
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Mahmoud et al.
Journal of Engineering and Applied Science (2023) 70:44
https://doi.org/10.1186/s44147-023-00214-8

Journal of Engineering
and Applied Science

Development of safety method for a 3-DOF
industrial robot based on recurrent neural
network
Khaled H. Mahmoud1* , Abdel‑Nasser Sharkawy2,3 and G. T. Abdel‑Jaber4

Abstract

In this paper, a safety method for a 3‑DOF industrial robot is developed based on
recurrent neural network (RNN). Safety standards for human robot interaction (HRI) are
taken into accounts. The main objective is to detect the undesired collisions on any of
robot links. Since most of industrial robots are not collaborative, the dependence of the
method on torque sensors to detect collisions makes its ability to use very restricted.
Therefore, only the position data of joints are collected to be the data inputs of the
proposed method in order to detect the undesired collisions. These data are aggre‑
gated from KUKA LWR IV robot while no collisions and in another time when applying
collisions. These data are used to train the proposed RNN using Levenberg‑Marquardt
LM algorithm. KUKA robot is configured to act as a 3‑DOF manipulator that moves in
space and under the effect of gravity.

The results show that the modelled and trained RNN is sensitive and efficient in detect‑
ing collisions on each link of robot separately. Studying the resulted error from the
developed model reveals clearly that the method is reliable.

Keywords: Recurrent neural network (RNN), Safety method, 3‑DOF industrial robot,
Training and testing, Comparisons

Introduction
When the human operator interacts with a robot within a work area, the safety proce-
dures are very crucial and become an urgent necessity. Many of industrial robots are not
collaborative. In other words, they do not have torque sensors in their joints whereas all
of them have sensors having capabilities of identifying position and angular velocity of
their joints. So, there is a need to find a method to use data of position and other data of
kinematics of robot to predict its dynamics data, e.g., the external torque.

It is recommended that when designing a HRI system, safety must be taken into
account [1]. To integrate an industrial robot or a robotic system in manufacturing pro-
cesses, there are safety requirements to do so. These requirements are provided by ISO
10218-1 [2], and ISO 10218-2 [3]. Yamada et al. discussed safety when human interacts
with robots work area. They provided limits of pain [4]. Industrial settings pose unique
challenges that can be interesting dimensions for future research.

*Correspondence:
eng.khaledhma@gmail.com

1 Mechatronics Department,
Faculty of Industry and Energy
Technology, New Cairo
Technological University NCTU ,
Cairo, Egypt
2 Mechatronics Engineering,
Mechanical Engineering
Department, Faculty
of Engineering, South Valley
University, Qena 83523, Egypt
3 Mechanical Engineering
Department, College
of Engineering, Fahad Bin Sultan
University, Tabuk 47721, Saudi
Arabia
4 Mechanical Engineering
Department, Faculty
of Engineering, South Valley
University, Qena 83523, Egypt

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-023-00214-8&domain=pdf
http://orcid.org/0000-0002-3631-324X
http://orcid.org/0000-0001-9733-221X

Page 2 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

Because of the competitive nature and economizing issues of industry, safety systems
of industrial robots, based on machine learning, require the robots to be more equipped
in order to be more efficient and accurate. Achieving this goal may lead to over-fitting
that can revoke the main purpose of adaptable systems [5]. This is a notable reason to
search for a method uses the current equipment (its own sensors without redesigning or
fixing additional sensors) of robot enabling it from responding with inputs intelligently.

Based on above, the main objective of this paper is to design an accurate approach to
detect collisions on any of the robotic manipulator links. The intended approach uses
the RNN model that designed and trained to estimate external torques which affect the
robot links, only by using joint position signals as known inputs. These signals can be
commonly identified and aggregated from most of industrial robots.

When analysing the feasibility of applying of the intelligent control in robotics, it can
be concluded that intelligent control enhances quality control and safety in workspace.
Moreover, it helps to reduce energy consumed during operation [6].

Literature review

Many research attempts were tried and conducted to guarantee safety when a human
in an interaction with robots. Some researchers created their safety methods based
on dynamics of robot model. Methodologies for developing the collision detection
approach that followed by researchers were as follows: (1) vision approach or sensing of
kinematic properties (e.g., torque and position sensors), (2) based on robot model, or (3)
data collected from sensors.

Sharkawy et al. [1] designed a NN-based approach to detect collisions by investigating
the joint position and torque of the robot as inputs of the developed method. They pro-
vided a good model performance. Sharkawy et al. [7] proposed a method based on NN
to detect collisions between human and robot. They examined their method on a 2-DOF
manipulator makes its motions in a horizontal plan. Sharkawy and Mostafa proposed
[8] three types of NN architecture to detect collisions on a one-DOF robot. The three
architectures were MLFFNN-1 “multi-layer feedforward neural network having one hid-
den layer”, MLFFNN-2 “having two hidden layers”, CFNN “cascade forward neural net-
work”, and RNN. They used position parameters of joint as inputs of NNs, where the
output of NNs was the measured external torque. Sharkawy and Aspragathos [9] tested a
multilayer feedforward neural network using Levenberg-Marquardt algorithm to detect
the undesired human-robot collisions. They designed their neural network using the fol-
lowing parameters as inputs, the current position error, the previous position error, the
actual velocity, and the measured joint torque of joint. Using the Levenberg Marquardt
algorithm for the training process, Sharkawy et al. [10] designed an NN-based approach
to detect collisions by investigating only the positioning parameters “position and veloc-
ity data which are provided by position sensors” of robot as inputs of model.

Based on fuzzy method, Dimeas et al. [11] built a model to identify collisions affect the
robot links. They compared the model performance with another one which built based
on time series. Their method considered the position error and the torque of joints as
inputs of model. They concluded that the model built based on fuzzy method was more
accurate than that built based on time series.

Page 3 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

Zhang et al. [12] presented a deep learning-based method using the RNN to analyze
the human actions in an assembly setting, and to predict the future trajectory of human
operator motion for online robot action planning and execution. Lasota et al. [13], based
on a phase-space motion capture system and current angle of joints, designed a system
to detect the motions that possibly cause collisions so as to improve the latency of robot
to avoid these collisions.

Based on dynamic model of the robot, Heinzmann and Zelinsky defined the torque
vector space for all joints and consequently the working space which fulfills constraints.
They presented a control scheme of collision force and tested it in simulation and on
a real robot. Their test revealed the feasibility of their control scheme [14]. Mu et al.
[15] introduced an intelligent demolition robot. Based on robot model, they considered
Newton–Euler method to create the dynamic model. They used the modified oriented
bounding box method to predict the real-time collisions.

Kaonain et al. [6] studied the safety of human when interacting with robot works in
home. They designed a model with Gazebo based on ROS to simulate the interaction
between human and robot. They modified the model by integrating physical compo-
nents to improve its ability of detecting and avoiding collisions when interacting with
human.

Yuan et al. [16] proposed a method based on a gated recurrent unit-recurrent neural
network GRU-RNN model to optimize the path planning of a mobile robot. They used
an improved artificial potential field APF and improved ant colony optimization ACO
algorithms to generate the sample sets which are deriving inputs and tags. Inputs was
dimensional distances and one angular dimension. The outputs were velocity and angle
of the mobile robot.

The previous methods, which were based on robot model, apply a control approach
on the dynamic model of the robot. This model becomes much complicated whenever
robots’ DOF and workspace coordinates increase. In order to improve the results of
these methods, some researchers (e.g., [14]) use additional vision equipment. Even when
using of AI methods like ANN, some researchers use additional vision and torque sen-
sors. This results in raising the cost of operation. Moreover, additional equipment may
contribute to restricting generalization and application of their methods.

The main contribution

In this paper, an approach is designed and trained based on a multilayer RNN to detect
human–robot collisions and identify the collided link. A KUKA robot was used to test
this model. KUKA robot used here is a collaborative robot “COBOT”. This robot has
position and torque sensors on all its joints, and only the joints’ positions signals are
used in our current approach. This allow the method to be applied to any industrial
robot. This robot consists of seven joints, and only three of them was identified to act as
a 3-DOF robot.

In the experimental work, a sinusoidal motion is applied on the three joints simultane-
ously under the effect of gravity. The frequencies of this motion are having variable and
constant values. The parameters of the NN model are extracted from the controller of
robot, which is called KUKA robot controller, KRC. The values of current position θi(k) ,
previous position θi(k − 1) , and angular velocity θ̇i(k) of the three joints were aggregated

Page 4 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

and used as inputs of the designed neural network. The corresponding external torques τ
of the three joints are aggregated and used for the training process. The LM algorithm is
used for the training process.

The main aim of our method is the application to any conventional robot. In addition,
this method enables operator from observing the collided link specifically.

Outline of the paper

The next sections (from 2 to 6) show the research methodology. “Methods” section
shows the methods of conducting experiments to collect the data being analyzed. This
includes the dynamics of the 3-DOF robot and why RNN method was selected to detect
collisions exerting on the robot. Also, it shows the design of RNN architecture and how
the model is trained. This section shows the governing equations of the main param-
eters of training model, as well. “Experimental work” section shows the experimental
work which shows how data were collected from KUKA robot and how the RNN was
trained. “Experimental results” section shows the experimental results. “Discussion and
comparison” section shows the discussion of results through conducting a comparison
between our proposed method and other previous methods proposed by other research-
ers. Finally, “Conclusions” section records the conclusions and proposes the future work.

Methods
In this section, the dynamics of the 3-DOF robotic manipulator are presented and dis-
cussed. In addition, the design requirements of the proposed RNN including the inputs
and outputs are illustrated. All of these information are described in “Dynamics of
3-DOF robot” and “RNN design” sections.

Dynamics of 3‑DOF robot

From the basic knowledge of robotics, the robot is coupled mechanically. So, any colli-
sion on any of its links can make effect on others.

The dynamics equation of the robotic manipulator can be given by

where M(θ) is then n × n inertia matrix of the manipulator, V θ , θ̇ is an n × 1 vector of
centrifugal and Coriolis terms, and G(θ) is an n × 1 vector of gravity terms. τ is actuator
torque [17]. Therefore, the dynamics of 3-DOF serial link robot, as Murray et al. men-
tioned [18], can be written as the following:

where τext is the external torque which affecting the actuator on joint. M(θ) and
(
θ , θ̇

)

∈ R
3×3 . G(θ) ∈ R

3.
When applying collision forces on links having great values, Coriolis or inertia forces

can be considered as external forces. As the robot is dynamically coupled, these forces
have obvious detectable effect on inputs of NN (current position, previous position and
current velocity) [1]. It is notable that from anatomy of KUKA robot used in this paper,

(1)τ = M(θ)θ̈ + V
(
θ , θ̇

)
+ G(θ)

(2)τ + τext = M(θ)θ̈ + V
(
θ , θ̇

)
+ G(θ)

Page 5 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

inertial forces of links 2 and 3 do not have appreciable effect on joint 1 because it rotates
in a plane parallel to the ground. Joint 1 axis is perpendicular to the ground.

The KUKA robot is used in the current work has 7-DOF, but it has been configured to
act as a 3-DOF manipulator. Figure 1 shows active joints in the proposed configuration.
These joints are A1, A4, and A6 which represent joints J1, J2, and J3 respectively. Link 2
and link 3 are affected by gravity whereas link 1 is not. The figure shows the joints and
the links in which external forces such as F1, F2, and F3 are applied. These forces affect
the joints as external torques applied on links from many orientation randomly.

There are a wide range of AI approaches can be used to predict the collisions on
manipulator’s links. As mentioned in the literature review, the approaches include fuzzy
logic inference and some types of NN. In fuzzy, defining the linguistic rules for input and
output parameters is difficult. Therefore, in exploring a contradictory between inputs
and logical corresponding outputs, the rule base must be tuned. This is the most promi-
nent challenge when using fuzzy logic-based approach to solve the problem [19]. Other
prominent challenge is the time. Time is an effective parameter in defining the param-
eters of robot joints, e.g., joint velocity. NN is preferable as an intelligent method com-
pared with other methods, e.g., fuzzy logic. So, the ANN is considered very appropriate
to deal with this problem. Using of NN models is more optimistic to achieve higher
accuracy. The NN models included, for example, MLFFNN, CFNN, and GRU-RNN.
The results of using NN types was a good motivation to investigate RNN method in
this paper to detect the collisions on the robot arm. ANN has advantage of dealing with
many various problems. In our current work, RNN is considered due to many properties
compared with other types of NNs, as follows:

1. RNNs are designed to deal with data having time series or data that in sequence.
2. One of properties of RNNs is universal approximation [20]. It can make a well

approximation for non-linear dynamic systems, having random precision and irreg-
ular working conditions, by achieving a well-constructed mapping from input to

Fig. 1 Configuration of KUKA robot as 3‑DOF manipulator

Page 6 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

output sequences [21]. The robotic system is a non-linear dynamic system and the
random collisions on the robot arm make it working irregularly. In addition, its pre-
cision goes random. So RNN is suitable for this system.

3. As Zhao X et al. [22] and Schydlo P et al. [23] presented, when HRI takes place, use
of trained RNN becomes the preferable choice and the widely used.

When comparing RNN with ordinary feed-forward NN, it can be noted that ordinary
feed-forward NN are just able to deal with data points, which are independent of each
other. Traditional feed-forward networks are not appropriate to be used when it is con-
cerned with time series data or with sequential data. Some have argued that since time
series data may have autocorrelation or time dependence, the recurrent neural network
models which take advantage of time dependence may be useful. Recurrent neural net-
works “RNNs” are a type of neural networks having a dynamic structure can retain the
last data and predict next, or future, output values [24]. Comparing with feedforward
networks, the size of RNN is significantly compact when demand the same approxima-
tion accuracy of dynamic systems. RNN can be used as associative memories to build
attractors from input-output association [25]. The dynamic structure means that the NN
model follows completely (or partially) differential equations. It may also follow alge-
braic equations. Whereas, static NN models follow only algebraic equations [26].

RNN design

The RNNs principle is to preserve the outputs of certain hidden layer and feed them
back to the input layer to estimate/predict the desired output of system. The main cri-
teria followed for the design of the proposed RNN is achieving the high performance
which is obtaining the lowest/smallest MSE and training error.

RNNs are based on the Hopfield networks with containing feedback paths. Figure 2
shows the proposed model architecture which is a multilayer fully connected RNN with
feedback delay (z-1). The network contains three layers: the input layer, the hidden layer,
and the output layer. The input layer includes the inputs which are nine inputs: current
position θi(k) , previous position θi(k − 1) , and angular velocity θ̇i(k)) occur at time (kT)
where the target “output” is external torque which is predicted at time (k + 1)T. The
hidden layer is a non-linear layer and its activation function is the hyperbolic tangent
(tanh). The output layer estimates the external torques of the joints of the 3-DOF robot.
Figure 3 shows the flow of signals during training the proposed RNN model. The model
is training using LM algorithm. T is the toque observed by KRC and qd is the desired
position (joint angle).

A discrete-time RNN follows a set of non-linear discrete time recurrent equations.
Through the composition of the neuron’s functions and the time delays [27]. The equa-
tion of a discrete time RNN dynamical system of the state variable h(k) (the state at time
k) is the following:

where J and B are weight matrices and b is the bias vector. g is a non-linear function,
which is the “tanh” function. k represents the time index [28].

So, the network can be represented in matrix form by:

(3)h(k + 1) = g(Jh(k)+ Bx(k)+ b)

Page 7 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

where Wji is a weight matrix, b is the bias vector having a weight unity, and g is activation
function, tan-sigmoid “tanh(yj)”:

(4)τ (k + 1)T = g(Wjiyj(kT)+ b)

Fig. 2 The proposed multilayer RNN coupling the joints

Fig. 3 Block diagram of training of the proposed RNN model

Page 8 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

It is not practical to determine the optimal setting for the learning rate before training,
and, in fact, the optimal learning rate changes during the training process, as the algo-
rithm moves across the performance surface.

LM algorithm is a type of the second-order optimization techniques that have a strong
theoretical basis and provide significantly fast convergence, and it is considered as an
approximation to Newton’s method. According to LM algorithm the optimum adjusted
weight can be updated as follows:

where H is Hessian of the second order function and g is the gradient vector of the sec-
ond order function. I is the identity matrix of the same dimensions as H and λ [25].

Error of training e(t) can be estimated by the following [11]:

where τext is the external torque obtained by KUKA controller, and τ̂ext is the external
estimated torque by the used recurrent neural network. Therefore, the error of training
on each joint can be determined by:

Experimental work
In this section, the executed experiments with KUKA LWR robot are presented in which
the data are collected for training the proposed RNN. In addition, the training process is
discussed.

Data collection and RNN training

Training the neural network means analyzing its parameters to accomplish accurately
the task that neural network assigned to. So, the training strategies of NN can be classi-
fied as: supervised training and unsupervised training [26].

a- Supervised training: training occurs by supplying the neural network with a range
of input data and their desired corresponding outputs. While training, the weights
are continuously adjusted to reach the minimum error value between the actual and
desired targets.

b- Unsupervised learning: sometimes called “open-loop adapting” because there is no
feedback information helping the network to update its parameters.

The strategy that followed in training the proposed RNN is the supervised training
strategy.

(5)tanh
(
y
)
=

ey − e−y

ey + e−y

(6)�wij = [H + �I]−1g

(7)e(t) = τext − τ̂ext

(8)
e1(t) = τ1ext − τ̂1ext ,
e2(t) = τ2ext − τ̂2ext , and
e3(t) = τ3ext − τ̂3ext

Page 9 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

The data of training, positioning data as inputs and external torques as outputs, were
aggregated from the 3-DOF robot during two situations: while no collisions and while
exerting collisions. First of them is the robot’s motion is happened without applying col-
lisions on its links. In the other experiments, the robot’s motion is happened with apply-
ing number of random collisions on each link. The data collected from both situations
were combined and prepared to be used for training the RNN model. The number of
inputs of data combined is 70775 inputs.

As mentioned, the main aim a trained method can detect collisions on each link using
only three parameters as inputs: current position, previous position, and angular veloc-
ity. MATLAB is used for the training and testing processes of the designed RNN model.

Many trials were attempted to obtain an optimal possible trained model. The trials use
20, 40, 60, and 80 neurons in the hidden layer. The best number of hidden neurons is 80
which give the high performance of the RNN. The training performance is examined by
estimating the mean square error of training set and the linear regression. This is dis-
cussed in the following subsections.

The mean square error (MSE)

The mean square error on the training set (TMSE) is given by the following equation:

where NT is the number of observations present in the training set. yk expresses the
measurements of the quantity to be modeled “yk” and g(xk,w) is the output value of the
model with weights vector “w” for the vector of variables xk [26].

About 200 h are spent for the training process and 1000 epochs “iterations” are used
and tried to create this trained model. It is known that training neural networks by a
fixed learning rate would lead to achieve better performance using MSE approach [29].
Therefore, the learning rate used to train the NN model was 0.01.

As seen in Fig. 4, the best performance “lowest MSE” was observed at value 0.03173.
This value is very small and close to zero which means that the designed RNN is trained
very well. Figure 5 shows the MSEs resulted from trials conducted to train a model using
number of hidden neurons.

Linear regression

Linear regression analysis is the commonly standard approach to test the performance
of a model in approximation applications. Let Yp is an affine function of variables which
have been selected in an earlier step, so Yp = ζTwp + B, where ζ is the vector of the vari-
ables of the model, having known dimension q, wp is the vector of the parameters of the
model, and B is a random vector which has expectation value equals zero. From this, the
regression function is linear respecting to the model variables. Therefore, the regression
function for a model can be determined by [26]:

(9)TMSE =

√
1

NT

∑NT

k=1
[yk − g

(
xk ,w

)
]
2

(10)E(Yp) = ζTwp

Page 10 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

Here, the neural network estimated outputs and the corresponding data set targets’
outputs for the testing epochs (or instances) are plotted. Figure 6 shows the regression of
the trained model. The value of regression is 0.96796 which is very close to value of one.
This means that training occurred sufficiently. In addition, the convergence/approxima-
tion between the estimated outputs by the trained RNN and the targets is very good.

Experimental results

After the proposed RNN is completely trained, two cases are presented as follows: the
first case is that the trained RNN is tested and verified using the data without collisions
and the collision threshold is determined. The second case is testing and verified the
trained RNN using data with collisions and based on the determined collision threshold.
This is followed to show the effectiveness of the method to detect the collisions correctly
and efficiently. The following subsection presents that in detail.

Fig. 4 The lowest MSE for training of RNN of the coupling joints

Fig. 5 Number of hidden neurons which have been used for training and their corresponding MSE

Page 11 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

RNN testing and verification

Investigating the trained NN for the data without collision

The collected data without collision are used to investigate the trained RNN. The
input data (current position, previous position, and current velocity) are used by the
trained RNN to estimate the external torque of each joint. These estimated torques
are compared by the given external torques by KRC, as shown in Fig. 7. The main
purpose of this test is to determine the maximum of absolute error values for the
joints which consequently determine the collision/torque threshold, as discussed in
ref. [1, 9, 10]. The torque threshold is the torque value that is used to determine the
true collision. The intended error is revealed by observing the difference between the
desired external torque and the estimated one by trained RNN. This error was plotted
as shown in Fig. 8. From which, the torque thresholds are estimated as follows:

• The torque threshold for joint 1, Thr1 = maximum absolute error + average abso-
lute error, of joint 1.

• The torque threshold for joint 2, Thr2 = maximum absolute error, of joint 2.
• The torque threshold for joint 3, Thr3 = maximum absolute error, of joint 3.

The values of Thr1, Thr2, and Thr3 that resulted from training are 1.3 Nm,
1.2931 Nm, and 0.6394 Nm respectively. The average absolute error between the two
external torques on joints J1, J2, and J3 are 0.084 Nm, 0.12 Nm, and 0.067 Nm.

Fig. 6 The resulted regression of trained RNN model

Page 12 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

The error histogram for the trained model is shown in Fig. 9. It shows obviously
that error observed, between real measured torques and those estimated by the RNN
model, for most of instances is low and close to zero.

Fig. 7 The three external torques detected on each joint compared to the estimated torques by the RNN, in
case of there is no collision

Fig. 8 The error between the detected external torque and the estimated one by trained RNN in case of
there is no collision

Page 13 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

Investigating the trained NN for data with collision

Data collected during the sinusoidal motion of the robot in case of there are collisions,
are tested using the RNN model. Figure 10 shows a comparison between external

Fig. 9 The error histogram for the trained model, in case of there is no collision

Fig. 10 The external torques detected by NN and KRC, in case of there are collisions

Page 14 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

torque values estimated by the RNN and those measured by KRC. It can be observed
that the RNN model almost predicted how external torque behaves sufficiently.

The robot is dynamically coupled. Therefore, the link affected by collisions can be
identified according to the following rule:

▪ If τ̂ext1 > Thr1, τ̂ext2> Thr2, and τ̂ext3 > Thr3, then link 3 “end-effector” is the collided
link.
▪ If τ̂ext1 > Thr1 and τ̂ext2> Thr2, then link 2 is the collided link.
▪ If τ̂ext1 > Thr1 only, then link 1 is the collided link.

As presented from the error histogram in Fig. 11, it can be detected that the num-
ber of instances close to zero are slightly lower than those in case of no collisions. But
still obviously most of instances are close to zero. Figure 12 shows the error between
the external torques in case of the applied collisions to the robot links. The resulted
average absolute error on joints J1, J2, and J3 were 0.1 Nm, and 0.14, and 0.067 Nm
respectively. The resulted error is low and satisfactory which means that the RNN is
trained well and efficient in estimate the external torque or collision in a correct way.

Discussion and comparison
The main aim in developing a method for the robot collision detection is to minimize
and reduce the errors or the faults that can result by this method. This section discuss
the results through a comparison study to check the effectiveness of our proposed
method. This study included methods proposed in references [1, 7–11, 16, 30]. The
research work in these references is very related to our proposed work.

The comparison starts by investigating the model design and implementation. This
step is identifying inputs and outputs of the model; and the algorithm used to imple-
ment this model. Table 1 shows a comparison that clarifies this step. This comparison
shows that our current proposed method and the previous study in [10] as well, are

Fig. 11 The error histogram for the trained model, in case of collisions

Page 15 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

Fig. 12 The error between the detected external torque and the estimated one by trained RNN, when there
are applied collisions

Table 1 Comparison among proposed methods according to inputs, outputs, and used algorithm

Algorithm Inputs Outputs Application

MLFFNN using LM algorithm–
3‑DOF robot [1],

Positioning and torque param‑
eters

External toque Collaborative robots

2‑DOF robot

 MLFFNN using LM algo‑
rithm, [7]

Positioning and torque param‑
eters

External toque Collaborative robots

 MLFFNN using LM algo‑
rithm, [10]

Positioning parameters only External toque Any conventional robot

1‑DOF robot

 MLFFNN‑1 using LM algo‑
rithm, [8]

Positioning and torque param‑
eters

External toque Collaborative robots

 MLFFNN‑2 using LM algo‑
rithm, [8]

Positioning parameters only External toque Any conventional robot

 CFNN using LM algorithm,
[8]

 RNN using LM algorithm, [8]

 MLFFNN using LM algo‑
rithm, [9]

Positioning and torque param‑
eters

External toque Collaborative robots

 Fuzzy using LM algorithm,
[11]

Positioning and torque param‑
eters

External toque Collaborative robots

GRU‑RNN using APF and ACO
algorithms, [16]

Dimensional distances and
one angle

velocity and angle Any conventional mobile
robot

NARXNN‑1‑DOF, [30] Positioning parameters only External toque Any conventional robot

Our proposed method, RNN‑
3‑DOF robot

Positioning parameters only External toque Any conventional robot

Page 16 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

applicable for any industrial or conventional robot because it does not need to torque
sensors on the robot joints.

Number of hidden neurons, hidden layers, and the algorithm of training, are impor-
tant parameters affect the training time and the resulted MSE. The comparison between
these factors is presented in Table 2. Sharkawy et al. [7] reported that the lowest MSE
of them trials was at 120 hidden neurons without mention of the MSE value. They also
reported that the average absolute error when collision is higher than when no collision.
As presented from Table 2 and Fig. 12, it is clear that our method uses less number of
neurons to achieve the lowest MSE.

Next step, comparing the error resulted of each method in case of no collisions is pre-
sented. At this step, the average absolute error of each method is shown in Fig. 13. It is
clearly found that the average absolute error of our proposed model is satisfied and com-
petitive. It is notable that methods used in references [9, 10] were applied with one and
two DOF manipulators, respectively.

The last step is to test the model when there are collisions. As shown from Fig. 14, the
authors in reference [1] reported that the errors on all joints were varied from 0.8 to
1.6 Nm. Whereas, in other references [9–11], authors reported that detected errors were
high. The presented figure shows obviously that our proposed method resulted very
small errors (from 0.06 to 0.14 Nm) (Fig. 15).

Conclusions
This work proposes a method to detect collisions between human and robot in work-
ing area. A multi-layer RNN model is built and trained using data collected during a
sinusoidal motion with a KUKA LWR IV robot. The function of this model is to esti-
mate the external torques exerting the model links and identify the collided link. The
position data are collected by KRC and used as inputs to train the RNN model to pre-
dict the external torques or the collisions. The data used for training are aggregated

Table 2 Comparison among proposed methods according to Number of hidden neurons, number
of hidden layers, and MSE

Proposal Number of hidden neurons Number of hidden
layers

MSE

MLFFNN–3DOF robot, [1] 150 1 0.034

2‑DOF robot

 MLFFNN, [7] 120 1 –

 MLFFNN‑2DOF, [10] 120 2 0.036

With 1‑DOF robot

 MLFFNN‑1, [8] 90 1 0.041

 MLFFNN‑2, [8] 70 (35 neuron for both hidden layer) 2 0.217

 CFNN, [8] 35 1 0.392

 RNN, [8] 20 1 0.431

 MLFFNN, [9] 90 1 0.04

GRU‑RNN–Mobile robot, [16] 1st hidden layer: 40 GRU. 2nd hidden layer:
30 neurons

2 0.067

NARXNN‑ 1‑DOF, [30] 25 3 0.34353

Our proposed method 80 1 0.031

Page 17 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

from robot during two experiments: one without any performed collision, and the
other one with exerting random collisions. The robot used to conduct training and
testing is the 7-DOF KUKA robot and it was configured to act as a 3-DOF robot.
The dynamic coupling between the robot joints helps to identify the collided link. The
torque threshold of each joint is the main result of the training process of the RNN
and based on this threshold the collision is detected.

The results show that the trained model can perfectly predict the external torque
behaviour. The resulted torque threshold enables the model from detecting collisions
accurately. Moreover, the collided links are identified accurately. It is notable that the
average absolute error of external torques on the three joints are ranged from 0.067

Fig. 13 Number of hidden Neurons used for each method and their corresponding MSE

Fig. 14 Comparing the average absolute error, in case of no collisions, between our proposed method and
other previous published methods

Page 18 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

to 0.12 Nm, in case of there is no collision, and from 0.067 to 0.14 Nm while applying
random collisions. From which, it can be concluded that the model is reliable. Both
error ranges (in case of collision and in case of NO collision) are very close from each
other. In other words, the model behaves almost the same performance when colli-
sion and when no collision.

As this research revealed, the use of one hidden layer and 80 hidden neurons to
train an NN model produced good performance. So, it is predicted that use of more
than 80 neurons can result better performance. Also, use of multi-hidden layer can
be investigated to achieve more realistic trained model. After making this future
improvement, the ability of generalization of the NN model outside of the training
ranges will be checked.

The time spent by the model to response collisions needs further study to find a
method in order to reduce this time.

In future work, different NNs types, especially LSTM, can be investigated and com-
pared with our current approach. In addition, deep learning can be considered. Appli-
cation of the current method to 7-DOF robot will be also taken into accounts.

Abbreviations
RNN Recurrent neural network
DOF Degrees of freedom
HRI Human‑robot interaction
KUKA LWR Kuka robot light weight
COBOT Collaborative robot
LM algorithm Levenberg‑Marquardt algorithm
MLFFNN Multi‑layer feed forward neural network
CFNN Cascade forward neural network
ROS Robot operating system
GRU‑RNN Gated recurrent unit‑recurrent neural network
APF Artificial potential field
ACO Ant colony optimization
NARXNN Non‑linear auto‑regressive network with exogenous inputs neural network
LSTM Long short term memory

Fig. 15 Comparison of average absolute error, in case of collisions, between our proposed method and
other previous published methods

Page 19 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

Acknowledgements
Thanks a lot for Dr. Hatem Yousry, Akhbar El Youm Academy, Giza, Egypt, for his valued and appreciated guidance when
preparing this paper.

Authors’ contributions
Data handling, analysing, investigation, and preparation and writing the draft of manuscript were done by KH [first
author]. Conceptualization, required resources, visualization, supervision, and editing‑review were done by AS [second
author]. GT [third author] supervised the whole work of this paper. All authors contributed in building and revising this
manuscript. So all authors read and approved the final manuscript.

Funding
Authors declare that the manuscript did not receive any financial support.

Availability of data and materials
The datasets generated during and/or analyzed during the current study are available from the corresponding author on
reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 5 November 2022 Accepted: 3 May 2023

References
 1. Sharkawy A‑N, Koustoumpardis PN, Aspragathos N (2020) Human–robot collisions detection for safe human–robot

interaction using one multi‑input–output neural network. Soft Comput 24(9):6687–6719
 2. ISO (2011) Robots and robotic devices—safety requirements for industrial robots—part 1: robots, 10218–1
 3. ISO (2011) Robots and robotic devices—safety requirements for industrial robots—part 2: robot systems and

integration
 4. Yamada Y, Hirasawa Y, Huang S, Umetani Y, Suita K (1997) Human‑robot contact in the safeguarding space. IEEE/

ASME Trans Mechatron 2(4):230–236
 5. Mukherjee D, Gupta K, Chang LH, Najjaran H (2022) A survey of robot learning strategies for human‑robot collabora‑

tion in industrial settings. Robot Comput Integr Manuf 73:102231
 6. Kaonain TE, Rahman MAA, Ariff MHM, Yahya WJ, Mondal K (2021) Collaborative robot safety for human‑robot

interaction in domestic simulated environments. In: The 6th International Conference on Industrial, Mechanical,
Electrical and Chemical Engineering ‑ ICIMECE 2020, Solo, Indonesia

 7. Sharkawy A‑N, Koustoumpardis PN, Aspragathos NA (2019) Manipulator collision detection and collided link identi‑
fication based on neural networks. pp 3–12

 8. Sharkawy A‑N, Mostfa AA (2021) Neural networks’ design and training for safe human‑robot cooperation. J King
Saud Univ Eng Sci 34(8):582–596

 9. Sharkawy A‑N, Aspragathos N (2018) Human‑robot collision detection based on neural networks. Int J Mech Eng
Robot Res 7(2):150–157

 10. Sharkawy A‑N, Koustoumpardis PN, Aspragathos N (2020) Neural network design for manipulator collision detec‑
tion based only on the joint position sensors. Robotica 38(10):1737–1755

 11. Dimeas F, Avenda L, Nasiopoulou E, Aspragathos N (2013) Robot collision detection based on fuzzy identification
and time series modelling. pp 42–48

 12. Zhang J, Liu H, Chang Q, Wang L, Gao RX (2020) Recurrent neural network for motion trajectory prediction in
human‑robot collaborative assembly. CIRP Ann 69(1):9–12

 13. Lasota PA, Rossano GF, Shah JA (2014) Toward safe close‑proximity human‑robot interaction with standard industrial
robots. pp 339–344

 14. Heinzmann J, Zelinsky A (2003) Quantitative safety guarantees for physical human‑robot interaction. Int J Robot Res
22(7–8):479–504

 15. Mu Z, Liu L, Jia L, Zhang L, Ding N, Wang C (2022) Intelligent demolition robot: Structural statics, collision detection,
and dynamic control. Autom Constr 142:104490

 16. Yuan J, Wang H, Lin C, Liu D, Yu D (2019) A novel GRU‑RNN network model for dynamic path planning of mobile
robot. IEEE Access 7:15140–15151

 17. Craig JJ (2005) Introduction to robotics: mechanics and control. Pearson Education, Inc, USA
 18. Murray RM, Li Z, Sastry SS (2017) A mathematical introduction to robotic manipulation. CRC press, USA
 19. Passino KM, Yurkovich S (1997) Fuzzy control. Addison‑Wesley Longman Publishing Co., Inc, USA
 20. Maass W, Joshi P, Sontag ED (2007) Computational aspects of feedback in neural circuits. PLoS Comput Biol

3(1):e165
 21. Siegelmann HT, Sontag ED (1991) Turing computability with neural nets. Appl Math Lett 4(6):77–80
 22. Zhao X, Chumkamon S, Duan S, Rojas J, Pan J (2018) Collaborative human‑robot motion generation using LSTM‑

RNN. pp 1–9
 23. Schydlo P, Rakovic M, Jamone L, Santos‑Victor J (2018) Anticipation in human‑robot cooperation: a recurrent neural

network approach for multiple action sequences prediction. pp 5909–5914

Page 20 of 20Mahmoud et al. Journal of Engineering and Applied Science (2023) 70:44

 24. Brownlee J (April 2022) www. machi nelea rning maste ry. com
 25. Sharkawy A‑N (2020) Principle of neural network and its main types: review. J Adv Appl Comput Math 7:8–19
 26. Dreyfus G (2005) Neural networks: methodology and applications. Springer‑Verlag, Berlin Heidelberg
 27. Burns RS (2001) Advanced control engineering. Butterworth‑Heinemann, Oxford, pp 325–379
 28. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge
 29. Irwin GW, Irwin GW, Warwick K, Hunt KJ (1995) Neural network applications in control, 53: Iet
 30. Sharkawy A‑N, Ali MM (2022) NARX neural network for safe human–robot collaboration using only joint position

sensor. Logistics 6(4):75

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.machinelearningmastery.com

	Development of safety method for a 3-DOF industrial robot based on recurrent neural network
	Abstract
	Introduction
	Literature review
	The main contribution
	Outline of the paper

	Methods
	Dynamics of 3-DOF robot
	RNN design

	Experimental work
	Data collection and RNN training
	The mean square error (MSE)
	Linear regression

	Experimental results
	RNN testing and verification
	Investigating the trained NN for the data without collision
	Investigating the trained NN for data with collision

	Discussion and comparison
	Conclusions
	Acknowledgements
	References

