
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Rezvanifar and Vosoughifar ﻿
Journal of Engineering and Applied Science           (2023) 70:31  
https://doi.org/10.1186/s44147-023-00203-x

Journal of Engineering
and Applied Science

A modified NARX approach for evaluating 
the time history effect of climate change 
on load combination in designing façade 
structures
Mostafa Rezvanifar1*    and Hamidreza Vosoughifar2    

Abstract 

In recent years, researchers, designers, and project owners have deemed the dry facade 
system to be a suitable option. Consequently, much research has been conducted on 
the structural behavior of the dry facade system when subjected to seismic loads, cli-
mate change, thermal loads, etc. Of particular concern is the destructive phenomenon 
of corrosion due to climate change in coastal areas which can damage the infrastruc-
ture of the dry façade. To address this issue, a modified NARX method was employed in 
this study to predict climate change variables for use in dry facade analysis. The author 
of this paper developed a flowchart and subroutines in MATLAB as a new toolbox for 
this purpose. Temperature was identified as the most influential parameter in conse-
quent configurations and was thus considered in load combination for the design of a 
dry facade structure. The statistical results obtained from NARX showed good agree-
ment with measured data; specifically, there was a low mean absolute error (MAE) 
of 0.345 °C, a low root-mean-square error (RMSE) of 0.442 °C, and a high coefficient 
of determination (R2) of 0.998 (P-value = 0.918 > 0.05). Finally, this study proposed a 
modified formula for load combination to ensure durability and constructability of dry 
facades in coastal cities.

Keywords:  Climate change, Artificial neural network, Building façades, Structure 
design, Load combination

Introduction
The global success of dry facade systems in the last decade has been attributed to sev-
eral advantages, such as their lightweight, durability, and fast construction [1]. This sys-
tem consists of a cold-formed structure (CFS) that is covered with suitable elements 
as a building façade [2]. However, climate change poses a significant risk to the safety 
and performance of dry facade systems. Recent assessments have reported that climate 
change is having a major impact on light and dry facade systems [3-5]. Unfortunately, 
there is limited information and fundamental research on adapting to climate change in 
the construction industry [6]. In buildings designed to meet current standards, future 
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maintenance costs will likely increase significantly due to the effects of climate change. 
To ensure current and future structures are able to withstand changes in wind speed, 
severe weather events, temperature fluctuations, rainfall patterns, and relative humidity 
levels, it is necessary to amend building codes accordingly. The building sector appears 
to be particularly vulnerable to the challenges posed by climate change, particularly 
global warming [7]. At the international level, however, due to a lack of effective work 
codes, limited progress has been made in assessing the preparedness of construction 
companies for this issue [6]. Moreover, in the dry façade design process, proper atten-
tion must be paid to corrosion as an important parameter in climate change [8]. Corro-
sion of offshore structures is inevitable due to the corrosiveness of seawater which has a 
significant impact on their strength and reliability [9]. Environmental effects can reduce 
material properties due to wave climate change and marine corrosion, pitting corro-
sion is particularly dangerous as it is a time-dependent mechanism [10]. The dry façade 
as a structural system is prone to corrosion and temperature changes, thus, changes in 
humidity can lead to its deterioration, especially in dry climates in tropical and coastal 
areas [11]. Design codes that take into account both local weather conditions and future 
change scenarios should be considered. These guidelines can be an important step 
towards a more proactive and dynamic approach towards ensuring high-quality pro-
duction processes and creating a sustainable environment [12]. The consideration of a 
local climate that makes the dry facade resistant to future climate change is an impor-
tant factor in building code [13]. In this regard, the load combination for the allowable 
stress design and strength design method [14] for the dry façade system was modified in 
this study to account for the impact of climate change. Specifically, the NARX method 
was employed to predict temperature using Ws, Td, RH, Tmin, and Tmax. Temperature, 
relative humidity, and dew point were identified as primary causes of barley corrosion 
[11]. Thus, in order to prevent future construction failure due to tangible climate change, 
it is suggested that activists and researchers in the construction industry consider this 
method when designing all aspects of construction in coastal areas. Consequently, 
a modified load combination with respect to the dry facade was proposed taking into 
account climate change variables.

Methods
Applying NARX results to the design process

Recently, artificial neural network (ANN)-based models have attracted researchers 
in various fields of construction due to their ability to obtain nonlinear relationships 
between inputs and outputs. Different ANN-based methods have been successfully 
applied to a variety of problems, such as flood [15], rainfall [16], water quality [17], 
and air temperature [18]. To address some of the issues associated with common ANN 
approaches, nonlinear autoregressive neural network with exogenous input (NARX was 
evaluated. NARX with recurrent dynamic networks has feedback connections with mul-
tiple different layers. The NARX model is a modification of the ARX model commonly 
used in time-series modeling [19]. The forward and backward processes between layers 
were designed for the NARX approach to make a multifaceted effort in simulating data 
[20]. The general structure of the NARX network is given by Eq. (1) [21]:
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where y(t) is the predicted output trained based on the existing target value as the final 
network result [19, 22]. The specifications of the NARX model used in this study are 
summarized in Table 1. Figure 1 illustrates the flowchart steps of the study.

First, in order to assess the impact of climate change, it is necessary to determine the pro-
ject plan according to climate change policies. Subsequently, data on climate change variables 
must be collected from reliable sources for 365 days for the considered cities. The input and 

(1)y(t) = f(y(t − 1), y(t − 2), . . . , y(t − ny), u(t − 1), u(t − 2), . . . , u(t − nu))

Table 1  NARX model specifications

Particulars Configuration 1 to 9 specifications

Type of network NARX neural network

Data division Training 70%, 15% validation, and 15% testing

Training algorithm Levenberg–Marquardt

Performance function Mean squared error (MSE)

Optimized number of hidden neurons 3

Optimized number of delays 2

Fig. 1  Main flowchart of this study
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output data were then categorized into three scenarios and analyzed using the NARX method 
to predict the ideal temperature based on the history of temperature. To account for tem-
perature in load combination evaluation, the predicted temperature was replaced with a “T” 
term in the equation. This resulted in an improved load combination equation. Finally, after 
producing materials based on this equation, it must be determined whether they meet the 
criteria of climate change, and if not, reforms and problem-solving measures must be taken.

Common load combinations for the design process are outlined in Table 2.
By substituting the temperature predicted from this step into the load combination equa-

tion, an improvement in the load combination equation can be achieved. Finally, after 
producing materials based on this step, it is necessary to ascertain whether they meet the 
criteria of climate change. When interpreting future weather forecasts, numerous uncer-
tainties must be taken into account.

Climate change scenarios

Climate change scenarios are utilized to explore how the future will develop under a variety of 
alternative conditions or how to attain optimal results and avert unfavorable outcomes [23, 24]. 
Narrative descriptions of future events or weather patterns can be incorporated into the scenarios 
to enhance the consideration of extreme events [25]. Numerous uncertainties must be taken into 
account when interpreting future weather forecasts. On the other hand, to mitigate the effects of 
climate change on buildings, regional climate change must be taken into consideration [7]. There-
fore, in this study, three scenarios were proposed with nine configurations. Scenario 1 included 
Ws, RH, Td, Tmin, and Tmax as input data and T as output data. Relative humidity was chosen as 
the target, and Ws, T, Td, Tmin, and Tmax were selected as inputs in scenario 2. In scenario 3, Ws, 
T, RH, Tmin, Tmax, and Td were chosen as inputs and output data, respectively.

Four statistical metrics were utilized in this study to evaluate the performance of the 
NARX model in predicting targets. These metrics include the mean absolute error (MAE), 
root-mean-square error (RMSE), correlation coefficient (R2), and P-value. These criteria are 
commonly used statistical measurements to assess the accuracy of predictive models, as 
noted by Bateni, Vosoughifar, and Ek et al. [26].

(2)MAE =
1

N

∑N

i=1
|Oi − Pi|

(3)RMSE =

N
i=1 (Oi − Pi)

2

N

(4)R2 =

∑N
i=1 (Oi − O)(Pi − P)

√

∑N
i=1 (Oi − O)

2∑N
i=1 (Pi − P)

2

Table 2  Load combination formula based on ASCE 

Term Design method Chapter of ASCE

1.2D + 1.2T1 + 0.5L LRFD C2.3.4 P:419

1.2D + 1.6L + 1.0T1 LRFD C2.3.4 P:419

1D + 1.0T1 ASD C2.4.4 P:421

1.0D + 0.75(L + T1) ASD C2.4.4 P:421
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The P-value is a probability measure that ranges from 0 to 1. When this value falls 
below 0.05, it indicates a significant difference between two data sets [27, 28].

Case study
This study focuses on several case studies in coastal cities to evaluate the impact of 
climate change on dry facades. Figure 2 a, b, and c depicts the selected coastal cities for 
analysis purposes. The number of meteorological stations in Western Australia, Cali-
fornia, and Iran is two, eighteen, and nine, respectively. Daily weather data from these 
stations were obtained from sources such as evapotranspiration for Western Australia 
[29], CIMIS for California [30], and I.R. of Iran Meteorological Organization (IRIMO) 
| E-Library [31] for Iran to obtain the best climate change scenarios.

Table  3 summarizes the mean value and standard deviation of each selected sta-
tion’s climatic data for analysis purposes.

Table 4 summarizes the geographical locations of the selected weather stations [32].

Fig. 2  The location of case studies. a Australia. b California. c Iran
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Temperature consideration is a crucial parameter in the dry façade design process. 
To establish a suitable load combination relation in the design of the dry façade struc-
ture, nine configurations were considered. Table  5 presents the selected configura-
tions as scenarios of climate change.

To illustrate the input and output data distribution based on time history, Figs. 3, 4, 
5, 6, 7, and 8 depict wind speed (Ws), relative humidity (RH), minimum temperature 
(Min T), maximum temperature (Max T), dew point temperature (Td), and tempera-
ture (T), respectively.

Results and discussions
NARX relation

Temperature, relative humidity, and dew point temperature were trained using the 
NARX approach. Figure 9 displays the scatter plot between observed and predicted data 
for training, testing, and validation processes in scenario 1. Figures 10 and 11 show these 
processes for scenarios 2 and 3, respectively.

Table 3  The mean (μ) and standard deviation (σ) values were calculated for each selected coastal 
station

No City name T ( Co) Tmin(Co) Tmax(Co) W (m/s) RH (%) Td(Co)

µ σ µ σ µ σ µ σ µ σ µ σ

 1 Abadan 26.3 9.6 18.9 8.2 33.6 11.4 3.2 1.9 64.7 9.1 19.2 8.6

 2 Ahvaz 26.6 9.6 19.4 8.3 33.7 11.1 2.4 1.5 65.6 7.8 19.6 8.9

 3 Bandar Abas 27.5 5.8 23.4 6.8 31.6 5.9 3.7 1.2 78.6 7.9 22 6.9

 4 Bandar Lengeh 27.2 5.8 21.9 6.2 32.5 5.6 3.7 1.8 73.2 5.4 23.3 6.3

 5 Bushehr 25.3 7.2 20.6 7.1 29.9 7.6 3.5 1.9 75.8 6.9 20.1 7.1

 6 Gorgan 18.2 8.2 12.9 8.1 23.4 8.9 2.6 1.4 63.6 14.3 11 7.1

 7 Rasht 16.6 7.5 12.3 7.3 20.9 8.3 1.6 1.4 76.5 10.6 11.1 7.4

 8 Sari 18.0 7.5 13.5 7.6 22.5 8.1 2.2 1.1 75.6 10.1 13.7 7.7

 9 Kish Island 27.7 5.4 24.3 5.2 31.4 5.8 3.9 1.5 65.3 10.9 20.1 6.2

 10 Atascadero 14.1 5.6 5.8 5.2 24.2 6.9 1.2 0.3 64.2 14.4 3.4 4.3

 11 King City-Oasis 14.4 4.8 6.7 4.0 25.3 5.9 2.3 0.8 63.7 12.1 3.3 4.2

 12 Lompoc 13.3 3.4 6.9 4.6 20.2 3.9 2.3 0.8 76.9 9.2 2.4 3.1

 13 Long Beach 17.3 4.8 11.6 5.7 24.3 5.3 1.2 0.3 70.6 13.2 4.9 5.8

 14 Santa Barbara 17.0 3.8 11.7 3.9 23.3 6.7 1.3 0.3 66.6 16.0 4.2 5

 15 Sanel Valley 15.6 5.6 6.1 4.8 24.8 7.3 1.6 0.5 56.3 24.6 5.8 7.5

 16 Santa Maria II 15.0 3.4 9.5 4.2 22.1 4.3 1.6 0.4 73.0 11.3 3.4 4.2

 17 Santa Monica 18.1 3.8 13.9 4.0 23.3 4.4 1.7 0.3 68.1 17.7 4.2 5.1

 18 Torry Pines 15.7 2.9 12.4 3.3 19.3 3.2 1.8 0.6 82.0 18.6 3.5 4.4

 19 Watsonville West II 18.1 3.8 9.7 3.8 19.0 4.0 2.2 0.5 77.2 10.8 3 3.8

 20 Diamond Springs 16.1 6.9 10.5 6 22.4 7.8 1.7 0.4 49.9 18.4 6.1 4.8

 21 Woodland 17.1 6.2 9.8 5 25.3 8 2.2 0.9 54.8 16.3 8 4.6

 22 Bishop 13.5 8 2.6 7.2 23.5 8.1 1.6 0.5 33.8 11.8 0.2 7.4

 23 Gilroy 14.8 4.8 7.5 5.1 23.8 6.2 2.2 0.7 66.9 12.1 8.2 4.3

 24 Delano 17.6 8.2 9.7 7.5 26.7 8.8 1.4 0.4 56.5 20.3 8.9 5.2

 25 Moreno Valley 19 5.9 11.3 5.6 27.2 7.1 1.7 0.6 46.4 19.8 8.2 6.3

 26 Imperial Valley 21.8 8.3 13 8.4 30.6 8.4 2.1 0.9 52.3 12.1 12.3 7.8

 27 Gerber 17.3 6.9 10 5.9 25.1 8 2.3 1.1 59.6 16.3 9.2 5.4

 28 Carnarvon Airport 23.2 4.2 17.7 5.0 28.6 4.4 3.7 1.3 61.9 10.8 4.8 6

 29 Learmonth Airport 24.8 4.9 17.9 4.9 31.9 5.6 3.3 1.2 57.4 12.3 4.1 4.8
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It is evident from Figs. 9, 10, and 11 that configurations 1 through 3 and configura-
tions 7 through 9 provide the closest predictions to the target. These configurations 
exhibit the highest level of agreement in the vicinity of the 45° line. Conversely, scenario 

Table 4  The geographical locations of the selected weather stations

Station# Station name Altitude (m) Latitude Longitude

Iran  1 Abadan 7 30.3473°N 48.2934°E

 2 Ahvaz 23 31.3183°N 48.6706°E

 3 Bandar Abas 10 27.1832°N 56.2666°E

 4 Bandar Lengeh 23 26.5628°N 54.8887°E

 5 Bushehr 9 28.9234°N 50.8203°E

 6 Gorgan 13 36.8456°N 54.4393°E

 7 Rasht 9 37.2682°N 49.5891°E

 8 Sari 23 36.5659°N 53.0586°E

 9 Kish Island 30 26.3156°N 53.5912°E

California (USA)  10 Atascadero 270 35.4725°N 120.6481°W

 11 King City-Oasis 91 36.1744°N 121.1172°W

 12 Lompoc 17 34.6722°N 120.5130°W

 13 Long Beach 5 33.7987°N 118.0947°W

 14 Santa Barbara 76 34.4373°N 119.7374°W

 15 Sanel Valley 168 38.9826°N 123.0893°W

 16 Santa Maria II 66 34.9134°N 120.4647°W

 17 Santa Monica 104 34.0443°N 118.4768°W

 18 Torry Pines 102 32.9018°N 117.2504°W

 19 Watsonville West II 73 36.9130°N 121.8236°W

 20 Diamond Springs 546 38.4140°N 120.4853°W

 21 Woodland 21 38.4042°N 121.4623°W

 22 Bishop 1265 37.2141°N 118.2358°W

 23 Gilroy 61 37.0010°N 121.3323°W

 24 Delano 96 35.4607°N 119.1449°W

 25 Moreno Valley 497 33.5632°N 117.1346°W

 26 Imperial Valley 47 33.2025°N 115.4320°W

 27 Gerber 69 40.0322°N 122.0900°W

AU  28 Carnarvon Airport 4 24.8831°S 113.6641°E

 29 Learmonth Airport 6 22.2312°S 114.0888°E

Table 5  Configurations of climate change

Configuration no Input Output Sensitivity 
analysis 
no

1 Ws, RH, Min T, Max T, Td T [SA1]

2 Ws, RH, Td T [SA1]

3 Min T, Max T, Td T [SA1]

4 Td, T, Ws, Min T, Max T RH [SA2]

5 Td, T, Ws RH [SA2]

6 Td, T RH [SA2]

7 RH, T, Min T, Max T, Ws Td [SA3]

8 RH, T, Ws Td [SA3]

9 RH, T Td [SA3]
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2, which encompasses configurations 4 to 6, demonstrates the poorest agreement within 
this region. Figure 12 illustrates the number of epochs versus fitness values (RMSE) for 
configurations 1 through 9.

The findings presented in Fig. 10 indicate that the endeavor to attain optimal data with 
minimum RMSE in configurations 1, 2, 3, 7, 8, and 9 is superior to that of other con-
figurations. Configuration 2 specifically displays a low RMSE value of only 0.442 °C and 
boasts superior accuracy when compared to other configurations. Statistical metric val-
ues for all configurations are provided in Table 6.

In configuration 2, the mean absolute error (MAE) and root-mean-squared error (RMSE) 
are both low, at 0.345 °C and 0.442 °C, respectively, while the coefficient of determination 
(R^2) is high at 0.998. The comparison based on P-value indicates that there are no signifi-
cant differences between data, with a P-value of 0.894 which is greater than the significance 
level of 0.05. In scenario 2, configuration 5 stands out as the best option with a low MAE of 

Fig. 3  Wind speed based on 365 days from various stations

Fig. 4  Mean of relative humidity based on 365 days from various stations
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3.333% and RMSE of 3.907%, high R^2 of 0.977, and a P-value of 0.95 which is also greater 
than the significance level of 0.05. In scenario 3, configurations 7 to 9 exhibit accuracy lev-
els similar to those in scenario 1. However, configuration 8 stands out with a low MAE of 
0.734 °C and RMSE of 0.976 °C, high R^2 of 0.986, and a P-value of 0.344.

Sensitivity analysis

This study employed sensitivity analysis to evaluate the impact of each input variable 
on temperature (T), relative humidity (RH), and dew point temperature (Td). The aim 
was to determine the relative importance of each input variable including wind speed 
(Ws), RH, minimum temperature (Tmin), maximum temperature (Tmax), Td, and 
T on three different configuration scenarios with three targets. Each sensitivity test 

Fig. 5  Minimum of temperature based on 365 days from various stations

Fig. 6  Maximum of temperature based on 365 days from various stations
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involved varying only one input variable at a constant rate while observing its influ-
ence on T, RH, and Td at constant rates ranging from 5 to 20%. Equation 5 was used 
to obtain target sensitivity values by changing input variables’ values at different rates. 
Overall, this study provides valuable insights into the impact of input variables on T, 
RH, and Td, which can inform the development of more accurate weather forecasting 
models.

A sensitivity analysis was conducted to evaluate the relative importance of each input 
variable on the issue of climate change, as reported by Bateni, Vosoughifar, and Truce 

(5)Sensitivity of Targetconf . =
1

N

∑Nt

i=1

(

%Change in Targetconf .

% Change in the input variable

)

× 100

Fig. 7  Temperature of dew point based on 365 days from various stations

Fig. 8  Mean of temperature based on 365 days from various stations
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Fig. 9  Scatter plot of training, testing, validation steps, and all data for scenario 1
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Fig. 10  Scatter plot of training, testing, validation steps, and all data for scenario 2
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Fig. 11  Scatter plot of training, testing, validation steps, and all data for scenario 3
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Fig. 12  Number of epoch versus fitness value (RMSE) for all configurations
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et al. [33]. Figure 13 presents the sensitivity analysis when T is the target variable, and 
Ws, RH, Tmin, Tmax, and Td are considered as inputs. Similarly, Fig. 14 illustrates the 
sensitivity analysis when RH is the target variable and Ws, T, Tmin, Tmax, and Td are 
considered as inputs. The results of sensitivity analysis when Td was selected as the tar-
get variable are presented in Fig. 15. Sections a, b, c, and d in Figs. 13, 14, and 15 depict 
an increase of 5%, 10%, 15%, and 20% in each input variable.

The findings from Fig. 13 indicate that RH and Td have the most significant impact 
on temperature. Specifically, RH decreases with increasing T while being inversely 
related to it. This relationship is evident in scenario 2 of Fig.  14 where T decreases 
with increasing RH due to their inverse relationship. Conversely, Td increases with 
increasing RH while being directly related to it. In contrast, Fig.  15 reveals that Rh 
and Tmax have the most significant impact on dew point temperature. Specifically, 
Rh and Tmax increase with increasing Td while being directly related to it.

The issue of climate change has been recognized as a crucial factor in the creation 
of construction quality, particularly in coastal areas, with a significant impact on 
occupational health and safety. Neglecting the effects of climate change can result in 
destructive consequences on the building’s facade. Despite this, limited international 
efforts have been made to evaluate the preparedness of consulting and construction 

Fig. 13  Sensitivity analysis chart for configuration scenario 1
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companies to adapt to climate change risks. One potential danger that may lead to 
the destruction of dry facades is the lack of consideration for climate change variables 
during the design process. The corrosion of steel elements due to relative humidity 
and temperature changes within a facade system can cause damage that negatively 
affects structural performance. To address this issue, this study selected corrosion as 
an important factor and utilized it as input data to consider this phenomenon within 
the appropriate network target. The NARX method was employed to establish a rela-
tionship between climate change data variables and their application in dry facade 
design. The proposed network presents a novel method for predicting temperature 
data in conjunction with other important variables, which can be applied to dry 
façade loads. One of the most critical aspects of designing a dry facade structure is 
determining load combinations. In traditional research and design, temperature is 
typically considered as the average of historical data in load combinations. However, 
this study recommends a modified temperature term to be included in the load com-
binations. This modified NARX approach offers an innovative solution for evaluating 
the impact of climate change on load combination in designing façade structures. By 
incorporating historical temperature data and other relevant variables, designers can 
more accurately predict future load combinations and ensure that their structures are 

Fig. 14  Sensitivity analysis chart for configuration scenario 2
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resilient to changing environmental conditions. This paper presents a detailed analy-
sis of the proposed approach and its potential applications in the field of architecture 
and engineering.

Conclusions

•	 This study employs a comprehensive approach that takes into account various mete-
orological parameters, including wind speed (Ws), relative humidity (RH), minimum 
temperature (Tmin), maximum temperature (Tmax), and dew point temperature 
(Td) over a specified time period to investigate the phenomenon of climate change. 
The participants were categorized into nine groups.

•	 The results indicate that configuration 2 outperforms the other categories. This 
configuration exhibits a low mean absolute error (MAE) of 0.345  °C, low root-
mean-square error (RMSE) of 0.442 °C, and high coefficient of determination ( R2 ) 
of 0.998. Furthermore, the P-value suggests that there are no significant differ-
ences between the data (P-value = 0.918 > 0.05).

•	 The findings reveal that configurations 2, 5, and 8 are the most effective configu-
rations for scenarios 1, 2, and 3, respectively. Therefore, configurations 2, 5, and 

Fig. 15  Sensitivity analysis chart for configuration scenario 3
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8 can be utilized to simulate temperature, corrosion, and temperature-corrosion 
concurrently in load combination.

•	 The present research offers a significant advantage in proposing a network that 
can effectively respond to climate change by modifying the structure and type of 
system through load combination.

•	 This approach is particularly relevant given the current global conditions of cli-
mate change. In structural design, temperature calculations are typically based 
on historical data [34], with traditional analysis being recommended as a source 
for designing and calculating structure requirements by ASCE [14]. However, the 
findings of this study suggest that predicted temperature should be used in load 
combination instead of relying solely on average historical temperature.

•	 It is important to note that the proposed approach is not limited to dry facades 
but can be applied to many other systems where changes indicated by damage-
sensitive properties are affected by climate change, such as corrosion or erosion.

•	 The findings of the statistical analysis tests ultimately underscore the significance 
of integrating climate change considerations into structural design practices. This 
integration is crucial in ensuring optimal performance and resilience in the face of 
evolving environmental conditions.
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