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Abstract 

In the process of the decarbonization of energy production, the use of photovoltaic 
systems (PVS) is an increasing trend. In order to optimize the power generation, the 
fault detection and identification in PVS is significant. The purpose of this work is the 
study and implementation of such an algorithm, for the detection as many as faults 
arising on the DC side of a photovoltaic system. A machine learning technique was 
chosen. The dataset used to train the algorithm was based on a year’s worth of irradi-
ance and temperature data, as well as data from the PV cell used. The method uses 
logistic regression with cross validation as a new approach to detect and identify faults 
in PVS. It is applied to smart PV arrays, that can transmit voltage and current measure-
ments from each PV cell of the array individually. The results are satisfactory since the 
algorithm can detect the majority of faults that occur on the DC side of a photovoltaic 
(open-circuit fault, short-circuit fault, mismatch faults). The accuracy of the algorithm 
(97.11%) is comparable to other methods presented by the literature. Moreover, the 
computational cost of the proposed method is significantly lower than the methods 
presented in the literature. In summary, the performance of the implemented algo-
rithm is considered particularly satisfactory and can be easily applied to PVS.

Keywords:  Photovoltaic systems, Photovoltaic fault detection algorithms, I–V curves, 
Machine learning

Introduction
According to the report of the International Energy Agency (IEA) for the year 2021, 
approximately 81% of global electricity production is based on the combustion of coal, 
oil, and natural gas. Within a year, the use of alternative energy sources such as the use 
of photovoltaics and wind turbines [1] has increased by 1% [2]. In the European Union, 
energy production from PVS during the years 2008–2020 increased by 1848% [3]. This 
increase can be explained due to the ability of the PVS to zero carbon footprint—there-
fore their use is in line with the Paris Agreement. Furthermore, PVS are easy to install 
[4–7]. However, it should be noted that their low efficiency and low-profit margin per 
MWh are deterrents for large investments in PVS [8, 9]. With the progress of embedded 
systems, the transition to smart photovoltaic systems is gradually taking place. Smart 

*Correspondence:   
steliosvo@uniwa.gr

1 Department of Informatics 
and Computer Engineering, 
University of West Attica, Athens, 
Greece

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-023-00200-0&domain=pdf
http://orcid.org/0000-0001-6475-773X
http://orcid.org/0000-0003-2788-7759
http://orcid.org/0000-0002-3173-8054
http://orcid.org/0000-0002-4638-7939


Page 2 of 17Voutsinas et al. Journal of Engineering and Applied Science           (2023) 70:27 

PVS through power line communication (PLC) can maximize the energy production of a 
PVS, providing additional control and parameterization of both the array itself, but also 
fault control at the PV cell level [10].

The advantages of machine learning (ML) methods over other artificial intelligence 
(AI) and threshold-based methods are many and include their data-driven nature, scala-
bility, automation, continuous learning, and predictive accuracy [11, 12]. ML algorithms 
are designed to learn from data and make predictions based on patterns in the data, 
rather than relying on pre-programmed rules. This feature allows to the ML-based algo-
rithms for more accurate predictions and decision-making [13]. Unlike other AI meth-
ods, which can be limited by pre-programmed rules, ML algorithms can handle large 
amounts of data and are suitable for processing big data sets, making them scalable [14]. 
However, it should be noted that several AI algorithms such as convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), gradient boosting machines (GBMs), 
and rule-based systems can be scaled up to handle large datasets and complex problems. 
Automation is another advantage of ML algorithms as they can automate many tasks 
that would otherwise require human intervention, leading to increased efficiency and 
reduced costs [12]. In addition, ML algorithms can continue to learn and improve over 
time with new data, making them more adaptive and versatile than traditional AI meth-
ods [11].

Compared to threshold-based methods, ML algorithms can make more complex deci-
sions based on patterns in the data, leading to improved predictive accuracy. Thresh-
old-based methods rely on pre-defined thresholds to make decisions, which can lead to 
oversimplification and decreased accuracy [13, 14]. Unlike threshold-based methods, 
ML algorithms can also handle non-linear relationships in the data, making them more 
suitable for a wider range of applications [12].

In conclusion, the advantages of ML methods over other AI approaches and thresh-
old-based methods make them a powerful tool for prediction and decision making in 
many fields. However, the specific advantages of ML will vary depending on the applica-
tion. Fast execution time and low memory usage are crucial for the success of machine 
learning (ML) algorithms in real-world applications [12, 15]. ML algorithms can be com-
putationally intensive. Slow execution times can lead to increased processing times and 
decreased efficiency [15]. In addition, many real-world applications require the use of 
large amounts of data, and the memory requirements of ML algorithms can be substan-
tial [12]. If the memory requirements of the algorithm are too high, it may not be feasible 
to run the algorithm on the available hardware, leading to decreased performance and 
accuracy [15]. Therefore, fast execution time and low memory usage are essential for the 
successful deployment of ML algorithms in real-world applications, as they ensure that 
the algorithms are computationally feasible and efficient [12]. To sum up, the objectives 
of this work is to implement a machine learning-based fault identification and detection 
algorithm, capable.

a)	 To detect at least the three main categories of faults (open-circuit fault, short-circuit 
fault, mismatch faults) that arise on the DC side of a PVS,

b)	 Of small computational cost. It should have small execution time per prediction, 
while in parallel, it should consume minimum memory.
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c)	 Of high accuracy.
d)	 To be applied to smart PV arrays which can transmit voltage and current measure-

ments from each PV cell of the array individually. In this way, the operation of each 
cell of the smart PV array is monitored [10, 16]. When there is a flaw, the faulty PV 
cell is isolated from the PV array.

The structure of this paper is as follows: Sect. 2, includes the similar works presented 
in the literature. A summary of the most common types of faults that occur on the DC 
side of a PVS will be presented. Following that, techniques for fault detection proposed 
in the literature will be assessed for their accuracy, memory and time requirements, and 
finally, their ability to detect as many unique types of faults as feasible. Methods that can 
detect and identify a wide variety of defects will be preferred above those that do not 
meet the selected criterion. In Sect. 3 the methodology of the developed method is pre-
sented. In Sect. 4 the results from the experimental procedure and the discussion of this 
paper are presented. The findings of the suggested approach will also be discussed and 
compared to other methods proposed in the literature. Finally, in Sect. 5 the conclusion 
of this research is presented.

Literature review

Faults in PVS

The main purpose of fault detection and classification methods is to identify what is 
causing fluctuations in the energy production of a PVS [17]. Different types of faults can 
occur on both the AC and DC sides of a PVS [18]. Traditional protection systems are 
designed to address AC faults, but faults on the DC side can be harder to identify and 
fix [17, 19]. Typical faults on the DC side of the PVS are shown in Fig. 1 and briefly pre-
sented in Table 1.

One common category of DC faults is the mismatch faults, which can significantly 
reduce the power output of a PVS. Mismatch faults can be temporary or permanent. 
Temporary mismatch faults can be caused by particle accumulation on the surface of 
a PVS such as dust, bird droppings, or from the shading of the PVS due to some tree 
or some cloud. Permanent mismatch faults can be caused by damage to the adhesive 
materials, surface cracks on the PVS, gaps between layers of the PV module that cause 
shading, or deterioration of the semiconductor material [21]. It should be noted that 
permanent mismatch faults can occur in a system even as a result of another fault, such 
as an open circuit fault. Short-circuit faults can also occur when there are problems with 
the connections in a PVS, leading to the unintended connection between two points of 
the PVS [22]. An unintended short circuit between two voltage potentials across two 
neighboring strings or between two voltage potentials inside a single string [23], is called 
line-to-line fault. If the short-circuit involves the connection of a current-carrier with a 
non-current carrier, such as the PV frame then the fault is named ground fault or line-
to-ground fault [24].

Open-circuit faults can occur when there is a disconnection on a PV string [25] (usu-
ally caused by poor soldering), but under certain conditions an open-circuit fault can 
also lead to arc failures, leading to high-frequency noise and rapid decreases in output 
voltage and current [26]. It is worth noting that arc faults can be mitigated using an Arc 
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Fault Circuit Interrupter (AFCI) and ground faults can be monitored using a Residual 
Current Monitor (RCM) [27–29]. Special mention is made of both arc faults and ground 
faults, because both are particularly dangerous. Τhe former can cause a fire, the spread 

Fig. 1  Manifestation of common types of faults on the DC side of a PVS. a Degradation of the 
semiconductor. b Discolorations. c Microcracks. d Particles accumulation. e Shading. f Short-Circuit. g 
Open-circuit

Table 1  Common types of dc faults and their causes [20]

Type of fault Manifestation Cause

Permanent mismatch Degradation of modules
Glass breakage
Interconnect breakage of busbars
Defects in frame
Cell breakage
Microcracks

Low-quality materials
Human errors
Poor handling
Side-product of another fault

Temporary mismatch Partial shading Snow covering Dust/bird 
dropping/leaves

Environmental

Arc Series/parallel arc fault Corrosion
Insulation damage
Open-circuits

Line to line Between two v. potentials on different PV 
strings, or in the same PV string

Unintentional connections due to short-
circuit

Short circuit Short circuit between two points Bad connections, defects

Open circuit open circuit between two points (mostly 
on blocking diode (BcD) and bypass diode 
(BpD))

Loose connections

Ground Short-circuit to the ground Non-current-carrying conductors (such as 
PV racks and frames that are grounded) are 
shorted with current-carrying conductors
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of which can threaten the entire installation, while the latter can turn the PVS frames 
into live traps for the installation’s personnel, putting their lives at risk [18, 30]. Using 
high-quality materials and proper handling during the transport and installation of 
a PVS can also help reduce the risk of mismatch faults [31] since a proper installation 
avoids microcracks on the PVS surface and the use of better quality materials will greatly 
slow down the appearance of discoloration.

Fault detection algorithms

There are various techniques in the literature in order to detect faults in PVS. They can 
be categorized into three main groups; electrical characterization, visual inspection and 
thermal imaging. Visual inspection techniques [32, 33] require regular inspections to 
detect anomalies in the appearance of the PVS, thus they cannot be used for real-time 
monitoring. Thermal imaging techniques [34–37] involve the use of specialized equip-
ment that increases the cost of PVS installation. Electrical diagnostic methods, on the 
other hand, can be performed either on-site or remotely. They are based on monitoring 
the specific electronic signatures that each fault produces and its effect on the output 
power of the PVS [38]. Many electrical diagnostic methods base their operation data 
analysis on the I-V curve of the PVS, which can detect various faults [39].

Several machine learning (ML)-based techniques with high fault detection accuracy 
have been published in the literature. Many of these methods are trained using I-V curve 
data. Although ML-based approaches necessitate a significant amount of processing 
power for training, their capacities to self-learn and adapt to a variety of inputs over-
come the drawback of the required processing power [40].

The method presented by Chen et al. [41] can identify a wide range of faults. It is based 
on a kernel-based extreme learning machine (KELM), which has seven inputs (Voc, Isc, 
Vmpp, Impp, α1, Rs, and RMSE values) and five outputs (4 faulty states and a normal state). 
Harrou et al. [42], in order to develop the single diode model for the monitored PV cells, 
employed an artificial bee colony (ABC) method to handle irradiance and temperature 
data. At the maximum power point, the current, voltage, and power levels are deter-
mined. The disparity between simulated and measured values is utilized to indicate 
the presence of a fault. Voutsinas et al. [43], used data from I-V curves to train a multi-
output feed-forward neural network consisting of 8 × 10 × 10 × 6 neurons. This imple-
mentation has 4 faulty states and a normal state. To identify line-to-line faults, Yi and 
Etemadi [44] used a multi-resolution signal decomposition (MSD) combined with a sup-
port vector machine (SVM) for feature extraction. Xia et al. [45] used wavelet decompo-
sition in conjunction with SVM to identify series DC arc defects. Harrou et al. [46] used 
a binary SVM classifier to detect irregularities in output DC and power using a PSIM 
simulation of an installed grid-connected PVS. Wang et al. [47] employed a multi-class 
SVM to identify and categorize line-to-line faults and anomalous degradation faults in a 
PV module. Winston et al. [48] utilized a feed forward back propagation neural network 
combined with an SVM in order to detect micro-cracks and hotspots. Yi and Etemadi 
[49] proposed a method for detecting line-to-line and line-to-ground faults, which was 
based primarily on the use of a multi-resolution signal decomposition (MSD) algorithm 
on a fuzzy inference system. Memon et al. [50] proposed the use of a convolutional neu-
ral network (CNN) that used parameters such as irradiance temperature voltage and 
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current, in order to detect the presence of faults. Jia et  al. [51], presented a near per-
fect accuracy method for detecting arc faults using logistic regression. Fadhel et al. [52] 
proposed a data driven approach for detecting faults caused by shading on a PVS. The 
method is based in principal component analysis (PCA) that used data from I-V curves 
to detect faults with significant accuracy. Finally, Dai et al. [53] suggested a deep rein-
forcement learning-based PVS fault detection technique. The starting premise for this 
approach is data-driven. The fault diagnostic model of the PVS is created, and the deep 
neural network is used to estimate the decision network in order to find the optimum 
strategy, allowing the photovoltaic power generation system to be fault diagnosed.

The need to improve the reliability and performance of a smart PV array is the moti-
vation for the development of a rapid and accurate fault detection and identification 
method based on ML. In the context of renewable energy systems, fault detection and 
identification are crucial for ensuring optimal energy generation and preventing cata-
strophic failures. However, traditional fault detection methods are often time-consum-
ing and rely on human intervention, which can lead to delayed or inaccurate diagnoses. 
By leveraging the power of machine learning, the proposed approach can quickly and 
accurately identify faulty PV cells in real-time, based on the data transmitted by each 
cell. While there are limitations to machine learning, such as overfitting, the use of a rig-
orous cross-validation process can help mitigate these issues and improve the accuracy 
of the model. Therefore, the use of machine learning in fault detection and identifica-
tion for smart PV arrays is a promising approach that can improve system reliability and 
performance.

Methods
To create the dataset, irradiance and temperature data are required as well as a model 
that will simulate the operation of each photovoltaic cell. The electrical output of a pho-
tovoltaic cell can be approximated by an analogous model circuit named single-diode 
model (SDM) with five parameters; these parameters are unknown and required to pre-
dict the performance of the PV module and are derived from the photovoltaic cell’s cur-
rent equation for a given temperature and irradiance. Both models can simulate PV cell 
performance in low voltage and/or high external temperature circumstances [54]. Equa-
tion (1) denotes the current equation for the single-diode model, whereas Fig. 2 depicts 
the analogous circuit. In Eq. (1), Iph is the current generated by the irradiance of light, 
Io1, is the reverse saturation current of diode D1, q is the electron charge, k is the Boltz-
mann’s constant, α1 is the diode’s ideality factor, T is the temperature expressed in Kelvin 
degrees and Rs, Rsh are the resistors in series and shunt. The approach provided in the 

Fig. 2  Single-diode model, equivalent circuit
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work of De Soto et al. [55] is used to determine the five parameters of Eq. 1 (Iph, Is, α1, Rs, 
and Rsh)

Looking at Fig. 3, plots depicted in green represent the Impp and Vmpp values according 
to the manufacturer’s datasheet, while plots in yellow represent the values created by 
the application that will create the dataset, based on De Soto method. It should be noted 
that the deviations in the voltage are less than 10 mV and the corresponding ones in the 
current are less than 100 mA, which makes them negligible.

Since the SDM is fully functional, the next step is to collect irradiance and tempera-
ture data. The PVGIS service [56] is used to acquire irradiance and temperature data 

(1)I = Iph − I01 e
q(V+IRs)
a1kT − 1 −

V + IRs

RSH

Fig. 3  Comparison between the values of Impp and Vmpp from the datasheet of the PV cell and the Impp 
and Vmpp generated by the SDM
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for the Egaleo region (Attica, Greece). Twelve files were provided from PVGIS, 1 for 
each month, from January till December, indicating the average hourly temperature 
and irradiance for all days of each month. These files were consolidated and the corre-
sponding records to the certain hours after sunset and before sunrise were discarded. 
The concatenated yearly file served as input to a Python script, which allowed the 
SDM to construct I–V curves for the 147 pairs of irradiance and temperature. From 
the 147 pairs, temperature varies from 1.32 to 35.06 °C, while irradiance varies from 
0.04 to 984.84 W/m2.

After all the data have been collected, the last script undertakes the interconnec-
tion of the data and the creation of 110,250 records wide dataset. Each record has 
the format: Temperature (oK), GHI (W/m2), VmppModel (V), ImppModel (A), VocModel (V), 
IscModel (A), VCell (V), ICell (A), and operational status. Temperature and GHI values are 
retrieved directly from the PVGIS service. VmppModel, ImppModel, VocModel, and IscModel 
are retrieved from each generated I–V curve. VCell and ICell are voltage and current 
values ranging from 0-VocModel and 0-IscModel, and are measurements made in each PV 
cell of the array.

The operational status codes are encoded according to Table 2. While Fig. 4 depicts 
the percentages of the operational status codes within the full dataset, and in Fig. 5 
the nine features of the dataset are grouped by their operational status code.

Observing the values of the last field of the dataset (operational status), we are led 
to the conclusion that this is a multi-class classification problem. To turn a multi-class 
problem into a set of binary tasks, the use of either one-vs-one (OVO) or one-vs-rest 

Table 2  Operational status code encodings–conditions

Op. status code 0 1 2 3 4

Fault type Normal opera-
tion

Short-circuit Open-circuit Mismatch Undefined

Status condition Pcell ≥ 0.9 Pmpp-

model

Icell ≥ 0.9 Iscmodel 
and
Vcell ≤ 0.1 Vocmodel

Icell ≥ 0.1 Iscmodel 
and
Vcell ≤ 0.9 Vocmodel

FFmodel-
FFcell ≥ 0.1

Ιf the preceding 
status conditions 
do not apply

Fig. 4  Distribution of operational states within the dataset
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(OVR) strategies is suggested. Using the OVO strategy requires 10 classifiers ([N*(N-
1)]/2), while for the OVR strategy only 5 are required. Each operational status in the 
dataset has its classifier. Consequently, the second strategy is considered preferable.

The use of logistic regression enchansed with CV for fault detection in photovoltaic sys-
tems can be considered significantly constructive. While logistic regression is a well-estab-
lished machine learning technique for binary classification tasks [51], its use in the specific 
context of fault detection in PV systems is still developing. The addition of CV to the logis-
tic regression model can be considered innovative as it helps to improve the performance 
of the model by reducing overfitting and increasing its ability to generalize to new data. 
By incorporating CV into the logistic regression model, the effectiveness of the model for 
fault detection in PV systems is likely to be improved, which could lead to new and more 
effective approaches for identifying faults in PV systems. LogisticRegressionCV classifier 
is compatible with the OVR strategy. It is similar to plain logistic regression but it has been 
hyperparameter-tuned (through CV). It tries several regularization strengths and chooses 
the optimal one based on CV ratings then refits a single model on the entire training set, 
using that best C (Inverse of regularization strength). The LogisticRegressionCV parame-
ters were determined as follows: The trainer continues training for 10,000 iterations to find 
better weights. The number of CV sets is set to 3. The ‘ovr’ option has been selected, to fol-
low the one-vs-rest strategy. Since it is a multi-class problem, the limited-memory BFGS 
(LBFGS) optimization algorithm was chosen as a solver combined with the regularization 
parameter (penalty) ridge regression (L2). Finally, the size of the list of the available values 
(Cs) for the coefficient of the inverse of regularization strength (C) is set to 10.

The development of the application as well as the creation of the dataset was done in 
Python 3.9 language using sklearn 1.1.2 [57] and PVlib 0.9 libraries [58]. The photovoltaic 
cell used in the dataset is the Solar Cells Hellas SCH6P-60 Multicrystalline Solar Cell [59].

Results and discussion
In previous sections, the development of a machine-learning algorithm based on logistic 
regression with cross-validation, capable of detecting and identifying faults in the DC side 
of a PVS was presented. Then the experimental measurements of the method are listed and 
discussed. The methods presented in the literature review are compared with each-other 
and with the method presented.

The experimental process was performed on an AMD Ryzen 3 5400U processor, 8.00 GB 
DDR4 RAM and PCIe M.2 SSD. During the measurement process, no other processes were 
running in the foreground of the operating system apart from the basic processes of the OS. 
This was done in order the results to be as accurate as possible.

The experimental data have been divided into two tables (Tables 3 and 4), Table 3 has the 
qualitative characteristics and Table 4 has the quantitative characteristics.

Regarding the quantitative characteristics of the measurements. The average training 
time and memory required for the training process is shown in Table 4. In more detail 

Table 3  Experimental results—qualitative characteristics

Accuracy Precision AUC​ Recall F1-score

97.11% 0.955 0.998 0.945 0.949
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the logistic regression took 113 s and consumed 6.68 MB of memory. The process of fit-
ting and training the model lasted 205 s and consumed 2.48 MB of memory. Accordingly, 
the use of the model in order to make a forecast of the operating state of the PV cell is 
8 ms/prediction call with a memory consumption of 180 KB/prediction call. It should be 
noted that in order to obtain the measurements concerning the execution time, but also 
the memory that we reserved when calling the generated model of the method, a loop of 
100 iterations was used, and the above values (execution time, memory consumption) 
are essentially the average values of 100 iterations.

In terms of the measurements’ qualitative features, Fig.  6 shows the confusion 
matrix after the classification and the fitting process. Here, we can observe the true 
positive predictions, the true negative predictions as well as type 1 and 2 errors (false 
positive, false negative). While Fig.  7 depicts the receiver operating characteristic 
(ROC) curves for the five classifier that were used. These curves display the perfor-
mance of each classifier across all categorization criteria. The greater the area under 
the curve (AUC), the better the model distinguishes across classes. We have an AUC 
of 99.8% based on the experimental data. This is almost an ideal circumstance. The 
data from true positives (TP) and true negatives (TN) overlap by less than 0.2%. 

Table 4  Experimental results—quantitative characteristics

Training time Memory required Execution time/prediction call Memory/prediction call

318 s 9.1 MB 180 KB 8 ms

Fig. 6  5 × 5 confusion matrix
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When TP and TN do not overlap, the model provides an ideal measure of separabil-
ity. This means that each one of the classifiers used, nearly precisely, differentiates 
between its positive and negative classes.

The F1-score (0.949) is an improved version of two simpler performance metrics: 
accuracy and recall. Precision (0.955) that indicates the proportion of anticipated 
positives that are genuinely positive, while recall (0.945) indicates the proportion of 
actual positives that were accurately detected. It is commonly referred to as the har-
monic mean of the two metrics. The goal is to produce a single metric that evenly 
weights the two values (precision and recall). The accuracy statistic (97.11%) indicates 
how many times the model predicted correctly over the full dataset.

The measurements presented in Table 4 are all remarkably high, a fact that makes 
the algorithm particularly reliable.

Table 5 below shows the comparison of the implemented method compared to the 
methods presented in the literature. The comparison among the methods is based on 
the accuracy of each method, the ability to identify the three main categories of faults 
on the DC side of a PVS, but also on the computational cost of memory usage and the 
execution time using each method. In Table 5 additionally, in the field of “comments”, 
other characteristics, advantages, or disadvantages of each method are presented.

According to Table 5, the developed method will be compared with other thirteen 
methods that were presented in the last 5  years (2017–2022) in the literature. Six 
methods [41–43, 46, 50, 53], can detect the three main types of faults on the DC side 
of a PVS (open-circuit fault, short-circuit fault, mismatch faults). One method [47] 
can detect two types of faults (short-circuit fault, mismatch faults), and six methods 
[44, 45, 48, 49, 51, 52] can detect only one type of fault (open-circuit fault, arc fault, 
mismatch faults, short-circuit fault, arc fault, mismatch faults respectively). Regarding 
the accuracy of fault detection, nine methods [41, 42, 45, 47–51, 53] show an accuracy 

Fig. 7  ROC curves for the five classifiers
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of more than 95%, while one method [46] shows fluctuating accuracy depending on 
the type of the fault (89.6–98%). Finally, only two methods [43, 50] provide informa-
tion about their computational cost, it has to be noted though that the method pre-
sented in [50] provides data only for its execution time.

Comparing the new method implemented and presented in this work with the cor-
responding 13 methods from the literature, the method can perceive the three basic cat-
egories of faults that may occur, while in addition, it can also perceive the existence of 
other errors. The fourth category of faults that can be perceived by our method refers to 
faults that do not correspond to any of the three basic categories of errors that we study, 
but they can be considered as the transition from normal operation to some faulty state, 
thus their monitoring can act as a warning indicator of future problems. As far as the 
accuracy of its measurements is concerned, it has a performance greater than 95% (more 
specifically 97.11%) and provides information about its computational cost in memory 
and execution time (180 KB RAM per call, 8 ms per call). It should be noted that most 
of the methods presented in the literature do not report information about the execu-
tion time and the memory they consume. The best execution time is shown in the pre-
sented method (8 ms), with second best performance that presented in [43] (44 ms), and 
with third best performance that presented in [50] (160–70 ms; note: the execution time 
the operating status of the PVS changes accordingly). The execution time is objectively 
related to the hardware of the computer on which the method is executed, but methods 

Table 5  Comparison of the methods

Method/Ref num OCF SCF MF Other Mem/ call (KB) Ex. time/ call (ms) Accuracy/comments

Developed method 
[–]

✓ ✓ ✓ ✓ 180 8 97.11%

Chen et al. [41] ✓ ✓ ✓ – – – 98.8%

Harrou et al. [42] ✓ ✓ ✓ – – – r2 > 0.9 RMSE 0.14
MAPE2.83%

Voutsinas et al. [43] ✓ ✓ ✓ ✓ 220 44 93.4%

Yi and Etemadi [44] – ✓ – – – – 94.74%

Xia et al. [45] – – – – – – Arc fault detection 96%

Harrou et al. [46] ✓ ✓ ✓ – – – Ranges from 89.6–98% 
depending on the fault 
it detects

Wang et al. [47] – ✓ ✓ – – – 97.78%

Winston et al. [48] – – ✓ – – – 99%

Yi and Etemadi [49] – ✓ – – – – Ranges from 97.69 to 
100% depending on 
the fault it detects

Memon et al. [50] ✓ ✓ ✓ – – 160–70 95.2%. Execution time 
varies according to the 
kind of the detected 
fault

Jia et al. [51] – – – – – – Arc fault detection 
100%

Fadhel et al. [52] – – ✓ – – – Different types of shad-
ing faults. Insensitive 
to sudden irradiance 
variations 88%

Dai et al. [53] ✓ ✓ ✓ – – – 96.6%
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based on ANNs and CNNs, due to the complexity of their models, lead to an increase 
in the execution time. On the other hand, the method presented in the current work is 
based on logistic regression, a simple and fast machine learning method compared to 
other complex models like deep neural networks. This is because logistic regression is a 
linear model, which means that it has a relatively small number of parameters and can 
be trained relatively quickly. Logistic regression can be executed very quickly, even on 
large datasets, due to its linear nature and the efficient optimization algorithms that are 
available for training the model. Due to this, the presented method exhibits the shortest 
execution time.

The developed method is considered to have comparable response in relation to the 
corresponding methods in the literature, but in some criteria such as the identification 
of additional faults, or in the part of the computational cost it goes beyond the limits 
set by the literature. Its installation in a PVS with quality materials in order to limit the 
appearance of permanent mismatch faults, while at the same time having AFCI and 
RCM sub-units installed to the PVS in order to immediately detect arcing and current 
leakage to ground, will guarantee the smooth operation of the PVS.

As a future work, it is proposed to increase the records of the dataset, in order to fur-
ther increase the accuracy of the method. Furthermore, the additional categorization of 
the faults with the use of appropriate hardware will be able to separate the subcategories 
of the faults, such as for example the separation between permanent and temporary mis-
match faults.

Conclusions
The purpose of this work is to design an algorithm for the early detection and identifi-
cation of faults that may occur in the DC part of a PVS. The results of the method are 
particularly encouraging since it can identify with 97.11% accuracy the three main cat-
egories of faults (open-circuit fault, short-circuit fault, permanent and temporary mis-
match faults, and can detect the presence of extra undefined faults) on the DC side of 
a PVS. The latter fault category includes faults that do not belong to any of the three 
main categories of faults that appear on the DC side of a PVS, or they can signify the 
transition from the normal operation of the photovoltaic cell to some faulty state. Fur-
thermore, comparing our method with other methods introduced in the literature, our 
method is quick and memory-efficient when used for output prediction (180 KB RAM 
per call, 8 ms per call). Comparing our method with the existing methods from the lit-
erature, it provides similar levels of accuracy, while in the majority of cases it identifies 
more faults. It should not be overlooked that the specific method can be applied to typi-
cal PVS installations (with minor modifications), not only to smart PVSs. In fact, in the 
latter, our method can be used, at the photovoltaic string level but also at the PV cell 
level, which is very important since it gives full real-time control over the state of each 
cell of the PVS. The results indicate that it can be used in PVS-based power plants.
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