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Abstract 

In this paper, a safety method for a 3‑DOF industrial robot is developed based on 
recurrent neural network (RNN). Safety standards for human robot interaction (HRI) are 
taken into accounts. The main objective is to detect the undesired collisions on any of 
robot links. Since most of industrial robots are not collaborative, the dependence of the 
method on torque sensors to detect collisions makes its ability to use very restricted. 
Therefore, only the position data of joints are collected to be the data inputs of the 
proposed method in order to detect the undesired collisions. These data are aggre‑
gated from KUKA LWR IV robot while no collisions and in another time when applying 
collisions. These data are used to train the proposed RNN using Levenberg‑Marquardt 
LM algorithm. KUKA robot is configured to act as a 3‑DOF manipulator that moves in 
space and under the effect of gravity.

The results show that the modelled and trained RNN is sensitive and efficient in detect‑
ing collisions on each link of robot separately. Studying the resulted error from the 
developed model reveals clearly that the method is reliable.

Keywords: Recurrent neural network (RNN), Safety method, 3‑DOF industrial robot, 
Training and testing, Comparisons

Introduction
When the human operator interacts with a robot within a work area, the safety proce-
dures are very crucial and become an urgent necessity. Many of industrial robots are not 
collaborative. In other words, they do not have torque sensors in their joints whereas all 
of them have sensors having capabilities of identifying position and angular velocity of 
their joints. So, there is a need to find a method to use data of position and other data of 
kinematics of robot to predict its dynamics data, e.g., the external torque.

It is recommended that when designing a HRI system, safety must be taken into 
account [1]. To integrate an industrial robot or a robotic system in manufacturing pro-
cesses, there are safety requirements to do so. These requirements are provided by ISO 
10218-1 [2], and ISO 10218-2 [3]. Yamada et al. discussed safety when human interacts 
with robots work area. They provided limits of pain [4]. Industrial settings pose unique 
challenges that can be interesting dimensions for future research.

*Correspondence:   
eng.khaledhma@gmail.com

1 Mechatronics Department, 
Faculty of Industry and Energy 
Technology, New Cairo 
Technological University NCTU , 
Cairo, Egypt
2 Mechatronics Engineering, 
Mechanical Engineering 
Department, Faculty 
of Engineering, South Valley 
University, Qena 83523, Egypt
3 Mechanical Engineering 
Department, College 
of Engineering, Fahad Bin Sultan 
University, Tabuk 47721, Saudi 
Arabia
4 Mechanical Engineering 
Department, Faculty 
of Engineering, South Valley 
University, Qena 83523, Egypt

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-023-00214-8&domain=pdf
http://orcid.org/0000-0002-3631-324X
http://orcid.org/0000-0001-9733-221X


Page 2 of 20Mahmoud et al. Journal of Engineering and Applied Science           (2023) 70:44 

Because of the competitive nature and economizing issues of industry, safety systems 
of industrial robots, based on machine learning, require the robots to be more equipped 
in order to be more efficient and accurate. Achieving this goal may lead to over-fitting 
that can revoke the main purpose of adaptable systems [5]. This is a notable reason to 
search for a method uses the current equipment (its own sensors without redesigning or 
fixing additional sensors) of robot enabling it from responding with inputs intelligently.

Based on above, the main objective of this paper is to design an accurate approach to 
detect collisions on any of the robotic manipulator links. The intended approach uses 
the RNN model that designed and trained to estimate external torques which affect the 
robot links, only by using joint position signals as known inputs. These signals can be 
commonly identified and aggregated from most of industrial robots.

When analysing the feasibility of applying of the intelligent control in robotics, it can 
be concluded that intelligent control enhances quality control and safety in workspace. 
Moreover, it helps to reduce energy consumed during operation [6].

Literature review

Many research attempts were tried and conducted to guarantee safety when a human 
in an interaction with robots. Some researchers created their safety methods based 
on dynamics of robot model. Methodologies for developing the collision detection 
approach that followed by researchers were as follows: (1) vision approach or sensing of 
kinematic properties (e.g., torque and position sensors), (2) based on robot model, or (3) 
data collected from sensors.

Sharkawy et al. [1] designed a NN-based approach to detect collisions by investigating 
the joint position and torque of the robot as inputs of the developed method. They pro-
vided a good model performance. Sharkawy et al. [7] proposed a method based on NN 
to detect collisions between human and robot. They examined their method on a 2-DOF 
manipulator makes its motions in a horizontal plan. Sharkawy and Mostafa proposed 
[8] three types of NN architecture to detect collisions on a one-DOF robot. The three 
architectures were MLFFNN-1 “multi-layer feedforward neural network having one hid-
den layer”, MLFFNN-2 “having two hidden layers”, CFNN “cascade forward neural net-
work”, and RNN. They used position parameters of joint as inputs of NNs, where the 
output of NNs was the measured external torque. Sharkawy and Aspragathos [9] tested a 
multilayer feedforward neural network using Levenberg-Marquardt algorithm to detect 
the undesired human-robot collisions. They designed their neural network using the fol-
lowing parameters as inputs, the current position error, the previous position error, the 
actual velocity, and the measured joint torque of joint. Using the Levenberg Marquardt 
algorithm for the training process, Sharkawy et al. [10] designed an NN-based approach 
to detect collisions by investigating only the positioning parameters “position and veloc-
ity data which are provided by position sensors” of robot as inputs of model.

Based on fuzzy method, Dimeas et al. [11] built a model to identify collisions affect the 
robot links. They compared the model performance with another one which built based 
on time series. Their method considered the position error and the torque of joints as 
inputs of model. They concluded that the model built based on fuzzy method was more 
accurate than that built based on time series.
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Zhang et al. [12] presented a deep learning-based method using the RNN to analyze 
the human actions in an assembly setting, and to predict the future trajectory of human 
operator motion for online robot action planning and execution. Lasota et al. [13], based 
on a phase-space motion capture system and current angle of joints, designed a system 
to detect the motions that possibly cause collisions so as to improve the latency of robot 
to avoid these collisions.

Based on dynamic model of the robot, Heinzmann and Zelinsky defined the torque 
vector space for all joints and consequently the working space which fulfills constraints. 
They presented a control scheme of collision force and tested it in simulation and on 
a real robot. Their test revealed the feasibility of their control scheme [14]. Mu et  al. 
[15] introduced an intelligent demolition robot. Based on robot model, they considered 
Newton–Euler method to create the dynamic model. They used the modified oriented 
bounding box method to predict the real-time collisions.

Kaonain et al. [6] studied the safety of human when interacting with robot works in 
home. They designed a model with Gazebo based on ROS to simulate the interaction 
between human and robot. They modified the model by integrating physical compo-
nents to improve its ability of detecting and avoiding collisions when interacting with 
human.

Yuan et al. [16] proposed a method based on a gated recurrent unit-recurrent neural 
network GRU-RNN model to optimize the path planning of a mobile robot. They used 
an improved artificial potential field APF and improved ant colony optimization ACO 
algorithms to generate the sample sets which are deriving inputs and tags. Inputs was 
dimensional distances and one angular dimension. The outputs were velocity and angle 
of the mobile robot.

The previous methods, which were based on robot model, apply a control approach 
on the dynamic model of the robot. This model becomes much complicated whenever 
robots’ DOF and workspace coordinates increase. In order to improve the results of 
these methods, some researchers (e.g., [14]) use additional vision equipment. Even when 
using of AI methods like ANN, some researchers use additional vision and torque sen-
sors. This results in raising the cost of operation. Moreover, additional equipment may 
contribute to restricting generalization and application of their methods.

The main contribution

In this paper, an approach is designed and trained based on a multilayer RNN to detect 
human–robot collisions and identify the collided link. A KUKA robot was used to test 
this model. KUKA robot used here is a collaborative robot “COBOT”. This robot has 
position and torque sensors on all its joints, and only the joints’ positions signals are 
used in our current approach. This allow the method to be applied to any industrial 
robot. This robot consists of seven joints, and only three of them was identified to act as 
a 3-DOF robot.

In the experimental work, a sinusoidal motion is applied on the three joints simultane-
ously under the effect of gravity. The frequencies of this motion are having variable and 
constant values. The parameters of the NN model are extracted from the controller of 
robot, which is called KUKA robot controller, KRC. The values of current position θi(k) , 
previous position θi(k − 1) , and angular velocity θ̇i(k) of the three joints were aggregated 
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and used as inputs of the designed neural network. The corresponding external torques τ 
of the three joints are aggregated and used for the training process. The LM algorithm is 
used for the training process.

The main aim of our method is the application to any conventional robot. In addition, 
this method enables operator from observing the collided link specifically.

Outline of the paper

The next sections (from 2 to 6) show the research methodology. “Methods” section 
shows the methods of conducting experiments to collect the data being analyzed. This 
includes the dynamics of the 3-DOF robot and why RNN method was selected to detect 
collisions exerting on the robot. Also, it shows the design of RNN architecture and how 
the model is trained. This section shows the governing equations of the main param-
eters of training model, as well. “Experimental work” section shows the experimental 
work which shows how data were collected from KUKA robot and how the RNN was 
trained. “Experimental results” section shows the experimental results. “Discussion and 
comparison” section shows the discussion of results through conducting a comparison 
between our proposed method and other previous methods proposed by other research-
ers. Finally, “Conclusions” section records the conclusions and proposes the future work.

Methods
In this section, the dynamics of the 3-DOF robotic manipulator are presented and dis-
cussed. In addition, the design requirements of the proposed RNN including the inputs 
and outputs are illustrated. All of these information are described in “Dynamics of 
3-DOF robot” and “RNN design” sections.

Dynamics of 3‑DOF robot

From the basic knowledge of robotics, the robot is coupled mechanically. So, any colli-
sion on any of its links can make effect on others.

The dynamics equation of the robotic manipulator can be given by

where M(θ) is then n × n inertia matrix of the manipulator, V θ , θ̇  is an n × 1 vector of 
centrifugal and Coriolis terms, and G(θ) is an n × 1 vector of gravity terms. τ is actuator 
torque [17]. Therefore, the dynamics of 3-DOF serial link robot, as Murray et al. men-
tioned [18], can be written as the following:

where τext is the external torque which affecting the actuator on joint. M(θ) and 
(
θ , θ̇

)

∈ R
3×3 . G(θ) ∈ R

3.
When applying collision forces on links having great values, Coriolis or inertia forces 

can be considered as external forces. As the robot is dynamically coupled, these forces 
have obvious detectable effect on inputs of NN (current position, previous position and 
current velocity) [1]. It is notable that from anatomy of KUKA robot used in this paper, 

(1)τ = M(θ)θ̈ + V
(
θ , θ̇

)
+ G(θ)

(2)τ + τext = M(θ)θ̈ + V
(
θ , θ̇

)
+ G(θ)
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inertial forces of links 2 and 3 do not have appreciable effect on joint 1 because it rotates 
in a plane parallel to the ground. Joint 1 axis is perpendicular to the ground.

The KUKA robot is used in the current work has 7-DOF, but it has been configured to 
act as a 3-DOF manipulator. Figure 1 shows active joints in the proposed configuration. 
These joints are A1, A4, and A6 which represent joints J1, J2, and J3 respectively. Link 2 
and link 3 are affected by gravity whereas link 1 is not. The figure shows the joints and 
the links in which external forces such as F1, F2, and F3 are applied. These forces affect 
the joints as external torques applied on links from many orientation randomly.

There are a wide range of AI approaches can be used to predict the collisions on 
manipulator’s links. As mentioned in the literature review, the approaches include fuzzy 
logic inference and some types of NN. In fuzzy, defining the linguistic rules for input and 
output parameters is difficult. Therefore, in exploring a contradictory between inputs 
and logical corresponding outputs, the rule base must be tuned. This is the most promi-
nent challenge when using fuzzy logic-based approach to solve the problem [19]. Other 
prominent challenge is the time. Time is an effective parameter in defining the param-
eters of robot joints, e.g., joint velocity. NN is preferable as an intelligent method com-
pared with other methods, e.g., fuzzy logic. So, the ANN is considered very appropriate 
to deal with this problem. Using of NN models is more optimistic to achieve higher 
accuracy. The NN models included, for example, MLFFNN, CFNN, and GRU-RNN. 
The results of using NN types was a good motivation to investigate RNN method in 
this paper to detect the collisions on the robot arm. ANN has advantage of dealing with 
many various problems. In our current work, RNN is considered due to many properties 
compared with other types of NNs, as follows:

1. RNNs are designed to deal with data having time series or data that in sequence.
2. One of properties of RNNs is universal approximation [20]. It can make a well 

approximation for non-linear dynamic systems, having random precision and irreg-
ular working conditions, by achieving a well-constructed mapping from input to 

Fig. 1 Configuration of KUKA robot as 3‑DOF manipulator
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output sequences [21]. The robotic system is a non-linear dynamic system and the 
random collisions on the robot arm make it working irregularly. In addition, its pre-
cision goes random. So RNN is suitable for this system.

3. As Zhao X et al. [22] and Schydlo P et al. [23] presented, when HRI takes place, use 
of trained RNN becomes the preferable choice and the widely used.

When comparing RNN with ordinary feed-forward NN, it can be noted that ordinary 
feed-forward NN are just able to deal with data points, which are independent of each 
other. Traditional feed-forward networks are not appropriate to be used when it is con-
cerned with time series data or with sequential data. Some have argued that since time 
series data may have autocorrelation or time dependence, the recurrent neural network 
models which take advantage of time dependence may be useful. Recurrent neural net-
works “RNNs” are a type of neural networks having a dynamic structure can retain the 
last data and predict next, or future, output values [24]. Comparing with feedforward 
networks, the size of RNN is significantly compact when demand the same approxima-
tion accuracy of dynamic systems. RNN can be used as associative memories to build 
attractors from input-output association [25]. The dynamic structure means that the NN 
model follows completely (or partially) differential equations. It may also follow alge-
braic equations. Whereas, static NN models follow only algebraic equations [26].

RNN design

The RNNs principle is to preserve the outputs of certain hidden layer and feed them 
back to the input layer to estimate/predict the desired output of system. The main cri-
teria followed for the design of the proposed RNN is achieving the high performance 
which is obtaining the lowest/smallest MSE and training error.

RNNs are based on the Hopfield networks with containing feedback paths. Figure 2 
shows the proposed model architecture which is a multilayer fully connected RNN with 
feedback delay (z-1). The network contains three layers: the input layer, the hidden layer, 
and the output layer. The input layer includes the inputs which are nine inputs: current 
position θi(k) , previous position θi(k − 1) , and angular velocity θ̇i(k) ) occur at time (kT) 
where the target “output” is external torque which is predicted at time (k + 1)T. The 
hidden layer is a non-linear layer and its activation function is the hyperbolic tangent 
(tanh). The output layer estimates the external torques of the joints of the 3-DOF robot. 
Figure 3 shows the flow of signals during training the proposed RNN model. The model 
is training using LM algorithm. T is the toque observed by KRC and qd is the desired 
position (joint angle).

A discrete-time RNN follows a set of non-linear discrete time recurrent equations. 
Through the composition of the neuron’s functions and the time delays [27]. The equa-
tion of a discrete time RNN dynamical system of the state variable h(k) (the state at time 
k) is the following:

where J and B are weight matrices and b is the bias vector. g is a non-linear function, 
which is the “tanh” function. k represents the time index [28].

So, the network can be represented in matrix form by:

(3)h(k + 1) = g(Jh(k)+ Bx(k)+ b)
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where Wji is a weight matrix, b is the bias vector having a weight unity, and g is activation 
function, tan-sigmoid “tanh(yj)”:

(4)τ (k + 1)T = g(Wjiyj(kT)+ b)

Fig. 2 The proposed multilayer RNN coupling the joints

Fig. 3 Block diagram of training of the proposed RNN model



Page 8 of 20Mahmoud et al. Journal of Engineering and Applied Science           (2023) 70:44 

It is not practical to determine the optimal setting for the learning rate before training, 
and, in fact, the optimal learning rate changes during the training process, as the algo-
rithm moves across the performance surface.

LM algorithm is a type of the second-order optimization techniques that have a strong 
theoretical basis and provide significantly fast convergence, and it is considered as an 
approximation to Newton’s method. According to LM algorithm the optimum adjusted 
weight can be updated as follows:

where H is Hessian of the second order function and g is the gradient vector of the sec-
ond order function. I is the identity matrix of the same dimensions as H and λ [25].

Error of training e(t) can be estimated by the following [11]:

where τext is the external torque obtained by KUKA controller, and τ̂ext is the external 
estimated torque by the used recurrent neural network. Therefore, the error of training 
on each joint can be determined by:

Experimental work
In this section, the executed experiments with KUKA LWR robot are presented in which 
the data are collected for training the proposed RNN. In addition, the training process is 
discussed.

Data collection and RNN training

Training the neural network means analyzing its parameters to accomplish accurately 
the task that neural network assigned to. So, the training strategies of NN can be classi-
fied as: supervised training and unsupervised training [26].

a- Supervised training: training occurs by supplying the neural network with a range 
of input data and their desired corresponding outputs. While training, the weights 
are continuously adjusted to reach the minimum error value between the actual and 
desired targets.

b- Unsupervised learning: sometimes called “open-loop adapting” because there is no 
feedback information helping the network to update its parameters.

The strategy that followed in training the proposed RNN is the supervised training 
strategy.

(5)tanh
(
y
)
=

ey − e−y

ey + e−y

(6)�wij = [H + �I]−1g

(7)e(t) = τext − τ̂ext

(8)
e1(t) = τ1ext − τ̂1ext ,
e2(t) = τ2ext − τ̂2ext , and
e3(t) = τ3ext − τ̂3ext
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The data of training, positioning data as inputs and external torques as outputs, were 
aggregated from the 3-DOF robot during two situations: while no collisions and while 
exerting collisions. First of them is the robot’s motion is happened without applying col-
lisions on its links. In the other experiments, the robot’s motion is happened with apply-
ing number of random collisions on each link. The data collected from both situations 
were combined and prepared to be used for training the RNN model. The number of 
inputs of data combined is 70775 inputs.

As mentioned, the main aim a trained method can detect collisions on each link using 
only three parameters as inputs: current position, previous position, and angular veloc-
ity. MATLAB is used for the training and testing processes of the designed RNN model.

Many trials were attempted to obtain an optimal possible trained model. The trials use 
20, 40, 60, and 80 neurons in the hidden layer. The best number of hidden neurons is 80 
which give the high performance of the RNN. The training performance is examined by 
estimating the mean square error of training set and the linear regression. This is dis-
cussed in the following subsections.

The mean square error (MSE)

The mean square error on the training set (TMSE) is given by the following equation:

where  NT is the number of observations present in the training set.  yk expresses the 
measurements of the quantity to be modeled “yk” and g(xk,w) is the output value of the 
model with weights vector “w” for the vector of variables  xk [26].

About 200 h are spent for the training process and 1000 epochs “iterations” are used 
and tried to create this trained model. It is known that training neural networks by a 
fixed learning rate would lead to achieve better performance using MSE approach [29]. 
Therefore, the learning rate used to train the NN model was 0.01.

As seen in Fig. 4, the best performance “lowest MSE” was observed at value 0.03173. 
This value is very small and close to zero which means that the designed RNN is trained 
very well. Figure 5 shows the MSEs resulted from trials conducted to train a model using 
number of hidden neurons.

Linear regression

Linear regression analysis is the commonly standard approach to test the performance 
of a model in approximation applications. Let Yp is an affine function of variables which 
have been selected in an earlier step, so Yp = ζTwp + B, where ζ is the vector of the vari-
ables of the model, having known dimension q,  wp is the vector of the parameters of the 
model, and B is a random vector which has expectation value equals zero. From this, the 
regression function is linear respecting to the model variables. Therefore, the regression 
function for a model can be determined by [26]:

(9)TMSE =

√
1

NT

∑NT

k=1
[yk − g

(
xk ,w

)
]
2

(10)E(Yp) = ζTwp
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Here, the neural network estimated outputs and the corresponding data set targets’ 
outputs for the testing epochs (or instances) are plotted. Figure 6 shows the regression of 
the trained model. The value of regression is 0.96796 which is very close to value of one. 
This means that training occurred sufficiently. In addition, the convergence/approxima-
tion between the estimated outputs by the trained RNN and the targets is very good.

Experimental results

After the proposed RNN is completely trained, two cases are presented as follows: the 
first case is that the trained RNN is tested and verified using the data without collisions 
and the collision threshold is determined. The second case is testing and verified the 
trained RNN using data with collisions and based on the determined collision threshold. 
This is followed to show the effectiveness of the method to detect the collisions correctly 
and efficiently. The following subsection presents that in detail.

Fig. 4 The lowest MSE for training of RNN of the coupling joints

Fig. 5 Number of hidden neurons which have been used for training and their corresponding MSE
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RNN testing and verification

Investigating the trained NN for the data without collision

The collected data without collision are used to investigate the trained RNN. The 
input data (current position, previous position, and current velocity) are used by the 
trained RNN to estimate the external torque of each joint. These estimated torques 
are compared by the given external torques by KRC, as shown in Fig.  7. The main 
purpose of this test is to determine the maximum of absolute error values for the 
joints which consequently determine the collision/torque threshold, as discussed in 
ref. [1, 9, 10]. The torque threshold is the torque value that is used to determine the 
true collision. The intended error is revealed by observing the difference between the 
desired external torque and the estimated one by trained RNN. This error was plotted 
as shown in Fig. 8. From which, the torque thresholds are estimated as follows:

• The torque threshold for joint 1, Thr1 = maximum absolute error + average abso-
lute error, of joint 1.

• The torque threshold for joint 2, Thr2 = maximum absolute error, of joint 2.
• The torque threshold for joint 3, Thr3 = maximum absolute error, of joint 3.

The values of Thr1, Thr2, and Thr3 that resulted from training are 1.3  Nm, 
1.2931 Nm, and 0.6394 Nm respectively. The average absolute error between the two 
external torques on joints J1, J2, and J3 are 0.084 Nm, 0.12 Nm, and 0.067 Nm.

Fig. 6 The resulted regression of trained RNN model
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The error histogram for the trained model is shown in Fig. 9. It shows obviously 
that error observed, between real measured torques and those estimated by the RNN 
model, for most of instances is low and close to zero.

Fig. 7 The three external torques detected on each joint compared to the estimated torques by the RNN, in 
case of there is no collision

Fig. 8 The error between the detected external torque and the estimated one by trained RNN in case of 
there is no collision
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Investigating the trained NN for data with collision

Data collected during the sinusoidal motion of the robot in case of there are collisions, 
are tested using the RNN model. Figure  10 shows a comparison between external 

Fig. 9 The error histogram for the trained model, in case of there is no collision

Fig. 10 The external torques detected by NN and KRC, in case of there are collisions
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torque values estimated by the RNN and those measured by KRC. It can be observed 
that the RNN model almost predicted how external torque behaves sufficiently.

The robot is dynamically coupled. Therefore, the link affected by collisions can be 
identified according to the following rule:

▪ If τ̂ext1 > Thr1, τ̂ext2> Thr2, and τ̂ext3 > Thr3, then link 3 “end-effector” is the collided 
link.
▪ If τ̂ext1 > Thr1 and τ̂ext2> Thr2, then link 2 is the collided link.
▪ If τ̂ext1 > Thr1 only, then link 1 is the collided link.

As presented from the error histogram in Fig. 11, it can be detected that the num-
ber of instances close to zero are slightly lower than those in case of no collisions. But 
still obviously most of instances are close to zero. Figure 12 shows the error between 
the external torques in case of the applied collisions to the robot links. The resulted 
average absolute error on joints J1, J2, and J3 were 0.1 Nm, and 0.14, and 0.067 Nm 
respectively. The resulted error is low and satisfactory which means that the RNN is 
trained well and efficient in estimate the external torque or collision in a correct way.

Discussion and comparison
The main aim in developing a method for the robot collision detection is to minimize 
and reduce the errors or the faults that can result by this method. This section discuss 
the results through a comparison study to check the effectiveness of our proposed 
method. This study included methods proposed in references [1, 7–11, 16, 30]. The 
research work in these references is very related to our proposed work.

The comparison starts by investigating the model design and implementation. This 
step is identifying inputs and outputs of the model; and the algorithm used to imple-
ment this model. Table 1 shows a comparison that clarifies this step. This comparison 
shows that our current proposed method and the previous study in [10] as well, are 

Fig. 11 The error histogram for the trained model, in case of collisions
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Fig. 12 The error between the detected external torque and the estimated one by trained RNN, when there 
are applied collisions

Table 1 Comparison among proposed methods according to inputs, outputs, and used algorithm

Algorithm Inputs Outputs Application

MLFFNN using LM algorithm–
3‑DOF robot [1],

Positioning and torque param‑
eters

External toque Collaborative robots

2‑DOF robot

 MLFFNN using LM algo‑
rithm, [7]

Positioning and torque param‑
eters

External toque Collaborative robots

 MLFFNN using LM algo‑
rithm, [10]

Positioning parameters only External toque Any conventional robot

1‑DOF robot

 MLFFNN‑1 using LM algo‑
rithm, [8]

Positioning and torque param‑
eters

External toque Collaborative robots

 MLFFNN‑2 using LM algo‑
rithm, [8]

Positioning parameters only External toque Any conventional robot

 CFNN using LM algorithm, 
[8]

 RNN using LM algorithm, [8]

 MLFFNN using LM algo‑
rithm, [9]

Positioning and torque param‑
eters

External toque Collaborative robots

 Fuzzy using LM algorithm, 
[11]

Positioning and torque param‑
eters

External toque Collaborative robots

GRU‑RNN using APF and ACO 
algorithms, [16]

Dimensional distances and 
one angle

velocity and angle Any conventional mobile 
robot

NARXNN‑1‑DOF, [30] Positioning parameters only External toque Any conventional robot

Our proposed method, RNN‑
3‑DOF robot

Positioning parameters only External toque Any conventional robot
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applicable for any industrial or conventional robot because it does not need to torque 
sensors on the robot joints.

Number of hidden neurons, hidden layers, and the algorithm of training, are impor-
tant parameters affect the training time and the resulted MSE. The comparison between 
these factors is presented in Table 2. Sharkawy et al. [7] reported that the lowest MSE 
of them trials was at 120 hidden neurons without mention of the MSE value. They also 
reported that the average absolute error when collision is higher than when no collision. 
As presented from Table 2 and Fig. 12, it is clear that our method uses less number of 
neurons to achieve the lowest MSE.

Next step, comparing the error resulted of each method in case of no collisions is pre-
sented. At this step, the average absolute error of each method is shown in Fig. 13. It is 
clearly found that the average absolute error of our proposed model is satisfied and com-
petitive. It is notable that methods used in references [9, 10] were applied with one and 
two DOF manipulators, respectively.

The last step is to test the model when there are collisions. As shown from Fig. 14, the 
authors in reference [1] reported that the errors on all joints were varied from 0.8 to 
1.6 Nm. Whereas, in other references [9–11], authors reported that detected errors were 
high. The presented figure shows obviously that our proposed method resulted very 
small errors (from 0.06 to 0.14 Nm) (Fig. 15).

Conclusions
This work proposes a method to detect collisions between human and robot in work-
ing area. A multi-layer RNN model is built and trained using data collected during a 
sinusoidal motion with a KUKA LWR IV robot. The function of this model is to esti-
mate the external torques exerting the model links and identify the collided link. The 
position data are collected by KRC and used as inputs to train the RNN model to pre-
dict the external torques or the collisions. The data used for training are aggregated 

Table 2 Comparison among proposed methods according to Number of hidden neurons, number 
of hidden layers, and MSE

Proposal Number of hidden neurons Number of hidden 
layers

MSE

MLFFNN–3DOF robot, [1] 150 1 0.034

2‑DOF robot

 MLFFNN, [7] 120 1 –

 MLFFNN‑2DOF, [10] 120 2 0.036

With 1‑DOF robot

 MLFFNN‑1, [8] 90 1 0.041

 MLFFNN‑2, [8] 70 (35 neuron for both hidden layer) 2 0.217

 CFNN, [8] 35 1 0.392

 RNN, [8] 20 1 0.431

 MLFFNN, [9] 90 1 0.04

GRU‑RNN–Mobile robot, [16] 1st hidden layer: 40 GRU. 2nd hidden layer: 
30 neurons

2 0.067

NARXNN‑ 1‑DOF, [30] 25 3 0.34353

Our proposed method 80 1 0.031
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from robot during two experiments: one without any performed collision, and the 
other one with exerting random collisions. The robot used to conduct training and 
testing is the 7-DOF KUKA robot and it was configured to act as a 3-DOF robot. 
The dynamic coupling between the robot joints helps to identify the collided link. The 
torque threshold of each joint is the main result of the training process of the RNN 
and based on this threshold the collision is detected.

The results show that the trained model can perfectly predict the external torque 
behaviour. The resulted torque threshold enables the model from detecting collisions 
accurately. Moreover, the collided links are identified accurately. It is notable that the 
average absolute error of external torques on the three joints are ranged from 0.067 

Fig. 13 Number of hidden Neurons used for each method and their corresponding MSE

Fig. 14 Comparing the average absolute error, in case of no collisions, between our proposed method and 
other previous published methods
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to 0.12 Nm, in case of there is no collision, and from 0.067 to 0.14 Nm while applying 
random collisions. From which, it can be concluded that the model is reliable. Both 
error ranges (in case of collision and in case of NO collision) are very close from each 
other. In other words, the model behaves almost the same performance when colli-
sion and when no collision.

As this research revealed, the use of one hidden layer and 80 hidden neurons to 
train an NN model produced good performance. So, it is predicted that use of more 
than 80 neurons can result better performance. Also, use of multi-hidden layer can 
be investigated to achieve more realistic trained model. After making this future 
improvement, the ability of generalization of the NN model outside of the training 
ranges will be checked.

The time spent by the model to response collisions needs further study to find a 
method in order to reduce this time.

In future work, different NNs types, especially LSTM, can be investigated and com-
pared with our current approach. In addition, deep learning can be considered. Appli-
cation of the current method to 7-DOF robot will be also taken into accounts.

Abbreviations
RNN  Recurrent neural network
DOF  Degrees of freedom
HRI  Human‑robot interaction
KUKA LWR  Kuka robot light weight
COBOT  Collaborative robot
LM algorithm  Levenberg‑Marquardt algorithm
MLFFNN  Multi‑layer feed forward neural network
CFNN  Cascade forward neural network
ROS  Robot operating system
GRU‑RNN  Gated recurrent unit‑recurrent neural network
APF  Artificial potential field
ACO  Ant colony optimization
NARXNN  Non‑linear auto‑regressive network with exogenous inputs neural network
LSTM  Long short term memory

Fig. 15 Comparison of average absolute error, in case of collisions, between our proposed method and 
other previous published methods
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