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Abstract 

Optimization problems aim to minimize or maximize an objective function while 
fulfilling related constraints. This objective function may be a single or multi-objective 
optimization. Many studies have been conducted on using these optimization prob-
lems in civil and construction engineering, especially for the various machine learning 
techniques and algorithms that have been developed for fiber reinforced polymer 
(FRP) applications in the rehabilitation and design of RC structures. FRP is considered 
the most effective and superior technique for strengthening and retrofitting due to 
its significant benefits over traditional methods, which have numerous drawbacks, as 
well as the importance of structural strengthening as a cost-effective and practical 
option. In this research, an insight into how to apply algorithms and machine learn-
ing approaches to optimize FRP applications in civil and construction engineering is 
presented, as well as a detailed analysis of the various optimization strategies used and 
their findings. A total of 18 case studies from previous research were discussed and 
critically evaluated, and they were categorized into six groups according to the algo-
rithm or machine learning technique utilized. Based on the case studies investigated 
in this study, the genetic algorithm was found to be the optimal algorithm utilized for 
optimizing FRP applications. The result of this research provides a useful guideline for 
future researchers and specialists.
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Introduction
Fiber reinforced polymer (FRP) composites are gaining popularity in design and 
strengthening technologies. Due to their superior strength-to-weight ratio and flexibility 
to customize their properties to meet complex requirements, FRP has been applied in 
various structural applications for nearly 80 years since WWII. FRP offers several advan-
tages that encourage engineers to utilize it in complex applications, such as the ability 
to strengthen or repair existing structures, rehabilitating the performance and efficiency 
of damaged structures, reinforcing any element in any shape and orientation, and being 
moldable into complex shapes with a high weight-to-strength ratio and minimal main-
tenance requirements. Furthermore, FRP can be applied without putting the structure’s 

*Correspondence:   
Amany.Ramadan7@student.aast.
edu; elbadrosman@aast.edu

1 Construction and Building 
Engineering Department, 
College of Engineering 
and Technology, Arab Academy 
for Science, Technology 
and Maritime Transport 
(AASTMT), Alexandria, Egypt

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-023-00209-5&domain=pdf


Page 2 of 49Ramadan and Elgendi  Journal of Engineering and Applied Science           (2023) 70:61 

operation on hold or losing time or function. FRP is also resilient to environmental fac-
tors and can withstand the corrosive effects of harsh environments. FRP has successfully 
strengthened structures that are not ductile enough to sustain earthquake forces and 
those that do not meet new standards and requirements [1–3]. There are various types 
of FRP composites, each with distinct mechanical characteristics. Glass FRP (GFRP), 
aramid FRP (AFRP), carbon FRP (CFRP), and basalt FRP are frequently used types in 
the literature and are employed for strengthening RC elements for common applications 
such as flexural and shear. The use of these types helps to develop design standards for 
further FRP-RC applications, in addition to maintaining the safety and functionality of 
RC members [4–9].

The practice of strengthening reinforced concrete (RC) structures from the outside has 
become popular over the past few decades in both scientific and industrial communi-
ties. In this application, composite materials are adhered to the surfaces of RC mem-
bers to make them stronger, stiffer, and more flexible. For instance, to increase the shear 
capacity of RC beams, FRP wraps and strips can be externally bonded (EB) with epoxy. 
The main shear-strengthening systems that are most frequently discussed in the litera-
ture are FRP side-bonded and U-wrapped sheets and strips. Seismic strengthening of 
RC structures using FRP jackets, especially when used to restrict RC columns, can con-
siderably improve the columns’ ductility and strength, making it one of the most crucial 
retrofitting techniques for improving their seismic performance [10–15]. Additionally, 
the near-surface mounting (NSM) technique is used to insert FRP composites into the 
concrete cover for strengthening purposes, either as bars or strips. This technique is pre-
ferred over externally bonded (EB) methods due to its significant increase in load capac-
ity and reduction of the breakdown of FRP/concrete bonds. Flexural retrofitting of RC 
beams is one of the widely used applications for NSM-FRP strengthening, as cited in ref-
erences [4, 16]. In the context of designing concrete members, fiber-reinforced polymer 
(FRP) bars are gaining increasing attention as a suitable substitute for traditional steel 
bars due to their resistance to corrosion, particularly in marine and coastal engineering. 
FRP bars have numerous applications in columns, beams, and slabs [17–22]. The use 
of FRP in designing and strengthening structures should be evaluated to optimize its 
design and cost while meeting the criteria of relevant codes, standards, and experimen-
tal data, given its substantial benefits against static and dynamic loads.

The optimal option from among all conceivable options in a pool of alternatives is 
defined as an optimization problem. The optimization technique is a useful tool for 
selecting the ideal operational conditions and design characteristics. Optimization is the 
process of identifying the values of the choice variables that produce the maximal or 
minimal outcome for one or more defined objectives. The choice of target functions and 
optimization method affects how reliable optimal solutions are. Optimization search 
may be used to estimate unknowable parameters in complex nonlinear processes. Mul-
tiphase reactors and flow systems could benefit from optimization to help them scale up. 
Computer-assisted decision-making is an attempt to provide high-tech assistance to the 
decision-making process. Through algorithms and machine learning approaches, com-
puters are now utilized to both analyze the model and search for improved operating 
conditions. Variables, objectives, and constraints are the components of an optimiza-
tion problem [23]. Over the last two decades, algorithms have been used to deal with a 
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variety of engineering optimization problems and have contributed immensely to solv-
ing several specific types of civil engineering challenges [24].

The optimization problem for FRP used in designing or strengthening RC structures 
involves selecting the right sizes for FRP sheets and laminates for flexural and shear 
strengthening. Therefore, the goal of sizing optimization is to maintain design restric-
tions while minimizing the cost of the proposed system for repairing structures. The 
evaluation of FRP’s use in strengthening and repairing structures is due to its significant 
benefits against static and dynamic loads by using optimization techniques and algo-
rithms. It considers the requirements of relevant codes and standards as constraints and 
the need to optimize its design and cost as an objective function. Several optimization 
algorithms and machine learning techniques have been utilized to solve civil engineering 
challenges, specifically for FRP applications. Numerous algorithms and machine learn-
ing techniques, including single and ensemble models, have been employed to optimize 
or forecast FRP applications with concrete components for various purposes such as 
shear, flexure, seismicity, and corrosion. These algorithms include the genetic algorithm 
(GA) [8, 10, 11, 20, 25], while the ML techniques include the support vector machine 
(SVM) and the extreme gradient boosting (xgBoost) for the single model and the ensem-
ble model, respectively [26–30].

The optimization algorithms and machine learning techniques mentioned in this 
research include genetic algorithm (GA), particle swarm optimization (PSO), general-
ized regression neural network (GRNN), resilient back-propagating neural network 
(RBPNN), multiple linear regression (MLR), support vector machine (SVM), artificial 
neural network (ANN), kernel ridge regression (KRR), K-nearest neighbors (KNN), 
decision trees (CART), random forest (RF), extremely randomized trees (ERT), gradi-
ent-boosted trees (GBT), adaptive boosting (AdaBoost), and extreme gradient boosting 
(xgBoost). The FRP applications mentioned in this research for designing and strength-
ening RC structures include shear, flexure, and seismic forces, as well as other prediction 
purposes such as structural health monitoring, corrosion deterioration, and calculation 
of bond strength between FRP and concrete.

Based on the aforementioned, to further develop and validate the current algorithms 
and machine learning approaches for optimizing FRP applications in strengthening and 
designing concrete members such as beams, slabs, and columns against shear, flexure, 
seismic, corrosion, and other crucial applications, an overview of how to use these tech-
niques in the aforementioned applications is provided. This is accompanied by a thor-
ough analysis of the various optimization strategies employed and their results. The 
optimal technique is then presented based on the case studies investigated to serve as an 
effective roadmap for upcoming researchers and specialists.

A review of algorithms and machine learning techniques used for optimizing 
the FRP current applications
An overview of case studies from 2007 to 2023, which were chosen to approximately 
cover the most prevalent FRP applications and various optimization strategies and 
algorithms utilized in optimizing FRP, could be grouped into 6 categories (summarized 
later).
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Genetic algorithm (GA) in optimization of FRP

In this subsection, case studies from the literature are presented to discuss the genetic 
algorithms used to optimize FRP (fiber reinforced polymer) utilized in the design or 
retrofitting of RC (Reinforced Concrete) structures in shear, flexure, seismic, and cor-
rosion. In 2007, Perera and Varona developed a research study for minimizing the 
retrofitting cost for RC beams against shear and flexural forces using a genetic algo-
rithm while satisfying design code requirements depending on the limit-states-design 
criteria (Eurocode 2 in conjunction with the International Federation of Structural 
Concrete FIB). The strengthening systems are shown in Fig. 1, and the amount of FRP 
material, surface preparation, and adhesive needed were all factors in determining 
the cost. The carbon fiber reinforced polymer (CFRP) design optimization example 
of the GA-based optimization routine was run on MATLAB as presented in Figs. 2 
and 3. The original beam capacity was 91.1 kN.m in flexure and 80.5 kN in shear. The 
capacity needed after increasing the loads on the beam was 123 kN.m in flexure and 
115.5 kN in shear. Retrofitting of the beam was required. The findings could be con-
cluded as follows: The configuration of FRP strengthening shown in Table  1 had a 
capacity of 183  kN.m in flexure and 207  kN in shear. Despite the excessive amount 
of shear reinforcement, it is the minimum required design for providing resist-
ance against shear in the beam. The design of the bottom plate was determined by 
the occurrence of interfacial debonding at the plate’s end, rather than the maximum 
applied moment. By following the proposed procedure, the material cost is minimized. 
The algorithm utilized for this design was simple, systematic, and automated [31].

sf,shear bf,shear nf,shear = 3 pf,shear

tf,shear

f,shear

xend Lf,flex

L 

bf,flex

bc

hc

tf,flex

Fig. 1 Strengthening system for shear and flexure [31]

Fig. 2 An example of the chromosome [31]



Page 5 of 49Ramadan and Elgendi  Journal of Engineering and Applied Science           (2023) 70:61  

Regarding the preceding case study, despite the author’s claim that the proposed tech-
nique reduces retrofitting costs, no cost was provided in the research, either before or 
after the algorithm was used. Furthermore, the results demonstrated the effectiveness 
of FRP in retrofitting, as the capacity increased and exceeded the required capacity, but 
they did not demonstrate the effectiveness of the algorithm, as the capacity was deter-
mined only after using the algorithm and was not compared to the capacity determined 
by manual or other methods. Therefore, to gain a better understanding of the potential 
impact of the suggested technique, it is necessary to compare the findings with results 
from experimental testing, as well as to illustrate the reduction percentage as compared 
to manual methods or other approaches.

As an extension of their previous research, Perera and Varona  (2009) [32] conducted 
a study aimed at minimizing the retrofitting costs for RC beams against shear and flex-
ure forces using a genetic algorithm. The study aimed to satisfy design code require-
ments based on limit-states-design criteria for the ultimate and the workability limit 
criteria based on the Eurocode (2) in conjunction with FIB (The International Federation 
for Structural Concrete). The cost determination included the amount of FRP material, 
preparation of the surface, and the quantity of adhesive needed. The manufacturers’ mar-
ket size data was used to create databases for various FRP setups. The study presented 
two examples: the first situation required flexural reinforcement while shear reinforce-
ment was used to prevent concrete cover rupture failure, and the second case required 
both flexure and shear reinforcement. For the first example, two approaches based on the 
de-bonding limit criterion were utilized: A and B. The original capacity of the RC beam 
in flexure was 572 kNm and in shear was 306.9 kN, while the required capacity in flex-
ure was 698.6 kNm and in shear was 266.6 kN. The GA algorithm was applied to both 

1000 

4000 

15 kN/m 55 kN 

1000 

55 kN 

Fig. 3 Application example [31]

Table 1 Optimum strengthening scheme results [31]

GA data:
Population size: 400 / Chromosome size: 22 / Uniform crossover / Crossover prob: 85% / Mutation prob: 
10%

CFRP for flexure CFRP for shear Constraints

Type Length Type Number

tf = 1.2 mm (1 ply)
bf = 3x80 mm
Ef = 165 MPa

2813 mm tf = 1 mm(1 ply)
bf = 300 mm
sf = 650 mm
φf =  45◦

2(+2) None violated
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approaches, and then updated to include the Jansze 1997 model, which was utilized in 
conjunction with both approaches A and B to conduct a comparison study. The Mat-
thys 2000 model was used to evaluate ripping off at flexural fractures with approach (B) 
for flexural strengthening, and the Jansze 1997 model was used to assess plate end rup-
ture failure in the second example. The original capacity of the beam was 129.6 kNm in 
flexure and 67.3 kN in shear, while the required capacity was 189.3 kNm in flexure and 
124.3 kN in shear. The findings of the study were as follows: in the first example, when 
comparing approach (A) to the Jansze 1997 model, the same optimal length for flexural 
strengthening was achieved while the optimal plates were less than those resulting from 
the Jansze 1997 model. The shear force was greater than the shear resistance at the plate 
end, as predicted by Jansze’s model. Tables 2 and 4 discuss the results. As a result, the 
GA optimization technique provided U-shaped jacketed sheets to prevent rupture failure 
for the concrete cover by acting as a mechanical pillar for the CFRP plate end, whereas 
strategy (B) resulted in the same optimal plates and a relatively long flexural panel, which 
increased shear resistance for panels that ended extremely near to the supports, as shown 
in Tables 3 and 4. Therefore, this method did not require the use of U-sheets. In the sec-
ond example, Table 5 and Fig. 4 illustrated the optimal configuration in shear and flexure. 
The algorithm proved to be straightforward, methodical, and automated [32].

Table 2 Approach A (100 Runs) First example [32]

z calculated 
through...

Average of 
generations

Optimum CFRP 
plate

Optimum 
length (m)

Optimum cost Average 
computing time 
(s)

Linear elastic 
analysis

16.5 3 x 812 S 4.74 2,051.5 1.69

Approximated 
expression

17.3 3 x 812 S 4.21 1,822.2 1.75

Nonlinear 
analysis

17.1 3 x 812 S 4.20 1,817.9 1.75

Table 3 Approach B (100 Runs) First example [32]

z calculated 
through.

Average of 
generations

Optimum CFRP 
plate

Optimum length (m) Optimum cost

Linear elastic analysis 16.0 4 x 812 M 8.47 5,313.4

Approximated expres-
sion

15.7 4 x 812 M 8.46 5,307.1

Nonlinear analysis 15.5 4 x 812 M 8.46 5,307.1

Table 4 Jansze’s Model (1997) - Optimum designs (100 Runs) First example [32]

Approach Average of 
generations

Optimum 
CFRP plate

Optimum 
length (m)

Optimum 
CFRP sheet

Optimum 
number of 
U-sheets

Optimum cost

A 17.8 4 x 812 S 4.21 1 ply/900 4, spaced 400 
mm

3,740.1

B 15.9 4 x 812 M 8.86 - - 5,558.0
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Regarding the preceding case study, for the first example, it was useful to compare the 
algorithm’s results with those of the Jansze model (1997) after integrating them with the 
algorithm. This comparison showed that the GA model produced the best configuration 
at a lower cost than those of the Jansze model (1997), along with an illustration of the FRP 
configuration and cost for each case. However, it was also desirable to demonstrate the 
effectiveness of FRP in increasing capacity by showing the retrofitted capacity for each case. 
For the second case, it would be beneficial to clarify the algorithm’s success by indicating 
the retrofitting capacity and cost. Furthermore, the datasets used for FRP configurations 
included market size values provided by the manufacturer, which brought solutions closer 
to reality and made them useful in real-world applications. However, it is preferable to com-
pare the findings with those of experimental testing or manual solutions to ensure that the 
algorithm used for optimizing cost was accurate and to preserve the reality of the results.

Furthermore, in 2007, M. Nehdi et  al. performed a study on concrete beams that 
were reinforced with FRP and optimized their ability to resist shear using a genetic 
algorithm. The primary aim of the genetic algorithm was to minimize the difference 
between the monitored and calculated values of shear strength for the FRP-reinforced 
concrete beams. This involved developing equations using the genetic algorithm that 
could accurately predict the shear strength values of the FRP-reinforced concrete 
beams, which were closest to the values that were obtained through experimental 
testing. Two sets of beams were used, with and without stirrups. The final settings for 
the GA in both models were as follows: for the beam set without stirrups, there were 
70 individuals, a maximum generation size of 1000, a recombination rate of 0.5, and a 
mutation rate of 0.01, whereas for the beam set with stirrups, there were 100 individ-
uals, a maximum generation size of 5000, a recombination rate of 0.75, and a muta-
tion rate of 0.001. Comparative studies were conducted using the experimental data 
as well as commonly used codes and standards, as mentioned in Table 6. The com-
parison terms were the average, coefficient of variation (COV) for Vm/Vcal, standard 

Table 5 Second example—Optimum design result [32]

CFRP for flexure CFRP for shear

Type Length Type Number

tf, flex = 2.4 mm (2 plies)
bf, flex = 2 x 80 mm
Ef, flex = 210 GPa

5.63 m tf, shear = 1 mm (1 ply)
bf, shear = 300 mm
Sf, shear = 700 mm

3(+3)

5630

1500
100 700 300

Fig. 4 Second example—optimal scheme [32]
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deviation (SD), and the average absolute error (AAE). The following is a summary 
of the findings: when analyzing the shear capacity of FRP-reinforced concrete beams 
that have no shear reinforcement, all shear principles discussed in this study provided 
unduly conservative conclusions. With a low elastic modulus, the ACI 440 equation 
was acceptable for predicting the FRP stirrup capacity; however, the nominal shear 
strength of concrete beams reinforced by FRP stirrups became overly optimistic 
with a highly elastic modulus, overstating the capacity of FRP stirrup. For low shear 
strength beams, the JSCE-97 shear provisions produced a reasonably precise estima-
tion of the shear strength given by reinforcement with FRP stirrups. For beams with 
a large shear capacity, however, such precautions were quite cautious. The proposed 
procedure achieved the target in good agreement with the experimental data and 
proved that the genetic algorithm is an effective tool, and the code’s recommenda-
tions are more conservative, as compared in Table 6 [17].

In discussing the prior case study, the success of the algorithm in optimizing shear 
design is demonstrated by comparing its results with four widely used codes and 
standards, namely JSCE, CSA S806, ISIS Canada, and ACI 440. Additionally, the use 
of experimental data allows for the verification of the algorithm’s results, bringing 
them closer to reality and making them useful in real-world applications. However, 
it would be preferable to include the schematic configuration of the beams, showing 
their dimensions and reinforcing details, as well as an example that offers the shear 
capacity from experimental, codes, and algorithm as values. This will make the com-
parison more obvious and facilitate further verification.

Additionally, in 2010 Nehdi and Nikopour presented a framework for optimizing the 
shear resistance of reinforced concrete beams that are externally bonded with fiber-rein-
forced polymer (FRP) by utilizing genetic algorithms. The geometrical properties of the 
chosen beam are shown in Fig. 5. Comparative studies were conducted with experimen-
tal data from literature as well as commonly used codes and models. The ultimate shear 
capacities of 212 beams bonded externally with various types of FRP were gathered from 
the literature. The proposed shear design equations in this paper take into account the 
shear span-to-thickness ratio, as well as the interaction between concrete, FRP lami-
nates, and steel stirrups, resulting in more precise predictions. Furthermore, the model 

Table 6 Shear design equations performance [17]

Method Without shear reinforcement (50 beams) With shear reinforcement (100 beams)

AAE (%) V measured / V calculated AAE (%) V measured / V calculated

Average SD COV (%) Average SD COV (%)

ACI 440.1 
R-03

68.35 4.02 2.11 52 45.57 1.90 0.91 47

ACI 440.1 
R-06

29.74 1.51 0.69 45 31.33 1.22 0.48 39

CSA S806-02 33.13 1.68 0.66 39 17.49 1.13 0.27 24

JSCE-97 33.16 1.69 0.71 41 50.05 2.22 0.73 32

ISIS 
Canada-01

34.57 1.69 0.81 48 29.52 1.06 0.33 31

Proposed 
equations

22.42 1.35 0.45 33 19.10 1.23 0.33 26
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contains coefficients C1 and C2, which relate to aggregate interlock effect and longitudi-
nal rebars effect, respectively, as well as coefficients C3 and C4, which relate to the final 
strain level in FRP sheets. The proposed model performance was investigated using the 
experimental records mentioned before and then validated with a new set of test data 
collected from literature for 21 beams. The following is a summary of the findings: The 
shear equation developed using the GAs methodology surpassed the other models taken 
into consideration in this investigation. It also offered more accurate shear predictions, 
as shown in Tables  7 and 8, which compare the average, standard deviation SD, coef-
ficient of variation COV for Vm/Vcal, and the average absolute error AAE. The ACI 440 
method does not take into account how the shear span-to-depth ratio affects the effec-
tive shear strain in FRP laminates. The Matthys model does not consider the interac-
tion between concrete, steel, and FRP laminates in its calculations. Similarly, the Colotti 
model disregards both of these factors in its approach. By improving the containment of 

Fig. 5 Geometrical properties of the chosen beam [7]

Table 8 Results for new collected set [7]

Method AAE (%) V exp / V cal

Average SD COV (%)

ACI-440. 2R-02 58.6 1.64 0.49 29.9

CSA S806-02 55.3 1.59 0.45 28.3

ISIS Canada 52.2 1.53 0.39 25.5

Eurocode (EC2) 24.2 0.92 0.21 22.8

Matthys 23.3 0.94 0.25 26.6

Colotti 22.7 1.06 0.19 17.9

Proposed equation 18.9 1.05 0.17 16.1

Table 7 Results for the original collected set [7]

Method AAE (%) V exp / V cal

Average SD COV (%)

ACI-440. 2R-02 59.8 1.62 0.52 33.0

CSA S806-02 52.5 1.56 0.43 27.0

ISIS Canada 46.3 1.43 0.38 27.0

Eurocode (EC2) 27.2 0.91 0.20 22.4

Matthys 29.3 0.94 0.24 26.2

Colotti 22.3 1.08 0.18 17.0

Proposed equation 16.5 1.00 0.15 15.0
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the reinforced concrete beam, which results in the aggregate interlock, the completely 
wrapped design outperforms previous methods for shear retrofitting of reinforced con-
crete beams. Moreover, it provides an improved bonding capability between FRP and 
concrete. When using a fully wrapped configuration, the C1 coefficient for CFRP was 
16% higher compared to a two- or three-sided bonded application, and it was higher 
than the C1 coefficients for GFRP and AFRP by 10% and 20%, respectively. In addition, 
CFRP had the greatest C3 and minimal C4 coefficients when compared to GFRP and 
AFRP. As a result, CFRP composites provide greater shear resistance for retrofitting RC 
beams with completely wrapped systems, and these composites provide better shear 
capacity than aramid fiber reinforced polymer (AFRP) or glass fiber reinforced polymer 
(GFRP). The proposed procedure achieved the target in good agreement with experi-
mental data [7].

Analyzing the preceding case study, comparing the algorithm’s output to Eurocode 
(EC2), ACI 440, CSA 860, ISIS Canada recommendations, the Matthys Model, and 
Colotti Model was significant, as it shows the success of the algorithm in optimizing 
shear design. Additionally, the use of experimental data and the new set of beams allows 
for the verification of the algorithm’s results, bringing them closer to reality and mak-
ing them useful in real-world applications. Furthermore, diverse forms of FRP (carbon, 
glass, and aramid) were used in the case study, highlighting the significance of different 
characteristics of FRP types and the different methods of wrapping. However, it would 
be preferable to include the schematic design of the beams (e.g., dimensions and rein-
forcing details) and the configuration of the FRP layers (e.g., numbers and thickness), in 
addition to providing examples of shear capacity from experimental data, codes, and the 
algorithm as values for clear comparison and further verification.

On the other hand, in 2016, Chisari and Bedon developed a multi-objective optimi-
zation approach to optimize FRP jackets for the strengthening of RC frames, utilizing 
a multi-objective Genetic Algorithm (GA) optimization, to achieve maximum frame 
workability and reduce FRP amount/cost. Figure 6 depicts the flow chart of the process. 
To apply the model, a case study of a three-story, three-bay RC frame was used, as illus-
trated in Fig. 7. For the aforementioned reinforced concrete frame, an OpenSees (2009) 
finite element model was established, and after that, GA optimization analyses were 
performed with six design parameters (two column categories by three different floors), 
allowing various thicknesses of FRP layers for interior and exterior columns and also 
for each floor of the frame. These thicknesses could range from 0 (no strengthening) to 
2 mm with 0.001 mm incremental increases. Following the establishment of the design 
parameters’ trial values, the reinforced structure’s finite element model was developed. 
The study conducted a pushover analysis for each trial, which produced the following 
results: maximum steel strain in each reinforced concrete component, inter-story drift 
for each applied load step, and a capacity curve for the reinforced concrete frame in 
terms of base shear and top displacement. Two different loading conditions were used 
for each finite element model, based on the horizontal distribution of loads: a first-mode 
proportional distribution (D1) and a mass-proportional distribution across the frame 
height (D2). Figure 8 displays the Pareto fronts for both the D1 and D2 loading condi-
tions that were developed during the study. The findings could be concluded as follows: 
the optimal FRP thicknesses acquired from the whole optimization study are reported 
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in Table 9. The biggest impact on the case study’s ideal solution came from strengthen-
ing the internal columns on the first floor. It is possible to improve the ductility further 
by increasing the thickness of FRP used in the exterior columns, even after reaching the 
maximum allowable thickness of FRP for the internal columns (which was 2 mm in this 
study). The algorithm ensures that the FRP thickness of the exterior columns remains as 

Fig. 6 Flow chart of the optimization process [10]
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minimal as possible while still achieving the desired ductility range. Due to its signifi-
cant contribution to total cost and relatively insignificant effects on ductility increase, in 
terms of the structure’s overall response, the strengthening on the remaining building 
floors is notably less significant. As a result, the FRP thickness is carefully controlled, as 
shown in Fig. 8 and Table 9 [10].

Commenting on the preceding case study, presenting the used frame schematic design 
details and using two methods for the horizontal load distributions was significant. 
Additionally, the algorithm’s flexibility to use different thicknesses for the internal and 

Fig. 7 RC frame geometry, cross section and loads details [10]
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Fig. 8 Pareto front [10]

Table 9 Optimal solutions [10]

Story Column type Thickness (mm)

Ductility optimal Cost optimal

D1 D2 D1 D2

1 External 1.090 1.906 0.066 0.000

Internal 2.000 2.000 0.870 0.846

2 External 0.010 0.013 0.016 0.001

Internal 0.005 0.006 0.000 0.005

3 External 0.002 0.016 0.001 0.008

Internal 0.001 0.003 0.014 0.005
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external columns, considering their floors, was beneficial as it helps to reach the optimal 
solution. However, it would have been desirable to compare the results with experimen-
tal data or manual solutions to verify and prove the algorithm’s success. Moreover, due 
to the symmetrical geometry of the proposed case study, it would be useful to conduct a 
case study with an asymmetrical model to cover more real-life scenarios.

As an extension of their previous research, in 2017, Chisari and Bedon released a 
study on the use of a multi-objective Genetic Algorithm (GA) to optimize the con-
figuration of FRP rehabilitation of reinforced concrete frames. The design objective 
was to generate the most cost-effective and high-performing solution while achiev-
ing the damage standards required by workability and ultimate earthquake risk levels 
for the performance-based design, which has the following performance objectives: 
operational (O), immediate occupancy (IO), life safety (LS), and collapse prevention 
(CP) (Fig. 9). A realistic case study, which is part of an office building located in Cata-
nia (Italy) and designed without consideration of the seismic action, was conducted 
and illustrated in Fig. 10. For the purpose of pushover studies, two different load dis-
tributions were developed. The first distribution, D1, featured horizontal loads that 
increased in proportion to the mass matrix and first-mode shape. The second dis-
tribution, D2, featured horizontal loads that increased in proportion to the seismic 
masses. The capacity curve of the original frame, in terms of base shear and top dis-
placement, is shown in Fig. 11. Subsequently, using eight design parameters expressed 
by the FRP wraps’ thicknesses (two column categories by four different floors), an 
analysis of the GA optimization was undertaken. The FRP thicknesses were permitted 

Fig. 9 Process flow diagram for optimization [11]
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to range from 0 (no strengthening) to 2  mm, with 0.001  mm increments. Then the 
pushover analyses were conducted for the GA trials, and the Pareto fronts obtained 
are shown in Fig. 12. The following is a summary of the findings: The Pareto fronts 
showed that retrofitting is only feasible on the first floor’s internal columns, and FRP 
wraps were often worthless on the other floors and on external columns (Fig. 13). It 
is clear from displaying the capacity curves of the optimal solution in relation to the 
two objectives (cost and ductility) that the strictest constraint (CP top displacement 
obtained for D2 force distribution) was met without safety margins; in other words, 
the target was reached at the end of the capacity curve in order to minimize cost. 
However, the optimal option gives a wider safety margin against collapse according to 
the ductility target [11].

Fig. 10 RC frame geometry and cross section [11]

Fig. 11 Capacity curves for bare frame [11]



Page 16 of 49Ramadan and Elgendi  Journal of Engineering and Applied Science           (2023) 70:61 

Analyzing the preceding case study, it is significant to demonstrate the capacity 
curve of the original and retrofitted frames as it highlights how well the FRP works as 
a strengthening material. It is also important to present the schematic design details of 
the used frame and use two methods for the horizontal load distributions. The algo-
rithm’s flexibility to use different thicknesses for the internal and external columns con-
sidering their floors is beneficial as it helps to achieve the optimum solution. However, 
it would be desirable to compare the results with experimental data or manual solutions 
for the purpose of verification and proof of the algorithm’s success. Additionally, due to 
the symmetrical geometry of the proposed case study, it would be beneficial to conduct 
a case study with an unsymmetrical model to cover more scenarios in real life.

Moreover, Baji et al. (2018) [33] utilized a genetic algorithm to present an optimiza-
tion strategy for determining the required number of layers of FRP for retrofitting rein-
forced concrete columns with FRP and for determining the time needed for corrosion 
protection retrofitting. The approach being proposed relied on two methods, namely 
renewal theory and time-dependent reliability, with the goal of identifying the most 

Fig. 12 Pareto front [11]

Fig. 13 Curves of retrofitted frame capacity: a best cost solution; b the best ductility solution [11]
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favorable time that would result in the lowest projected number of failures and the ideal 
number of layers required to achieve this outcome. The comprehensive process includes 
the initial design, calculation of the pre-strengthening residual strength based on the 
decrease in steel area, calculation of the post-strengthening residual strength based on 
the decline in FRP composites’ ultimate strength over time, and finally, GA optimization 
for the degree and time of strengthening. This process can be summarized as follows: 
inputting the necessary section dimensions, material characteristics, and environmen-
tal effects; establishing models for steel and FRP materials’ deterioration; determining 
the nominal loads and capacity of the RC column Rn; setting a starting number for the 
RC column’s post-strengthening capacity αRn (where α is greater than or equal to 1); 
giving the time of strengthening, tr, a starting value within the structure’s lifetime, tl; 
the strength that remains in the RC column is calculated as a function of time using 
pre-existing models of deterioration, and this calculation is done for both before and 
after the process of strengthening; the likelihood of failure is calculated based on time, 
both prior to and subsequent to reinforcing; the process checks whether the reasonable 
probability of failure is greater than or equal to the likelihood of failure; if this condi-
tion is not met, the process returns to set a new starting number for the strengthening 
time, tr; determining how many failures are anticipated for the structure’s lifetime; iterat-
ing the stages from setting the time of strengthening tr to computing the predicted the 
failures’ number to find the best value of the time of strengthening tr that minimizes 
the overall expected number of failures; increasing the RC column’s post-strengthen-
ing capacity if convergence fails; and finally, determining the number of layers neces-
sary from FRP based on the desired post-strengthening value. The ACI 440.2R issued 
in 2008 and ACI 318 issued in 2011 design code principles were used to design the RC 
column. To demonstrate how the proposed methodology can be used, an example of an 
RC circular column with a 0.5-m diameter was provided. The specifications of the mate-
rials included: for concrete,  fc’ = 25 MPa, Ec = 23,500 MPa, εc0 = 0.002, and εcu = 0.003; 
for steel, ρ = 0.03, fy = 414 MPa, and Es = 200 GPa; for FRP, tf = 1.2 mm, σfu = 887 MPa, 
Ef = 64,900  MPa, and Kε = 0.55. The findings can be summarized as follows: Table  10 
provides an overview of degradation models based on various corrosion densities for 
the residual strength of retrofitted RC column sections. To fulfill the restrictions, the 
post-strengthening strength for the scenario with a corrosion density of icorr = 3 μA/cm2 
should be 1.20 times the original strength. According to Fig. 14, the year 51 corresponds 
to the minimal predicted number of failures, and the time interval [43, 56] was the via-
ble response area where both optimization criteria were met. As seen in Fig. 15, the RC 

Table 10 Deterioration models [33]

Number of FRP layers icorr(mA/cm2)

1.0 2.0 3.0 4.0

0 1.15-0.0011t 1.15-0.0020t 1.15-0.0025t 1.15-0.0030t

1 1.46-0.0015t 1.45-0.0025t 1.46-0.0035t 1.45-0.0040t

2 1.58-0.0017t 1.58-0.0028t 1.58-0.0037t 1.58-0.0045t

3 1.70-0.0018t 1.69-0.0029t 1.70-0.0039t 1.69-0.0046t

4 1.80-0.0018t 1.78-0.0030t 1.78-0.0040t 1.78-0.0050t

5 1.90-0.0018t 1.88-0.0031t 1.90-0.0042t 1.88-0.0051t
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column residual strength under consideration drops to 0.89 of its initial strength (i.e., 
1.15  Rn) after 51 years. The residual strength then rises to 1.20 of the original strength 
when two layers of FRP composites were applied, and as shown in Fig. 16, the residual 
strength after 51 years when utilizing two layers of FRP wrap was 1.38  Rn. Finally, the 
best strengthening strategy was to add two layers of FRP confinement to the RC column 
51 years after the time of the original design. Table 11 displays the impact of various cor-
rosion rates on the strengthening strategy. As can be observed, increasing the corrosion 
rate necessitates adding additional FRP layers early [33].

Discussing the prior case study, the approach follows logical phases to demonstrate 
the progression of the column’s condition from the initial case to the degraded case, 
then to the reinforced condition, and finally to the degradation of it until the end of 
its useful life. Presenting an example to demonstrate the schematic design details for 
the used column was significant. Furthermore, it was beneficial to demonstrate the 
strength of the original and retrofitted columns since it highlighted how well the FRP 
worked as a strengthening material. However, it would be desirable to compare the 
results with experimental data or manual solutions for the purpose of verification and 
proof of the algorithm’s success.

Fig. 14 Optimum time at icorr = 3μA/cm2 [33]

Fig. 15 Residual strength prior to and following the ideal time at icorr = 3μA/cm2 [33]
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Furthermore, in 2021, a methodology employed by Ebid and Deifalla involved 
genetic programming to create a formula that predicts the shear strength of FRP rein-
forced beams, in the presence or absence of stirrups. They gathered a collection of 
553 test samples, where 425 tests were conducted on beams lacking stirrups, and 128 
tests were conducted on beams containing stirrups. The collection of data was parti-
tioned into two sections: a learning set comprising 363 samples from 59 studies and 
a verification set comprising 190 samples from 19 studies. The test data was obtained 
for rectangular beams with reinforcement bars and with or without stirrups, includ-
ing varying percentages of AFRP, GFRP, and CFRP. The schematic design of the beams 
in the training set ranged from 73 mm to 938 mm in depth, 89 mm to 1830 mm in 
width, 0.09 to 4.00% for the longitudinal reinforcement ratio, 0.00 to 1.50% for the 
shear reinforcement ratio, and 1.50 to 16.2% for the effective span-to-beam depth 
ratio. The validation set schematic design ranged from 150 mm to 883 mm in depth, 
120 mm to 1000 mm in width, 0.12 to 4.00% for the longitudinal reinforcement ratio, 
0.00 to 0.89% for the shear reinforcement ratio, and 1.50 to 5.2% for the effective 
span-to-beam depth ratio. The research program consisted of four trials, starting 
with a minimal degree of complexity (just two levels) and gradually increasing to a 
higher degree of complexity (five levels). The trials were carried out repeatedly until 
the minimum sum of squared errors (SSE) was attained, which indicated the most 
precise formula for the given difficulty level, and this is presented in Table  12. The 
efficiency of the suggested formula was evaluated by comparing its SSE and coeffi-
cient of determination R2 with those obtained through testing and using techniques 
described in existing literature, which are summarized in Table  13. It is possible to 
deduce the following conclusions: The precision levels of the Nehdi et al. (2007) [17] 

Fig. 16 Normalized residual strength for various numbers of FRP layers at icorr = 3μA/cm2 [33]

Table 11 Effect of corrosion rate [33]

icorr(mA/cm2) tr,opt(year) Number of FRP layers R (tr,opt)/Rn

2 68 1 1.27

3 51 2 1.38

4 43 3 1.44
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model and CSA S806-12 are about equal and fall between equations (2) and (3), while 
the ACI 440.1R-15 equation was less precise, as it was almost as accurate as equation 
(2). As the complexity stages increase, the rate of precision improvement decreases, 
so it would not be worth using more than five-level formulas. As shown in Table 13, 
the proposed formula (Eq. (4)) provides more reliable estimates than literature models 
and codes [8].

Reviewing the preceding case study, presenting the schematic design details of the 
used beams was significant. It was also beneficial to examine the algorithm until it 
reached the most accurate formula and compared the results with those of other codes 
and models. The algorithm’s training with experimental data from the literature also 
proved the viability of the suggested model. A series of tests used to verify its results 
brought them closer to reality and made them more meaningful.

Recently, in 2023, Abathar Al-Hamrani et  al. put forward a genetic algorithm-based 
design equation for estimating the shear strength of one-way slabs composed of basalt 
fiber reinforced concrete (BFRC) and reinforced with basalt fiber reinforced polymer 
(BFRP) bars. A model using ABAQUS software was designed in 3D and compared to 
experimental data to investigate how certain factors—such as the longitudinal reinforce-
ment ratio, effective depth, concrete compressive strength, shear span-to-depth ratio, 
and the volume of basalt microfibers—affect the shear strength of BFRC-BFRP slabs. 
The design parameters were subjected to a sensitivity analysis using the same model. 
Ultimately, a design equation was proposed based on a genetic algorithm. In order to 
test the efficiency of the suggested model, a collection of 49 one-way slabs that had been 
tested for shear was gathered from various sources. The ACI 440.1R-15, CSAS806-12, 
JSCE-97, and ISIS 2007 design codes and standards were used to assess the effectiveness 
of the suggested model. The results indicated that the suggested model performed bet-
ter than the known design codes and guidelines, with a coefficient of variation (COV) 
of 17.91% and a mean ratio of anticipated to experimental shear capacity (Vpred/Vexp) 
of 0.97. In contrast, the ACI 440.1R-15, ISIS 2007, and JSCE-97 design codes produced 

Table 13 Brief of outcomes for GA proposed and other formulas [8]

Formula SSE R2 Slope of best fitting line

ACI 440.1R-15 1,422,937 0.748 0.632

CSA S806-12 606,280 0.841 0.792

Nehdi et al. (2007) 559,155 0.843 0.810

Eq. (4) 287,031 0.911 0.982

Table 12 Brief of outcomes for trials of GA [8]

Trial No. No. of 
levels

Proposed 
Formula

SSE R2

Tr. Val. Total Tr. Val. Total

1 2 Eq. (1) 774,204 584,078 1,358,283 0.710 0.380 0.620

2 3 Eq. (2) 560,215 291,889 852,103 0.796 0.712 0.769

3 4 Eq. (3) 201,246 95,123 296,370 0.922 0.899 0.908

4 5 Eq. (4) 199,417 87,614 287,031 0.926 0.902 0.911
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overly conservative predictions, with average Vpred/Vexp values of 0.54 ± 0.11, 0.66 ± 0.13, 
and 0.77 ± 0.19, respectively, and COVs of 19.6%, 20.6%, and 24.4%. The CSA-S806-12 
design code produced fewer conservative predictions, with an average Vpred/Vexp of 
0.89 ± 0.22 and a COV of 24.6%, as shown in Fig. 17. The ratio of longitudinal reinforce-
ment, effective depth, and compressive strength had the greatest impact on shear capac-
ity, with proportional contributions of 42.58%, 24.58%, and 10.30%, respectively. This 
finding was consistent with current FRP-RC standards and design recommendations, 
particularly ACI 440.1R-15, CSA-S806-12, ISIS-2007, and JSCE-1997. The inclusion of 
BMF was also deemed significant statistically, with a percentage contribution of 7.26%. 
As stated in the literature, this could indicate an increased shear capacity of BFRC speci-
mens resulting from the BMF bridging the diagonal shear fracture, reinforcing the dam-
aged surface [20].

In discussing the prior case study, it was significant to verify the suggested model 
using experimental data from the literature. This step made the results more reliable. 
Additionally, comparing the results with widely used codes and standards helped clarify 
the algorithm’s efficiency in generating better and more realistic results. Nonetheless, it 

Fig. 17 Experimental shear capacity versus anticipated based on the experimental database [20]
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would have been preferable to expand the database to minimize biases. Also, it would 
have been better to gather the database from the literature with a greater emphasis on 
BFRP type rather than two types of FRP. This is because the major goal of the research 
was to forecast the shear capacity for BFRC-BFRP slabs.

Particle swarm optimization (PSO) to optimize FRP

In this subsection, case studies from literature are presented to discuss the particle 
swarm optimization (PSO) algorithms used to optimize fiber-reinforced polymer (FRP) 
utilization in designing or retrofitting reinforced concrete (RC) structures in flexure 
and structural health monitoring. A research was conducted by INNOCENTE et al. in 
2007 for minimizing the cost of a concrete beam reinforced with FRP against flexural 
force using the PSO algorithm while satisfying the design codes (ACI 440.1 R-06). Two 
optimizers were proposed, and the key differences between them were in the technique 
they utilized (one used the feasibility technique, while the other used the penalization 
method) and in the way they computed the reinforcement (deterministic at each time 
step while the other was treated as another object variable to be optimized). A few exam-
ples of how the approach was incorporated in the two proposed optimizers have been 
embedded in both of them. The goal was to demonstrate their applicability and effective-
ness in dealing with an overly simplified optimal design problem. The algorithms were 
used to determine the best cost-effective design of a pin-jointed concrete beam rein-
forced with glass fiber-reinforced polymer (GFRP) with a consistent load. Three sets of 
costs were studied, including the costs of materials, transportation, and formwork as 
shown in Table 14. The beam had a width from 20 cm to 100 cm, a height from 20 cm 
to 200 cm, and a span of 5 m. The following conclusions can be reached from the find-
ings: optimal designs are indicated in Tables 15 and 16, for both the height limited to 
200 cm and 35 cm, respectively. It is worth noting that the first optimizer’s output for 
height limited to 35 cm required considerable resources due to the deterministic rein-
forcement calculation, while the major downside of the penalization strategy used in the 
second optimizer was that it required problem-specific adjustment of the penalization 
coefficients, with too high penalizations leading to suboptimal solutions and too low 

Table 14 Sets of costs for materials [18]

CASE A CASE B CASE C

Concrete 100 100 100

Shuttering 25 2.95 35

Size Diameter 
φb(mm)

f’fu(MPa)

#2 6.35 825 0.498361392 0.58630752 0.274098766 COSTS

#3 9.53 760 1.099572057 0.514049937 0.76970044

#4 12.70 690 1.543445568 1.815818315 0.848895062

#5 15.88 655 2.328630417 2.739565196 1.280746729

#6 19.05 620 3.285252527 3.285252527 1.80688889

#7 22.23 586 4.419347369 5.199232198 2.430641053

#8 25.40 550 5.72378227 6.733861494 3.148080249

#9 28.65 517 7.241397324 8.519290969 3.982768528
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penalizations leading to infeasible solutions. The second optimizer, which computes the 
reinforcement as a design variable, seems to be a step closer to an optimizer capable of 
handling more complex optimal designs. Another benefit of taking this into account was 
how much simpler it was to add, remove, or modify constraints. One example would be 
to incorporate the shear design [18].

Discussing the prior case study, it was beneficial to compute the results from two opti-
mizers using different concepts and compare them. However, it would have been pref-
erable to present the manual findings discussed in the paper for verification purposes. 
This would have demonstrated how important it is to apply these optimizers and gauge 
the effectiveness of the method. Additionally, it would have been desirable to clarify the 
basis of the three sets of costs that were studied.

Furthermore, in the context of structural health monitoring, Perera et  al. (2014)  [34] 
offered a multi-objective particle swarm optimization approach as a model used to mini-
mize the difference (error) between the real response from experimental tests and the 
response predicted by computational software models based on strain measurements 
under monitored loading to identify debonding damage of RC beams retrofitted with 
FRP. Implementing such a proposal appears to be crucial in preventing unexpected and 
fragile failure modes of FRP bond from transitional parts of FRP-strengthened structures. 
The variations between the recorded strains of the damaged and undamaged structures 

Table 15 Optimal designs obtained by the two proposed optimizers, where the height is restricted 
to a maximum of 200 cm [18]

CASE b (m) h (m) n x φb COST

Concrete Shuttering Reinforcement TOTAL

FIRST OPTIMIZER
A 0.2124 0.5346 3 x #6 11.3547 32.0395 9.8558 53.2499

B 0.2124 0.5346 3 x #6 11.3547 3.7807 11.5950 26.7304

C 0.2401 0.4883 3 x #7 11.7227 42.5823 7.2919 61.5970

SECOND OPTIMIZER
A 0.2124 0.5346 3 x #6 11.3543 32.0387 9.8558 53.2488

B 0.2124 0.5346 3 x #6 11.3546 3.7806 11.5950 26.7302

C 0.2401 0.4882 3 x #7 11.7217 42.5792 7.2919 61.5928

Table 16 Optimal designs obtained by the two proposed optimizers, where the height is restricted 
to a maximum of 35 cm [18]

CASE b (m) h (m) n x φb COST

Concrete Shuttering Reinforcement TOTAL

FIRST OPTIMIZER
A 0.5067 0.3482 9 x #6 17.6414 30.0756 29.5673 77.2843

B 0.8801 0.3447 21 x #3 30.3362 4.6300 10.7950 45.7612

C 0.5067 0.3482 9 x #6 17.6414 42.1059 16.2620 76.0093

SECOND OPTIMIZER
A 0.5067 0.3500 7 x #7 17.7354 30.1682 30.9354 78.8390

B 0.5067 0.3500 9 x #6 17.7341 3.5597 29.5673 50.8611

C 0.4776 0.3500 6 x #8 16.7174 41.2174 18.8885 76.8233
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were used to develop objective functions. Simplified spectral numerical models based on 
Fourier polynomials, Figs. 18 and 19, 2D finite element models, Fig. 20, and experimental 
studies, Figs. 21 and 22, were conducted for beams before and after debonding damage 
with various loading configurations and damage scenarios. The damage existence proba-
bility (PDE) was determined using the statistical distributions of the damage indices. Esti-
mating the possibility of the damage index at a certain degree of confidence was its basic 
idea. The PDE was scaled from 0 to 1, where values near 0 suggest that it was extremely 

Fig. 18 Numerical study scheme [34]

Fig. 19 Spectral element meshes. a A scenario with a single damage. b A scenario with multiple damages 
[34]
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Fig. 20 a A scenario with a single damage. b A scenario with multiple damages [34]

Fig. 21 Experimental beams spectral element mesh [34]

Fig. 22 Experimental beams test configuration [34]
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unlikely to deteriorate, and values close to 1 imply that the element would most likely 
deteriorate. The following is a summary of the findings: Figs. 23 and 24 demonstrate the 
correlation between an experimental study of FRP strain profiles acquired for the control 
beam and a simplified spectral numerical model; only the data correlating to the positions 
of the sensors were displayed. The damage indices for each element of the multi-objective 
algorithm are displayed in Fig. 25, where the damaged region may be recognized by the 
fact that the highest values were near the debonded zone (element 5). The PDE is com-
puted for each element and is presented in Fig. 26. Damaged elements (element 5) have 
large probabilities, whereas those that are undamaged have probabilities that are much 
lower than 1. The suggested approach seems to have high potential as a non-destructive 
assessment method when paired with Fiber Bragg grating (FBG) sensors, which have high 
resolution and accuracy for locally detecting strain [34].

Fig. 24 Distribution of FRP strain under a focused load placed to the left of the midspan. Original beam [34]

Fig. 23 Distribution of FRP strain under a focused load placed to the right of the midspan. Original beam [34]
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Regarding the previous case study, creating an automated methodology for using FBG 
sensors was found to be beneficial. These sensors can monitor strain with high reso-
lution and precision in specific regions, enabling the objective function to achieve its 
aim and the automated model to produce realistic results in an unsupervised mode. 
However, it was desirable to demonstrate the correlation between a simplified spectral 
numerical model and experimental studies of FRP strain profiles for the damaged beams 
after debonding.

Particle swarm optimization (PSO) and Genetic algorithm (GA) in optimizing FRP

In this subsection, a case study from the literature is presented to discuss the use of 
both genetic algorithms and particle swarm optimization algorithms to optimize the 
use of fiber-reinforced polymer (FRP) in retrofitting reinforced concrete (RC) struc-
tures for seismic purposes. In 2019, Mahdavi et  al. proposed two techniques, genetic 
algorithm (GA) and particle swarm optimization (PSO), for optimizing FRP jacketing 
for RC frame seismic retrofit, as shown in Fig.  27. The proposed model ensures that 
all columns have the same amount of plastic hinge rotation capacity while minimizing 
the amount of FRP material used and maximizing performance by wrapping different 

Fig. 25 Calculated damage distribution by the algorithm [34]

Fig. 26 Probability of damage existence [34]
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amounts of FRP wraps around the columns’ plastic hinges. A non-ductile, low-rise RC 
frame shown in Fig. 28 was used as a practical example to evaluate the suggested frame-
work. The RC frame consisted of columns with cross-sections of 500 mm × 500 mm and 
reinforcement ratios ranging from 0.012 to 0.026 for longitudinal reinforcement and 
0.0015 to 0.0039 for transverse reinforcement, in addition to beams with cross-sections 
of 500  mm × 500  mm and 500  mm × 650  mm and reinforcement ratios ranging from 
0.0065 to 0.0125 for longitudinal top reinforcement, 0.0135 to 0.0205 for longitudinal 
bottom reinforcement, and 0.0028 to 0.0055 for transverse reinforcement. The design 
variables were considered to be the number of FRP layers. Nonlinear pushover studies 
were employed to evaluate the capacity of the plastic hinge rotation for FRP-strength-
ened columns at the life safety level of performance. Both algorithms identified the best 

Fig. 27 The flow chart of the optimization process’s main module [12]
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retrofit strategy for the frame, and for validation purposes, inter-story drift ratios, the 
capacity curve, and fragility functions were calculated and evaluated against other reha-
bilitation strategies that had a fixed number of layers for each column. The following is a 
summary of the findings: the GA arrived at the ideal solution after 832 iterations but had 
significant oscillations, whereas the PSO converged after 1000 iterations but had less dis-
persion. Nevertheless, the ideal solution for the case study was the same in both cases, 
which was for the first floor, six FRP wrapping layers were required for the internal col-
umns and three FRP wrapping layers were required for the exterior columns. Compared 
to the non-strengthened frame, the maximum roof displacement that the strengthened 
frame achieved was considerably enhanced, and as shown in Fig. 29, the maximum base 

Fig. 28 An example of the case study frame [12]

Fig. 29 Pushover curves comparison [12]
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shear was greater. Figure 30a shows that after the frame was strengthened,  Ri on the first 
floor was drastically reduced to a value far below unity, which was the desired result. 
On the contrary, the non-strengthened frame had a value much higher than unity and 
did not meet the life safety level of performance. As presented in Fig. 30b, the strength-
ened frame had an inter-story drift ratio of approximately 1.8%, which was lower than 
the limit of the life safety level of performance as per ATC-40 (e.g., 2%), compared to the 
original frame’s maximum inter-story drift ratio of 2.3% for the first floor (i.e., exceeded 
2%). According to Fig.  31, the irregular FRP strengthening scheme acquired from the 
meta-heuristic algorithm was the best scheme according to all fragility curves for the 
non-retrofitted frame and retrofit schemes with uniform FRP retrofit plans (for example, 
the value n = 4 denotes that all of the first floor’s columns are wrapped with four layers of 
FRP sheets where their plastic hinges were located) [12].

Remarking on the preceding case study, it was beneficial to use two powerful algo-
rithms (genetic algorithm and particle swarm) to obtain the optimal solution. Further-
more, using a case study to compare the results of retrofitted and non-retrofitted frames 
was significant as it highlighted the importance of FRP. Moreover, the comparison of 
fragility analyses between the optimal solution retrofit plan and the uniform retrofit plan 
was beneficial for validation purposes as it presented the significance of the algorithms, 
especially in using a different number of layers for external and internal columns, which 

Fig. 31 Fragility curves comparison for the frame [12]

Fig. 30 Structural response comparison. a Max. plastic hinge rotation usage ratios; b Max. inter-story drift 
ratios [12]
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is more practical. However, it would have been desirable to compare the results with 
experimental data for further verification of the algorithm’s success. Moreover, due to 
the symmetrical geometry of the proposed case study, it would be desirable to conduct a 
case study with an unsymmetrical model to cover more scenarios in real life.

Generalized regression neural network (GRNN) in optimization of FRP

In this subsection, a case study from the literature is presented to discuss using gen-
eralized regression neural network (GRNN) machine learning to optimize FRP materi-
als utilized in designing RC structures in shear. Alam and Gazder (2019) [19] optimized 
the shear resistance of FRP-reinforced one-way slabs and concrete beams using a GRNN 
model, as illustrated in Fig.  32. The GRNN model was trained and evaluated using a 
database consisting of 196 test specimens, of which 148 were used for training and 48 
were used for testing. There was no transverse reinforcing in the FRP-reinforced con-
crete elements. Comparative studies were conducted with the experimental data, as 
well as commonly used codes and standards, as mentioned in Table 17 and Fig. 33. The 
mean (μ), standard deviation (STDV), coefficient of variation (COV) for  Vexp/Vcal, and 
coefficient of determination (R2) were the statistical parameters used for comparison. 
The following conclusions can be reached from the findings: In Table  17 and Fig.  33, 

Fig. 32 The general structure of GRNN [19]

Table 17 Test against the expected shear strengths [19]

Mean (μ) STDV (σ) CoV (%)

CSA 1.06 0.32 31

ACI 2.25 1.26 56

JSCE 1.63 0.92 56

BISE 1.37 0.80 58

GRNN (training) 1.02 0.24 23

GRNN (testing) 1.07 0.38 36
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the GRNN model displayed analytically and graphically a more precise estimation than 
the other four theories. As presented in Table 17, the ACI, JSCE, and BISE were insuf-
ficient for estimating shear capacity with a fair level of precision. The CSA displayed the 
most accurate predictions among the four theories, while the ACI was the most cautious 
because it exhibited the most variability in the findings [19].

Reflecting on the preceding case study, the success of the algorithm in optimizing 
shear design is demonstrated by comparing its results with four widely used codes and 
standards. Furthermore, the algorithm’s training with experimental data from the litera-
ture also proved the viability of the suggested model. A series of tests used to verify its 
results brought them closer to reality and added greater meaning to the findings. How-
ever, it would be preferable to include the schematic design of the concrete members 
(e.g., dimensions and reinforcing details), as well as providing examples that offer shear 
capacity values from experimental, codes, and the algorithm for clear comparison and 
further verification.

Fig. 33 Experimental vs. estimated shear capacities: a ACI; b JSCE; c CSA; d BISE; e GRNN training; and f 
GRNN testing dataset [19]
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Resilient back-propagating neural network (RBPNN) in optimization of FRP

In this subsection, a case study from the literature is presented to discuss the use of resil-
ient back-propagating neural network (RBPNN) machine learning to optimize the FRP 
used in retrofitting RC structures in shear. Abuodeh et al. (2020) [13] employed machine 
learning approaches to optimize the shear capacity of concrete beams bonded exter-
nally with FRP sheets. These machine learning techniques include the use of RBPNN 
as a regression tool, the neural interpretation diagram (NID), and the recursive fea-
ture elimination (RFE) algorithm to determine the factors that significantly affect the 
estimation of FRP shear resistance within the validated RBPNN, as shown in Figs.  34 
and 35. Comparative studies were conducted with experimental data, as well as com-
monly used codes and standards, using statistical parameters for comparison terms 
such as root mean square error (RMSE), standard deviation (SD), coefficient of variation 
(COV), coefficient of determination (R2), and mean predicted-to-experimental shear 
strength ratio (μP:E). A parametric investigation was conducted, which was separated 
into two sections to explore the impact of FRP characteristics and stirrups (transverse 
reinforcement) on the FRP shear resistance. CFRP and GFRP composites were used in 
this study on both two sides bonded (SB) and U-shape wrapping (UW) FRP retrofitting 
systems. The findings of the research indicate that the FRP shear capacity could be pre-
dicted more precisely by the RBPNN using the chosen parameters from NID and RFE 
(R2 = 0.885; RMSE = 8.1  kN) than by the RBPNN using the basic 15 parameters from 
the literature (R2 = 0.668; RMSE = 16.6 kN). The RBPNN model exceeded the expecta-
tions of the following codes: FIB14 guidelines, CNR-DT 200 guidelines, and ACI 440.R-
17 code in forecasting FRP shear capacity with the largest R2 = 0.961 and the lowest 
RMSE = 9.4, SD = 8.8, COV = 28.6, and μP:E = 1.06. As shown in Figs.  36 and 37, the 
correlation between the shear strength of FRP participation and the FRP sheet breadth-
to-spacing ratio (Wf/Sf) rose marginally in slope, while the correlation between the FRP 
shear strength participation and the stirrups area-to-spacing ratio (Av/S) grew consider-
ably in slope when the retrofitting scheme for reinforced concrete beams strengthened 
with CFRP was transformed from SB to UW. For each FRP sheet thickness, there is an 
ideal breadth-to-spacing ratio (Wf/Sf) and an ideal stirrups area-to-spacing ratio (Av/S) 
where the FRP shear strength participation (Vf) will not grow after that point. For both 
the SB and UW strengthening systems, this ideal ratio varied between 0.5 and 0.75. 
Using U-shape wrapping in both CFRP and GFRP sheets resulted in an additional verti-
cal transition as a result of concrete containment and shear-flexure interaction that have 
been described in previous works, demonstrating the uniformity of the RBPNN with 
experimental studies [13].

Fig. 34 RFE flow chart [13]
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Fig. 35 a NID of RBPNN (all the independent parameters); b RBPNN Model (selected independent 
parameters) [13]

Fig. 36 Parametric study results for FRP properties effect. a SB-CFRP. b UW-CFRP. c SB-GFRP. d UW-GFRP [13]
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Discussing the prior case study, comparing the findings of the machine learning 
approaches with CNR-DT 200 guidelines, FIB14 guidelines, and ACI 440.R-17 code 
was beneficial, as it shows the success of these approaches in optimizing shear design. 
Additionally, the use of experimental data allows for the verification of the machine 
learning results, bringing them closer to reality and making them useful in real-world 
applications. However, it would be preferable to include the schematic configuration of 
the beams that shows the dimensions, reinforcing details, and FRP wrapping details, in 
addition to providing examples to offer the shear capacity from experimental, codes, and 
machine learning as values to facilitate comparison and for further verification.

Explainable single and ensemble models for machine learning techniques in optimization 

of FRP

In this subsection, various explainable single and ensemble machine learning models are 
presented through case studies from literature, compared against each other, to offer the 
best prediction for a particular application of FRP. Su et al. conducted a study in 2021 to 
predict the interfacial bonding strength (IBS) between FRP and concrete using three dis-
tinct machine learning (ML) methodologies: multiple linear regression (MLR), artificial 
neural network (ANN), and support vector machine (SVM). They utilized two datasets 
that contain the findings of a single-lap shear test for FRP sheets bonded externally to 
concrete prisms and to the grooves of concrete prisms. The externally bonded schemes 
are depicted in Fig. 38. Both datasets, compiled from literature (Fig. 39), were used to 

Fig. 37 Parametric study results for stirrups effect. a SB-CFRP. b UW-CFRP. c SB-GFRP. d UW-GFRP [13]
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train the three chosen ML techniques and evaluate their effectiveness. Dataset 1 had a 
set of 122 IBS data for FRP materials bonded externally to concrete, while Dataset 2 con-
tained 136 IBS data for FRP materials bonded externally to concrete grooves. The pre-
cise of each ML model was evaluated in this study using the coefficient of determination 
R2, mean absolute error (MAE), root mean square error (RMSE), and mean relative error 
(MRE). The ML techniques were compared with previous empirical IBS models. The 
findings showed that the SVM-ML approach had the most accurate and precise results 
for both datasets 1 and 2, as shown in Tables 18 and 19, respectively, in both training 
and testing the approach. In particular, Dataset 2 had higher prediction accuracy than 
Dataset 1. For dataset 1, the MLR-ML method exhibited the weakest predictive capabil-
ity. However, for dataset 2, the prediction precision of the ANN and MLR were about 

Fig. 38 Shear test. a Concrete externally bonded with FRP. b Concrete grooves externally bonded with FRP [35]

Fig. 39 ML model construction process [35]
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similar and not too significantly different from SVM-ML in the strategy’s training, as 
shown in Table  18. The proposed SVM-ML technique exhibited the same or superior 
estimation efficiency on both datasets as compared to previous empirical IBS models, as 
displayed in Fig. 40 [35].

Analyzing the preceding case study using three ML approaches and comparing them 
based on IBS values from the literature was significant, as it resulted in more accurate 
and practical results. Additionally, the separation of the database into training and test-
ing data was beneficial. Furthermore, comparing SVM-ML with the IBS empirical mod-
els was beneficial for verification purposes, as it shows the success of this approach. 
However, it would be better to provide an example indicating the IBS values from 
experimental and machine learning as values to facilitate the comparison and for clear 
verification.

Fig. 40 SVM-ML and empirical models’ comparison. a Dataset 1. b Dataset 2 [35]

Table 18 For the training data, a comparison of the outcomes of 10-fold cross-validation [35]

Datasets Methods R2 MAE RMSE MRE

Dataset 1 MLR 0.08 3.13 1.35 0.17

SVM 0.82 1.39 0.96 0.11

ANN 0.72 1.82 1.09 0.13

Dataset 2 MLR 0.88 1.30 1.01 0.09

SVM 0.91 1.14 0.92 0.08

ANN 0.88 1.34 1.01 0.09

Table 19 For the testing data, a comparison of the outcomes achieved using ML algorithms [35]

Datasets Methods R2 MAE RMSE MRE

Dataset 1 MLR 0.74 1.22 1.88 0.13

SVM 0.79 1.04 1.68 0.11

ANN 0.77 1.18 1.76 0.12

Dataset 2 MLR 0.80 1.73 2.41 0.12

SVM 0.85 1.41 2.08 0.09

ANN 0.82 1.66 2.29 0.12



Page 38 of 49Ramadan and Elgendi  Journal of Engineering and Applied Science           (2023) 70:61 

Furthermore, in 2022, Tadesse G. Wakjira et  al. developed research that utilized 
seven machine learning (ML) models for flexural-strengthened RC beams with innova-
tive fabric-reinforced cementitious matrix (FRCM) composites to estimate the flexural 
capacities and loads. The seven machine learning models were divided into two catego-
ries: single AI models, which were K-nearest neighbors (KNN), support vector regres-
sion (SVR), kernel ridge regression (KRR), and decision trees (CART), while ensemble 
models were gradient-boosted trees (GBT), extreme gradient boosting (xgBoost), and 
random forest (RF). These models were compared and assessed to identify the ideal pre-
dictive model for FRCM-retrofitted beams. The unified Shapley Additive Explanations 
(SHAP) method was used to implement this evaluation. The conclusion of an optimal 
machine learning (ML) model was clarified using the unified SHAP methodology, and 
the majority of essential input characteristics and interactions that affect the flexural 
strength of FRCM-strengthened RC beams were pinpointed. A comparison between the 
suggested and current models was also conducted. The primary input parameters for the 
database were the geometry of the beams, the reinforcement area of FRCM, the rein-
forcement area of internal steel, and the mechanical properties of the concrete, steel, and 
FRCM. The provided database contains 132 RC beams that have been flexurally rein-
forced by FRCM. For the ML models, this database was split into teaching and valida-
tion datasets. The database took into account a wide variety of beam geometries (width 
ranging from 120 mm to 400 mm and depth ranging from 129 mm to 450 mm), FRCM 
fabric types (Polyparaphenylene Benzobisoxazole (PBO), carbon, and steel), mechani-
cal properties of materials (concrete (fc ranges from 15 to 68  MPa), FRCM (Ef ranges 
from 123 to 271 GPa), and steel (fy ranges from 267 to 604 MPa)), and area of reinforce-
ment for the external reinforcement of FRCM (Af ranges from 7  mm2 to 108  mm2), and 
the internal reinforcement of steel (As ranges from 57  mm2 to 603  mm2 and As’ ranges 
from 0 to 603   mm2). According to the suggested xgBoost model, a design example of 
the FRCM retrofitting scheme for flexural-deteriorated RC beams was offered in the 
research (Fig. 41). The findings could be concluded as follows: with the lowest RMSE, 
MAPE, and MAE values as well as the greatest R2 on both the teaching and validation 
datasets, the xgBoost model had the best forecasting performance. For the learning and 
trial datasets, the xgBoost model’s R2 value was 99.3% and 99.2%, respectively (Table 20). 
In addition, the comparative analysis between the suggested and current models demon-
strated the significantly greater robustness and predictive ability of the suggested model. 
According to current models, the estimated load and flexural capacities of the retrofitted 
beams were very erratic and unsafe (Table 21). According to the findings of SHAP, the 
reinforcement area of FRCM, the reinforcement area of internal tensile steel, as well as 
the breadth and depth of the beam cross-section had the greatest impact on the retrofit-
ted beams’ flexural capacity [26].

Fig. 41 Design example schematic and cross section details [26]
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Regarding the preceding case study, it was beneficial to split the database into learn-
ing and validation datasets to enhance the effectiveness of the machine learning mod-
els. Additionally, comparing seven distinct ML models to determine the best prediction 
model and then comparing the best model to the existing ones made the results more 
realistic and increased their reliability. Furthermore, the use of a novel and powerful ML 
technique, such as XGBoost, to evaluate an innovative strengthening technique, such 
as FRCM, along with the provision of a design example, is a unique advantage of the 
research.

As an extension of their research, Tadesse G. Wakjira et al. developed a study in 2022 
that used six machine learning (ML) models to estimate the shear capacity of RC beams 
reinforced with innovative fabric-reinforced cementitious matrix (FRCM) composites. 
The six ML models used were support vector machine (SVR), decision trees (CART), 
gradient tree boosting (GTBR), random forest (RFR), extremely randomized trees (ERT), 
and extreme gradient boosting (xgBoost). These models were compared and assessed to 
identify the ideal predictive model for FRCM-retrofitted beams. A comparison analy-
sis was performed between the suggested and current models. The provided database 
contained 173 FRCM-strengthened RC beams. For the ML models, this database was 
split into training and testing datasets. The database included a wide variety of beam 
geometries, concrete strengths, internal shear and flexural reinforcements, FRCM types, 
strengthening configurations, wrapping schemes, and mechanical properties of FRCM. 
Three types of wrapping schemes were used in the database: side bonded (SB) scheme, in 
which the FRCM was bonded to the two sides of the beam; U-wrapped (UW) scheme, in 
which the FRCM was applied to the bottom and two sides of the beam; and full wrapping 

Table 21 Existing and suggested models evaluation [26]

STD Standard deviation, COV Coefficient of variation

Model Mean STD COV

Model-1 1.257 0.286 0.228

Model-2 0.738 0.134 0.182

Model-3 0.755 0.205 0.272

Model-4 0.799 0.162 0.203

Proposed xgBoost 1.002 0.048 0.048

Table 20 ML models’ performance metrics [26]

Model Training dataset Test dataset

RMSE 
(kN.m)

MAE 
(kN.m)

MAPE (%) R2(%) RMSE 
(kN.m)

MAE 
(kN.m)

MAPE (%) R2(%)

KNN 4.80 3.10 5.87 97.2 8.43 5.15 9.30 93.1

KRR 4.45 3.56 7.86 97.6 4.71 3.37 7.32 97.8

SVR 3.97 2.72 5.77 98.1 4.44 3.04 6.01 98.1

CART 3.95 2.58 5.86 98.1 5.14 3.68 8.44 97.4

RF 3.71 2.67 5.52 98.4 4.30 3.51 7.92 98.2

GBT 2.52 1.84 3.91 99.2 3.19 2.33 4.73 99.0

xgBoost 2.41 1.55 3.17 99.3 2.70 1.77 3.25 99.3



Page 40 of 49Ramadan and Elgendi  Journal of Engineering and Applied Science           (2023) 70:61 

(FW) schemes, in which the FRCM composite was applied to the top, bottom, and two 
sides of the beam. In accordance with the suggested xgBoost model, the research offered 
a design example of a shear-strengthened beam with one layer of externally bonded 
U-wrapped steel FRCM reinforcement, as shown in Fig. 42 and Table 22. The following 
is a summary of the findings: The most effective approach for making consistent and 
precise predictions about the shear capacity of RC beams that have been strengthened 
with FRCM was the xgBoost model. For the training and test datasets, the experimental 
shear capacity and predicted values based on the xgBoost model exhibited the small-
est error margins and the greatest correlation with coefficients of determination (R2) of 
0.995 and 0.984, respectively (see Table 23). Furthermore, the suggested xgBoost model 
provided safe and accurate predictions compared to all other current models. In com-
parison to the current models, the proposed xgBoost model significantly lowered the 
MAE and RMSE. For example, the comparable value for the suggested xgBoost model 
was 7.80 kN, which reflects a reduction in RMSE of 91%, 90%, 92%, 92%, 79%, and 85% 
compared to models 1, 2, 3, 4, and 5, respectively (see Table 24) [27].

Discussing the prior case study, after flexural retrofitting in the previous research, 
extending the research to evaluate an innovative strengthening technique, such as 
FRCM, with a cutting-edge and potent ML technique, such as xgBoost, for shear ret-
rofitting was very advantageous and provided real evidence of the ability of the xgBoost 
technique. Another unique benefit of the research is the provision of a design example. 
To improve the efficiency of the machine learning models, the database was split into 
training and testing datasets. The results were also made more realistic and reliable by 
comparing the best model to the current models and then comparing it to the best pre-
diction model among six other ML models.

Lastly, in 2022, Tadesse G. Wakjira et  al. employed an optimized super-learner 
machine learning (ML) model to forecast the flexural capacity of FRP-RC beams. Gra-
dient-boosted decision trees (GBDT), adaptive boosting (AdaBoost), classification and 
regression trees (CART), and extreme gradient boosting (XGBoost) were compared with 
the suggested super-learner ML model to demonstrate the approach’s predictive ability. 
A comparison analysis between the suggested model and the current code and guideline 

Fig. 42 FRCM-strengthened beam section [27]
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equations ACI 440.1R-15 and CAN/CSA-S806-12 was performed. The researchers 
assembled 132 experimental datasets on the flexural strength of FRP-RC beams and ran-
domly divide them into 80% learning datasets and 20% validation datasets. The primary 
parameters included in the database were the effective depth and width of the beam, 
flexural reinforcement ratio of FRP, concrete compressive strength, ultimate tensile 
strength of FRP, and modulus of elasticity of FRP. The database comprised four different 
types of FRP composites: BFRP, CFRP, GFRP, and AFRP. The super-learner model uti-
lized linear support vector regression (SVR) as a meta-model to integrate the AdaBoost, 
CART, and GBDT as basic learner models into a robust, individual model (see Fig. 43). 

Table 24 Performance of different shear models [27]

STD Standard deviation

Model Model ID Sample size RMSE (kN) MAE (kN) Mean 
of Vpred/
Vexp

STD of Vpred/Vexp

Triantafillou and Papanicolaou Model-1 173 87.02 65.30 1.28 0.81

Escrig et al. Model-2 173 81.60 60.66 0.66 0.26

Ombres Model-3 95 97.17 73.86 0.53 0.25

ACI 549.4R Model-4 95 97.21 77.83 0.49 0.21

Wakjira and Ebead Model-5 128 37.84 27.97 0.94 0.22

Wakjira and Ebead Model-6 128 50.29 37.60 0.90 0.28

xgBoost – 173 7.80 4.30 0.99 0.06

Fig. 43 Super-learner model training process [9]

Table 23 Performance metrics for the suggested models [27]

Models Training dataset Test dataset

MAPE (%) MAE (kN) RMSE (kN) R2 MAPE (%) MAE (kN) RMSE (kN) R2

SVR 6.69 7.97 14.55 0.968 10.01 13.76 19.29 0.952

CART 4.58 6.86 12.23 0.978 9.36 14.56 20 98 0.943

RFR 7.09 8.60 12.21 0.978 7.96 12.82 19.48 0.951

ERT 3.83 4.35 7.03 0.993 7.37 11.44 16.61 0.964

GTBR 3.50 4.30 6.78 0.993 8.48 10.50 13.55 0.976

xgBoost 1.84 2.62 5.94 0.995 6.16 8.23 10.96 0.984
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The constructed super-learner model was employed to establish a smart forecasting tool 
for the computing of the flexural strength of FRP-RC beams, which can be used on any 
device, such as a computer, tablet, or phone. The graphical user interface (GUI) of the 
created web-based estimation tool is displayed in Fig. 44. The study found that the ability 
of all ensemble models to forecast the flexural strength of FRP-RC beams was remarka-
ble. The behavior of the super-learner model was superior to that of the boosting ensem-
ble techniques (GBDT, AdaBoost, and XGBoost). The super-learner model offered the 
greatest forecasting accuracy with the lowest RMSE and MAPE, as well as the highest 
R2 of all the models examined in this study (see Table 25). In comparison to the CAN/
CSA-S806-12 and ACI 440.1R-15 equations, the suggested model had a higher ability to 
forecast the flexural capacity of FRP-RC beams, according to the comparative analysis 
(see Table 26) [9].

Fig. 44 Web-based prediction tool’s graphical user interface (GUI) [9]

Table 25 ML models performance indices [9]

Models Training set Test set

MAPE (%) RMSE (kN.m) R2(%) MAPE (%) RMSE (kN.m) R2(%)

CART 8.54 5.83 98.5 20.77 20.91 83.5

AdaBoost 4.96 3.10 99.6 8.96 6.91 98.2

GBDT 1.84 1.39 99.9 8.12 6.37 98.5

XGBoost 1.44 0.80 100 7.33 6.33 98.5

Super-learner 1.82 1.61 99.9 6.63 5.61 98.8

Table 26 Existing vs Super-learner models [9]

Model MAPE (%) RMSE (kN•m) R2 (%)

ACI 440.1R-15 21.81 16.15 88.64

CAN/CSA-S806-12 25.87 19.84 82.85

Super-learner 3.37 2.91 99.63
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Analyzing the preceding case study, it was advantageous to split the database into 
learning and validation datasets for the purpose of maximizing the behavior of the 
super-learner machine learning (ML) model. Comparing the suggested model to four 
distinct machine learning (ML) models and then comparing it to the CAN/CSA-
S806-12 and ACI 440.1R-15 equations made the results more accurate and improved 
their dependability. This also clarified the estimation accuracy of the super-learner 
ML model. Additionally, the utilization of a powerful ML technique, such as a super-
learner model that integrates cutting-edge ML techniques like CART, AdaBoost, and 
GBDT as basic learner models with linear support vector regression (SVR) as a meta-
model, was also very beneficial. It provided an entirely novel approach to employ-
ing ML techniques. A superior practical application for the super-learner machine 
learning (ML) model was the creation of an intelligent web-based prediction tool 
with a simplified graphical user interface (GUI). However, it was desirable to com-
pare the super-learner machine model with additional existing codes and guidelines 
to make the comparison more evident and to provide more verification of the model’s 
performance.

Discussion
The previous case studies, which showcase the most common FRP applications and dif-
ferent optimization algorithms and machine learning techniques applied in optimizing 
FRP, are summarized in Table 27:

The genetic algorithm was the most widely used algorithm, accounting for 50% of all 
usage in this study’s research, followed by machine learning approaches (35%) and par-
ticle swarm optimization (15%). On the other hand, the algorithms and machine learn-
ing methods employed in FRP applications in shear account for 45%, followed by flexure 
(25%), seismic (15%), and other prediction purposes (15%) (Figs. 45 and 46).

The genetic algorithm (GA) is an optimal algorithm, which makes it easy to use in half 
of the cases discussed in this research. It also has the capacity to be used in many dif-
ferent contexts, such as shear, flexure, seismic, and corrosion. In addition, case studies 
were carried out by M. Nehdi et al. in 2007, Nehdi and Nikopour in 2010, Ebid and Dei-
falla in 2021, and Abathar Al-Hamrani et  al. in 2023 to verify the algorithmic results 
with experimental results and compare them to code results. These studies show that 
the algorithmic results have good agreement with the experimental results and are also 
superior to the code results. Furthermore, research by Ebid and Deifalla in 2021 indi-
cates that when an algorithm is trained on experimental results before being tested on 
different experimental findings, the results are more accurate and precise. Perera and 
Varona’s 2009 research demonstrates the flexibility of the algorithm to incorporate dif-
ferent models, such as the Jansze 1997 model and the Matthys 2000 model. Additionally, 
as demonstrated by Chisari and Bedon in 2016, 2017, and Mahdavi et al. in 2019, the 
algorithm has the ability to produce non-uniform outcomes for the same elements in 
order to achieve the best solution. For example, it can use different thicknesses for the 
internal and external columns, considering their floors. Out of all the case studies men-
tioned, the one performed by Ebid and Deifalla in 2021 is the most successful approach 
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Table 27 Summary of cases

Algorithm/ML FRP application Reference Case study Objective function Constrains

GA Shear and flexure [31] RC Beam Minimize cost Codes

GA Shear and flexure [32] RC Beam Minimize cost Codes

GA Shear [17] RC Beam Optimize capacity Experimental labora-
tory test

GA Shear [7] RC Beam Optimize capacity Experimental labora-
tory test

GA and multi-
objective

Seismic [10] RC Frame Minimize cost/
maximize ductility

FE model

GA and multi-
objective

Seismic [11] RC Frame Minimize cost/
maximize ductility

Damage levels

GA Corrosion [33] RC Column Strengthening 
time/number of FRP 
layers

Time-dependent 
reliability method 
Renewal theory

GP Shear [8] RC Beam Optimize capacity Experimental labora-
tory test

GA Shear [20] RC Slab Optimize capacity Experimental labora-
tory test

PSO Flexure [18] RC Beam Minimize cost Codes

PSO and multi-
objective

S.H.M [34] RC Beam Minimize error Numerical models, 
Experimental tests

GA and PSO Seismic [12] RC Frame Minimize FRP/maxi-
mize resiliency

Plastic hinge rotation 
capacity

GRNN Shear [19] RC member Optimize capacity Experimental labora-
tory test

RBPNN Shear [13] RC Beam Optimize capacity Experimental labora-
tory test

MLR,  SVM and ANN Bond Strength [35] RC member Interfacial bond 
strength

Empirical IBS models

KRR, KNN, SVR,  
CART,  RF, and GBT 
and xgBoost

Flexure [26] RC Beam Optimize capacity Experimental labora-
tory test

SVR,  CART, and RFR, 
and ERT,  GTBR and 
xgBoost

Shear [27] RC Beam Optimize capacity Experimental labora-
tory test

Super-learner Flexure [9] RC Beam Optimize capacity Experimental labora-
tory test

Fig. 45 Optimization techniques usage
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that uses genetic algorithms (GAs). This study demonstrates the success of the algorithm 
when training and testing with experimental results and comparing them with codes to 
prove the good agreement with experimental results over the code results. Additionally, 
it offers schematic design details for concrete and FRP.

Several case studies, such as those by M. Nehdi et al. in 2007, Nehdi and Nikopour in 
2010, Perera et al. in 2014, Alam and Gazder in 2019, Abuodeh et al. in 2020, Su et al. 
in 2021, Ebid and Deifalla in 2021, Tadesse G. Wakjira et al. in 2022, and Abathar Al-
Hamrani et al. in 2023, use experimental data to verify and demonstrate the effective-
ness of algorithms or machine learning techniques, such as GA, PSO, GRNN, RBPNN, 
SVM, xgBoost, and super-learner. On the other hand, various case studies do not show 
the usefulness of algorithms, such as Perera and Varona in 2007, 2009, INNOCENTE 
et al. in 2007, Chisari and Bedon in 2016, 2017, Baji et al. in 2018, and Mahdavi et al. 
in 2019. Additionally, some case studies train and test algorithms or machine learning 
techniques, such as GA, GRNN, SVM, xgBoost, and super-learner, to provide findings 
that align with experimental data, making the results more realistic and applicable to 
real-world applications. Examples of these studies include Nehdi and Nikopour in 2010, 
Alam and Gazder in 2019, Su et al. in 2021, Ebid and Deifalla in 2021, and Tadesse G. 
Wakjira et  al. in 2022. Furthermore, case studies demonstrate that widely used codes, 
such as ACI, CSA, JSCE, ISIS, and Eurocode, tend to be more conservative in their 
results when compared to experimental findings. Examples of these studies include M. 
Nehdi et al. in 2007, Nehdi and Nikopour in 2010, Alam and Gazder in 2019, Abuodeh 
et  al. in 2020, Ebid and Deifalla in 2021, Tadesse G. Wakjira et  al. in 2022, and Aba-
thar Al-Hamrani et al. in 2023. Moreover, some case studies involving the use of FRP 
in retrofitting demonstrate the effectiveness of the material by comparing the outcomes 
before and after the retrofit. Examples of these studies include Perera and Varona in 
2007, Chisari and Bedon in 2017, Baji et al. in 2018, and Mahdavi et al. in 2019. How-
ever, other cases do not demonstrate the efficacy of the FRP, such as Perera and Varona 
in 2009, Nehdi and Nikopour in 2010, Chisari and Bedon in 2016, and Abuodeh et al. in 
2020.

Conclusions
Optimization algorithms and machine learning techniques can be used to optimize FRP 
applications in the design and strengthening of RC structures for shear, flexure, and 
seismic forces. These techniques can also be used for other purposes such as structure 
health monitoring, corrosion deterioration prediction, and calculation of bond strength 

Fig. 46 FRP applications usage
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between FRP and concrete. The overall aim of this research is to critically review case 
studies from the literature in order to determine the optimal algorithm or machine 
learning technique for optimizing FRP applications based on the investigated case stud-
ies. The 18 case studies selected to approximately reflect the most common FRP applica-
tions and various algorithms and machine learning techniques used in optimizing FRP 
are discussed and critically appraised.

The genetic algorithm (GA) is an optimal algorithm that is employed in half of the 
cases discussed in this research and can be applied to a variety of applications, such 
as shear, flexure, seismic, and corrosion. Some case studies analyze and compare the 
results of the codes and the algorithm, showing that the algorithm’s results outperform 
the codes’ results and have strong agreement with the experimental data. The algo-
rithm’s results are more precise when it is trained on experimental data before being 
tested against other experimental findings. In addition, various case studies prove the 
effectiveness of GA, PSO, GRNN, RBPNN, SVM, xgBoost, and super-learner by using 
experimental data for verification. Furthermore, GA, GRNN, SVM, xgBoost, and super-
learner were trained and tested using the experimental data, producing good agreement 
and realistic results. Moreover, other case studies show that, when compared to experi-
mental results, the most prevalent codes, such as ACI, CSA, JSCE, ISIS, and Eurocode, 
are more conservative in their conclusions. Regarding the case studies concerning the 
usage of FRP in retrofitting, some cases illustrate the material’s efficiency by contrast-
ing the results before and after the retrofit, but other cases do not. Finally, this research 
outlines the optimal optimization algorithm for optimizing FRP applications in design-
ing and retrofitting RC structures, which is the genetic algorithm (GA). Furthermore, it 
presents a detailed analysis of the various optimization strategies used and their findings 
to present the benefits and drawbacks of the mentioned optimization techniques. It also 
provides illustrations of the desired conditions that are recommended to be investigated 
so that future researchers and specialists can use this research as a reference.

Recommendations and future work
This research presents the following recommendations: Based on the studied cases, 
machine learning methods such as GRNN, RBPNN, SVM, xgBoost, and Super-learner 
are recommended to be investigated for more cases involving the design and retrofit-
ting of RC members with FRP. Other optimization approaches and algorithms, such as 
the simulated annealing method (SA), reliability-based design optimization (RBDO), 
and ant colony optimization (ACO), are also worth investigating as it is possible to 
correlate them with the previously implemented algorithms in order to achieve the 
most effective and reliable techniques for optimizing FRP applications. Additionally, 
it is significant to conduct an investigation into the application of optimization tech-
niques in optimizing FRP-reinforced or strengthened piles, as very limited research 
has been performed for FRP-reinforced or strengthened piles. For FRP-strengthened 
RC members, limited studies have been conducted on FRP retrofitting for flexure 
design, particularly in comparison to shear design, which has been extensively stud-
ied. It is fundamental to conduct more research on flexure design.
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Limitations
Although the case studies mentioned in this research cover the most prevalent FRP 
applications, as well as various algorithms and machine learning techniques utilized 
in optimizing FRP for the categories described above, some cases were not explored 
in this study due to time constraints and to prevent an increase in research length, 
which makes full familiarity with all case studies difficult. For the seismic category, 
case studies from the last 6  years were reviewed, while for other prediction pur-
poses, case studies from the last 8 years were reviewed. It is worth investigating other 
research in order to provide more comparisons and verification.
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