpretation 
of αtεi

t as α0δ (rand − ½)* scale.
By looking through Eq. (2), we now know xi , xj , β0 , andr2ij . Then, we calculate β0e

−γ r2ij 
as we know as 0.01 α0 as 1, β0=1. This is obtained as 1(e−0.01(324.49)) = 0.0390. Fur-
thermore, the term α0δ (rand − ½)* scale is calculated where       δ = 0.97 and a ran-
dom number newly generated is 0.3651 as read from the random number table. But 
concerning scaling, the scaling is the lower bound subtracted from the upper bound. 
However, four different parameters, namely, f, doc and nr, are involved and each 
parameter has its scale. For instance, reading from the experimental data provided 
by Patel and Deshpande [11] in their Table 4 of the article, s has a range of 1400–800, 
which is 600. But then, f has a range of 0.12–0.06, which is 0.06, doc has a range of 
1.5–1, which is 0.5 while nr has a range of 1.2–0.8, which is 0.4. Now, since L for s is 
600, α0 is calculated as 0.01L initially, yielding 0.01 (600) or 6. But α0δ (rand–½)*scale 
gives 6 (0.9) (0.3651 − ½)*600, which means − 471.071. Thus, x1 = 842 + 0.390 
(824-842) – 4.1.071, which gives 1306.051. However, this is outside the 1200 upper 

xj = [8240.841.320.82]

rij =

√

(842− 824)2 + (0.084 − 0.784)2+(1.37− 1.32)2 + (0.84 − 0.82)2
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boundary for s, which means that the value 1306.051 is not valid. Thus, a recomputa-
tion is sought such that it will be within the boundaries of 800 and 1200. To achieve 
this, the random number is changed until this achieved. Once the random number 
has been changed to 0.46132, the term α0δ (rand − ½)* scale gives − 135.07 while x1 
gives 976.38, which is between 800 and 1400. We then move further to calculate x2 
along the following lives. First, the range of f from the Table  4 of Patel and Desh-
pande [11] is 0.06. Then, 0.01L is 0.0006. But α0δ (rand –½)* scale gives 0.0006 (0.97) 
(0.46132 − ½)*0.06 = -1.4E-0.6. But x2  is obtained as 0.084 + 0.039 (0.784—0.084)—
(-1.4E-0.6) = 0.111301. The value obtained for x2 is within the range of 0.06 to 0.12, 
which is acceptable. Furthermore, for doc as a parameter, the range is 0.5 and 0.01L is 
0.005. But α0δ (rand − ½)*scale is (0.005) (0.9) (0.46132 − ½)*0.005 =  − 9.4E − 0.5. The 
value calculated for x3 is 1.37 + 0.039 (1.32–1.37) – (− 9.4E − 0.5) = 1.38144 which is 
within the range of 1 and 1.5. Besides, for nr as a parameter, the range is 0.4 and the 
values are from 0.8 to 1.2. But 0.01L is 0.04. Next, α0δ (rand − ½)* scale is 0.004 (0.97) 
(0.46132 − ½)* 0.4 =  − 6E − 0.5. The value calculated for x4 is 0.84 + 0.039 (0.82–0.84) 
– (− 6E − 05) = 0.83928, which is a number falling in the range of nr of 0.8 to 1.2.

From the foregoing, the values of Xnew is displayed in a matrix as follows:

By substituting the value of Xnew into the objective function, f(Xnew) is obtained as 
(1090.9091 × 976.3686) + (0.06 × 0.111301) + (1.25 × 1.368144) + (0.6061 × 0.83928) 
= 1,065,132. But f (Xnew) = 1,065,132 compared with f = 918,547.7. The new value is 
still higher than f1, and therefore, it will be rejected since minimum value is expected 
for updating. Here, the random number is changed and computation commences. 
After a success at obtaining a lower value for f (Xnew), the first firefly is done with. 
Then, we move to the next firefly. The procedure is followed until the finalized results 
in Table 3 are obtained for all iterations.

Next, the whole procedure above is used in Eq. (4) to obtain the results summarized 
in Table 3.

We then combined the outcome in addition to form the objective function. Equa-
tion  (4) was generated using the Minitab software version 2020 in obtaining those 
optimal parameters we used as the second scenario objective function. The function 
activated in the software is the regression model.

Xnew =
[

976.386 0.111301 1.368144 0.83928
]

.

(4)

Objective_function(regressionequation)Z = − 69.3 + 0.0233 ∗ Speed − 3 ∗ Feed

+ 2.5 ∗ Depth_of _cut + 10.92 ∗ Nose_radius

− 0.000010 ∗ Speed ∗ Speed + 35 ∗ Feed ∗ Feed

− 1.01 ∗ Depth_of _cut ∗ Depth_of _cut

− 7.72 ∗ Nose_radius ∗ Nose_radius

− 0.0000 ∗ Speed ∗ Feed

+ 0.00000 ∗ Speed ∗ Depth_of _cut

− 0.00092 ∗ Speed ∗ Nose_radius

− 0.0 ∗ Feed ∗ Depth_of _cut

− 9.2 ∗ Feed ∗ Nose_radius

+ 0.00 ∗ Depth_of _cut ∗ Nose_radius
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Table 3 Optimal solutions—Box Behnken design optimized parameters

Iteration Optimal solutions

1 [805.1189387573768, 0.12, 1.0638638452004148, 0.07543349743436445]

2 [804.2262996003564, 0.06, 1, 0.07134658940265949]

3 [802.2754678354629, 0.10169228545563641, 1.0615785266576656, 
1.0712213177246597]

4 [800, 0.06, 1, 0]

5 [800, 0.06, 1, 0]

6 [800, 0.06, 1, 0]

7 [800, 0.06, 1, 0]

8 [800, 0.06, 1, 0]

9 [800, 0.06, 1, 0]

10 [800, 0.06, 1, 0]

The best firefly at the end of 10th iteration is 872,728.534
11 [800, 0.06, 1, 0]

12 [800, 0.06, 1, 0]

13 [800, 0.06, 1, 0]

14 [800, 0.06, 1, 0]

15 [800, 0.06, 1, 0]

16 [800, 0.06, 1, 0]

17 [800, 0.06, 1, 0]

18 [800, 0.06, 1, 0]

19 [800, 0.06, 1, 0]

20 [800, 0.06, 1, 0]

The best firefly at the end of 20th iteration is 872,728.534
21 [800, 0.06, 1, 0]

22 [800, 0.06, 1, 0]

23 [800, 0.06, 1, 0]

24 [800, 0.06, 1, 0]

25 [800, 0.06, 1, 0]

26 [800, 0.06, 1, 0]

27 [800, 0.06, 1, 0]

28 [800, 0.06, 1, 0]

29 [800, 0.06, 1, 0]

30 [800, 0.06, 1, 0]

The best firefly at the end of 30th iteration is 872,728.534
31 [800, 0.06, 1, 0]

32 [800, 0.06, 1, 0]

33 [800, 0.06, 1, 0]

34 [800, 0.06, 1, 0]

35 [800, 0.06, 1, 0]

36 [800, 0.06, 1, 0]

37 [800, 0.06, 1, 0]

38 [800, 0.06, 1, 0]

39 [800, 0.06, 1, 0]

40 [800, 0.06, 1, 0]

The best firefly at the end of 40th iteration is 872,728.534
41 [800, 0.06, 1, 0]

42 [800, 0.06, 1, 0]

43 [800, 0.06, 1, 0]

44 [800, 0.06, 1, 0]

45 [800, 0.06, 1, 0]
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Firefly optimization data when the objective function is generated using the Box Behnken 

design optimized parameters

The following are the characteristics of the optimization model and these attributes are 
produced in Table 3 and the pictorial description in Fig. 1.

Maximum iteration = 50
Firefly Population = 200
Initial randomness (alpha) = 1
Cooling factor (delta) = 0.97
Attractive constant (beta) = 1
Absorption coefficient (gamma) = 0.01
The purpose of Table 3 is to summarize the results of the simulation, providing infor-

mation on the performance of each of the parameters of speed, feed, depth of cut and 
nose radius regarding the best and worst parameters. In a viewing activity, optimal val-
ues for each parameter after each iteration are displayed. To enrich our understanding, 
the best firefly after ten iterations are shown to facilitate comparison. For the optimized 
BBD parameters, Table 3 displays the best firefly based on Eq.  (3) and instantly shows 

Table 3 (continued)

Iteration Optimal solutions

46 [800, 0.06, 1, 0]

47 [800, 0.06, 1, 0]

48 [800, 0.06, 1, 0]

49 [800, 0.06, 1, 0]

50 [800, 0.06, 1, 0]

The best firefly at the end of 50th iteration is 872,728.5336000001
Optimal solution [800, 0.06, 1, 0]

Fig. 1 Plot when objective function is generated using optimized bbd parameters
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Table 4 Optimal solutions—regression equation

Iterations Optimal solution

1 [1140.1158331648326, 0.06, 1.2840913289854767, 0.5797149545201336]

2 [1117.222748864728, 0.06, 1.234945703097946, 0.5897388383153699]

3 [1117.222748864728, 0.06, 1.234945703097946, 0.5897388383153699]

4 [1127.8996008001955, 0.06, 1.2635041040436774, 0.5999608499125828]

5 [1127.8996008001955, 0.06, 1.2635041040436774, 0.5999608499125828]

6 [1127.8996008001955, 0.06, 1.2635041040436774, 0.5999608499125828]

7 [1127.8996008001955, 0.06, 1.2635041040436774, 0.5999608499125828]

8 [1127.8996008001955, 0.06, 1.2635041040436774, 0.5999608499125828]

9 [1127.8996008001955, 0.06, 1.2635041040436774, 0.5999608499125828]

10 [1127.8996008001955, 0.06, 1.2635041040436774, 0.5999608499125828]

The best firefly at the end of 50th iteration is − 51.430
11 [1127.8996008001955, 0.06, 1.2635041040436774, 0.5999608499125828]

12 [1127.8996008001955, 0.06, 1.2635041040436774, 0.5999608499125828]

13 [1127.8996008001955, 0.06, 1.2635041040436774, 0.5999608499125828]

14 [1127.8996008001955, 0.06, 1.2635041040436774, 0.5999608499125828]

15 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

16 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

17 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

18 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

19 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

20 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

The best firefly at the end of 20th iteration is − 51.429
21 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

22 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

23 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

24 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

25 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

26 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

27 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

28 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

29 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

30 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

The best firefly at the end of 30th iteration is − 51.429
31 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

32 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

33 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

34 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

35 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

36 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

37 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

38 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

39 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

40 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

The best firefly at the end of 40th iteration is − 51.429
41 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

42 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

43 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

44 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

45 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]
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whether the surface roughness has been improved or not. Viewing each iteration, a 
matrix containing four elements is shown, which shows the results of the speed, feed, 
depth of cut and nose radius. For instance, after iteration 1, the speed parameter was 
805.12 rpm, the feed is 0.12 mm/rev, the depth of cut is 1.06 mm and the nose radius 
is 0.075 mm. Then, the surface roughness, measured as roughness average, Ra is com-
puted by substituting the values of s, f, doc and nr in Eq. (3). The roughness average value 
obtained after the first iteration is 878,314.2. Although this is not shown in Table 3, it is 
stored in a space within the python programming language. However, an improvement 
on this roughness average value is desired in iteration two and subsequent iterations. 
Now, moving to iteration two, the roughness average, Ra, is obtained by substituting the 
value of speed as 804.23 rpm, feed, depth of cut and nose radius as 0.06 mm/rev 1 mm 
and 0.07 mm, respectively (Table 3). By substituting Eq. (3), we obtained 877,342.9 as the 
roughness average. This is the result after iteration two. But we need further computa-
tions to confirm whether there are improvements or not and convergence is shown when 
there is no further improvement in the roughness average value over many iterations. In 
this work, a smaller roughness average indicates an improvement result of the roughness 
average after iterations one and two, which yielded 87,831.2 and 877,342.9, respectively. 
The effectiveness of the firefly algorithm is shown in the further reduction of the rough-
ness average, which indicates the surface roughness at each iteration until it stabilizes. 
Therefore, after the tenth iteration, Ra was obtained as 872,728.534. This remained the 
value of the Ra after the twentieth, thirtieth and fortieth iterations. Furthermore, when 
additional iterations were run, to obtain value after the fiftieth iteration, only a very mar-
ginal decrease of 0.00639999 was observed. But considering the computer resources, 
it is not worthwhile to keep the simulation running with very minimal charges. Thus, 
the simulation was terminated after the fiftieth iteration. Therefore, using the optimized 
BBD parameters, the optimal output obtained (Table 3) is 872,728.533600001. Besides, 
by following the procedure analysed here, which was deployed to understand Table 4 are 
obtained for the optimized procedure when as the objective function.

However, Figs. 1 and 2 show the progress made after every ten iterations for stabil-
ity and convergence. Take Fig.  1 as an instance, when substituting the values of the 
simulated parameters into the objective function (Eq. 3) to obtain the roughness aver-
age, convergence is quickly obtained roughly after the third iteration. This is shown by a 

Table 4 (continued)

Iterations Optimal solution

46 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

47 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

48 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

49 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

50 [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]

The best firefly at the end of 50th iteration is − 51.42868856154767
Optimal solution [1134.0310579393426, 0.06, 1.245121420058297, 0.6065968439671544]
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sharp drop in the objective function value from iteration zero when the simulation has 
not started to iteration three). It then moves on constantly at roughly 872,728.53 until 
termination of the procedure was initiated as a result of perceived waste of computer 
resources if simulation continues beyond this iteration fifty.

Firefly optimization data when regression equation is used as objective function

The following are the characteristics of the optimization model, and these attributes are 
produced in Table 4 and the pictorial description in Fig. 2.

Maximum iteration = 50.
Firefly population = 200.
Initial randomness (alpha) = 1.
Cooling factor (delta) = 0.97.
Attractive constant (beta) = 1.
Absorption coefficient (gamma) = 0.01.
Now, the characteristics of Fig.  2 are different from Fig.  1 as there are multiple 

points shown as stability. Consider Fig. 2 and the changes in the objective function 
value along the Y-axis. Because the simulation produces negative Ra, a decrease is 
shown by a rewards movement of the line. For this Fig. 2, at iterations one to three, 
there seems to be stability but it is short-lived. There is then a sharp drop in value 
between iterations there and four to iteration thirteen. But surprisingly, a further 
reduction in the objective function values was experienced at iteration thirteen which 
remained stable until iteration fifty. Then, the procedure was terminated at iteration 
fifty and the roughness average value, obtained from Table 4 as − 51.428688 is taken 
as the desired.

Fig. 2 Plot when the regression equation is taken as objective function
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Conclusions
In this work, the problem solved concerns the determination of optimal surface rough-
ness of the IS 2062 E250 steel plates during the boring process. The firefly evolutionary 
algorithm-based TP-BBD method used for the boring operation of the IS 2062 E250 
steel plates permits solving optimization problems for surface roughness optimization. 
It was concluded that the use of the TBB-FF method was feasible with the experimental 
data considered; the new development in the present work is the introduction of the 
firefly algorithm into an existing integrated method of the Taguchi method and Box 
Behnken Design method. The method’s validation process reveals that it is feasible 
to achieve modifications comparable to those achieved in a previous work where the 
genetic algorithm replaces the firefly algorithm. This paper contributed to the boring 
optimization literature by providing a robust TBBS-FF method for the optimization of 
boring operations parameters. The method presented exhibits unusual characteristics 
of good efficiency for particular problems. Besides, since the cost of implementation of 
the procedure is often of concern, the proposed method also assures that only a small 
number of iterations are needed to obtain optimal solutions. Precisely, this paper dif-
fers from previous Taguchi-BBD optimization studies by providing a robust TBBD-FF 
to handle efficiency problems while reducing the computational cost of the method. 
This paper also differs by introducing a nonlinear optimization function, with chang-
ing directions each time it is implemented. Furthermore, we discovered that better 
surface roughness was achieved than previously developed methods on the integrated 
Taguchi method-Box Behnken design–Teaching learning-based optimization (TBB–
TLBO) method. Besides, the computational convergence results even exceed the alter-
native TBB–TLBO method because of the nonlinear function embedded in the firefly 
algorithm. Also, the optimal solutions of the TBB-FF algorithm method exceed those 
obtained for the TBB-TLBO method. This particular work was treated as a single objec-
tive function problem where the parameters were related to a single goal of the boring 
process such as the improvement of the surface integrity of the steel plates. However, 
the goal of the boring process may be many, including optimizing the material removal 
process in addition to the surface roughness reduction effort. By looking into the mate-
rial removal process optimization incorporated with the reduction in the surface rough-
ness of the steel plates, multiple objective functions could be introduced as a future 
research aspect. Here, the firefly algorithm component can be edified to solve the mul-
tiple objective function optimization problems. At the end of the day, the machining 
workshop can utilize the optimal parameters obtained from the TBB-FF method to be 
more efficient. The implementation of the optimal solutions from the TBB-FF method 
in the machining ship makes the job easier. Instead of being confronted with several 
sub-optimal solutions, the system can utilize an optimal solution to get the job done 
fast. It also provides a benchmark with which the current performance could be judged. 
The output is also generated at a very high quality. Notwithstanding, the limitation of 
this work is the dependence on published work which limits the flexibility in analysis. 
This could be corrected in a future work that should focus on collecting experimental 
data from the workshop.
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Abbreviations
EMM  Electrochemical micromachining
ECDM  Electrochemical discharge machining
ROC  Radial overcut (ROC)
Ton  Pulse-on time
Toff  Pulse-off time
WT  Wire tension
I  Pulse current
PSO  Particle swarm optimisation
GA-AIS  Genetic Algorithm and Artificial Immune System
VMC  Vertical milling center
MMC  Metal matrix composites
WEDM  Wire electrical discharge machining
NSPSO  Non-dominated particle swarm optimisation
NSFA  Non-dominated sorting firefly algorithm
RSM  Response surface methodology
Ra  Surface roughness
HS  Harmony search
CS  Cutting speed
f  Feed rate
d  Depth of cut
CAPP  Computer-aided process planning
UPC  Unit production cost
NSGA-II  Non-dominated sorting genetic algorithm
Taguchi’s DOE  Taguchi’s design of the experiment
MRR  Material removal rate
ANOVA  Analysis of variance
GFRP  Glass fibre-reinforced polymer
TP-BBD  Taguchi-Pareto-Box Behnken Design
TP-BBD-FF  Taguchi-Pareto-Box Behnken design-firefly
TLBO  Teaching learning-based optimisation

Acknowledgements
Not applicable

Authors’ contributions
EF contributed to the writing of the manuscript; BAS contributed to the writing of the manuscript; YUA conceived, 
analysed and interpreted the data; KAA contributed to the writing of the manuscript; JR contributed to the writing of the 
manuscript; SAO conceived and interpreted the data and also supervised computational experimentation and contrib-
uted to writing the manuscript, and EOO contributed to the writing of the manuscript. The authors read and approved 
the final manuscript.

Funding
No funding was received for the work.

Availability of data and materials
Data for the analysis was extracted from Abdullahi and Oke [9] and Patel and Deshpande’s [11] study, and they are in the 
open-access domain.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 1 March 2023   Accepted: 3 May 2023

References
 1. Dostál, P. (2013). The use of optimization methods in business and public services. In: Zelinka, I., Snášel, V., Abraham, A. 

(eds) Handbook of Optimization. Intelligent Systems Reference Library, vol 38. Springer, Berlin, Heidelberg. https:// doi. 
org/ 10. 1007/ 978-3- 642- 30504-7_ 29

 2. Dutta A, Das A, Joshi SN (2017) Optimum process parameters for efficient and quality thin wall machining using firefly 
algorithm. Int J Additive Subtract Mat Manufact 1:3–22

 3. Kant G, Sangwan KS (2014) Prediction and optimization of machining parameters for minimizing power consumption 
and surface roughness in machining. J Clean Prod 83:151–164

 4. Kumari S, Kumar A, Yadav RK, Vivekananda K (2018) Optimisation of machining parameters using grey relation analysis 
integrated with harmony search for turning of AISI D2 steel. Materials Today: Proceedings 5:12750–12756

https://doi.org/10.1007/978-3-642-30504-7_29
https://doi.org/10.1007/978-3-642-30504-7_29


Page 23 of 23Fasina et al. Journal of Engineering and Applied Science           (2023) 70:47  

 5. Lee YZ, Ponnambalam SG (2012) Optimisation of multipass turning operations using PSO and GA-AIS algorithms. Int J 
Prod Res 50:6499–6518

 6. Nalbant M, Gökkaya H, Sur G (2007) Application of Taguchi method in the optimization of cutting parameters for surface 
roughness in turning. Mater Des 28:1379–1385

 7. Nee CY, Saad MS, Mohd Nor A, Zakaria MZ, Baharudin ME (2018) Optimal process parameters for minimizing the surface 
roughness in CNC lathe machining of Co28Cr6Mo medical alloy using differential evolution. Int J Adv Manufact Technol 
97:1541–1555

 8. Senthilkumar N, Tamizharasan T, Gobikannan S (2014) Application of response surface methodology and firefly algo-
rithm for optimizing multiple responses in turning AISI 1045 steel. Arab J Sci Eng 39:8015–8030

 9. Abdullahi YU, Oke SA (2022) Optimizing the boring parameters on CNC machine using IS 2062 E250 steel plates: Tagu-
chi-Pareto-Box Behnken design and Taguchi-ABC-Box Behnken design perspectives. Engineering Access 8(2):219–241

 10. Abdullahi YU, Oke SA (2022) Optimization and selection of boring process parameters for IS 2062 E250 steel plates using 
hybrid Taguchi-Pareto Box Behnken-genetic algorithm method. Indones J Ind Eng Manag 3(2):131–150

 11. Patel, M., & Deshpande, V. 2014. Application of taguchi approach for optimization roughness for boring operation of E 
250 B0 for standard IS: 2062 on CNC TC 2(2) :2528–2537.

 12. Prasanth, P., Sekar, T., & Sivapragash, M. (2021). Investigations on the effects of nitrogen gas in CNC machining of SS304 
using Taguchi and Firefly Algorithm. Bull  Polish Acad Sci Tech Sci 69(1):e136211. https:// doi. org/ 10. 24425/ bpasts. 2020. 
136211

 13. Singh D, Shukla RS (2016) Optimisation of electrochemical micromachining and electrochemical discharge machining 
process parameters using firefly algorithm. Int J Mechatron Manufact Syst 9:137–159

 14. Hebbar G, D’Mello G, Pai PS (2018) Surface roughness optimization in machining of biodegradable magnesium alloys. 
Materials Today: Proceedings 5:11787–11793

 15. Raja SB, Pramod CVS, Krishna KV, Ragunathan A, Vinesh S (2015) Optimization of electrical discharge machining param-
eters on hardened die steel using Firefly Algorithm. Eng Comput 31:1–9

 16. Majumder A, Das A, Das PK (2018) A standard deviation based firefly algorithm for multi-objective optimization of 
WEDM process during machining of Indian RAFM steel. Neural Comput Appl 29:665–677

 17. Johari NF, Zain AM, Mustaffa NH, Udin A (2017) Machining parameters optimization using hybrid firefly algorithm and 
particle swarm optimization. J Phys Conf Ser 892:012005

 18. Thamizhmanii S, Saparudin S, Hasan S (2007) Analyses of surface roughness by turning process using Taguchi method. J 
Ach Materials Manufact Eng 20:503–506

 19. Rudrapati R, Patil A (2019) Optimization of cutting conditions for surface roughness in VMC 5-Axis. Mater Sci Forum 
969:631–636

 20. Pujara JM, Kothari KD, Gohil AV (2017) Process parameter optimization for MRR and surface roughness during machining 
LM6 aluminum MMC on WEDM. Adv Eng Forum 20:42–50

 21. Liu Z, Li X, Wu D, Qian Z, Feng P, Rong Y (2019) The development of a hybrid firefly algorithm for multi-pass grinding 
process optimization. J Intell Manuf 30:2457–2472

 22. Zubair AF, Mansor MS (2019) Embedding firefly algorithm in optimization of CAPP turning machining parameters for 
cutting tool selections. Comput Ind Eng 135:317–325

 23. Dhandapani K, Vasanthkumar P, Nagarajan S (2014) A meta-heuristic evolutionary algorithm to optimize machining 
parameters in turning AISI 4340 steel. J Adv Eng Res 1:105–113

 24. Palanikumar K, Karunamoorthy L, Karthikeyan R (2006) Assessment of factors influencing surface roughness on the 
machining of glass fiber-reinforced polymer composites. Mater Des 27:862–871

 25. Yang WH, Tarng YS (1998) Design optimization of cutting parameters for turning operations based on the Taguchi 
method. J Mater Process Technol 84(1–3):122–129

 26. Abiola IT, Oke SA (2022) Fuzzy analytic hierarchy process and markov chain-WSM/WPM/WASPAS approaches to solving 
the surface roughness problem in the boring of carbon steel IS 2062 GR E250 plates on CNC. Indones J Indus Eng 
Manag 3(1):47–71

 27. Ighravwe DE, Oke SA (2015) The application of artificial neural network and fuzzy inference system for machine process 
with respect to material removal rate and surface roughness. Kenya J Mech Eng 8(1):9–23

 28. Ighravwe DE, Oke SA (2022) Surface roughness prediction and optimization using novel joints artificial neural network 
and bat algorithm. Int J Integrat Eng 14(4):20–34

 29. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio Inspired Comput 2:78–84
 30. Abdullahi YU, Oke SA (2022) Optimising the machining process of IS 2062 E250 steel plates with the boring opera-

tion using a hybrid Taguchi-Pareto Box Behnken-teaching learning-based algorithm. Indones J Ind Eng Eng Manag 
4(2):49–63

https://doi.org/10.24425/bpasts.2020.136211
https://doi.org/10.24425/bpasts.2020.136211

	A comparison of two hybrid optimization techniques: the Taguchi-BBD-firefly and the Taguchi-regression-firefly methods on the IS 2062-E250 steel plates boring problem
	Abstract 
	Introduction
	Literature review
	General
	Research gap

	Methods
	Procedure for Taguchi-Pareto-Box Behnken design-firefly approach
	Extending the TP-BBD method to the TP-BBD-FF method

	Results and discussion
	Simulation results
	Firefly optimization data when the objective function is generated using the Box Behnken design optimized parameters
	Firefly optimization data when regression equation is used as objective function

	Conclusions
	Acknowledgements
	References


