
RESEARCH

Open Access

Prashant Shah^{1*} and Khetraj Dahal^{2*}

*Correspondence: prashantlife@gmail.com; dahal. khetraj@gmail.com

¹ Department of Civil Engineering, Hillside College of Engineering, Lalitpur, Nepal ² Department of Construction Engineering and Management (CEM), Lumbini International Academy of Science and Technology, Lalitpur, Nepal

Abstract

The landslide disaster, feeble geology, rapid deforestation, poor drainage system, and increase in mechanical strain have weakened the Krishna Bhir slope, Prithvi Highway, Dhading, Nepal. The objective of this article was to study about the problems associated with bioengineering implementation in hill road construction with the future recommendations. For primary research, map study, field observation, in-depth interview, focus-group discussion, and questionnaire survey were used as an instrument for the field study. Published reports, papers, thesis, database and manuals, and field observation were also reviewed. Landslide caused the loss of property, ill effects on lifestyle, disturbance in movement of goods and services, loss of availability of water due to damage in water supply system, damage in sewage disposal system, etc. During the construction period using bioengineering technique, major problem occurred during installation of the bioengineered system (RII = 0.791), lack of training during construction (RII = 0.839), unavailability of space (RII = 0.817), inadequate supply of appropriate instruments (RII = 0.821), and improper selection of vegetation types (RII = 0.839). The major problems were also seen during site monitoring and evaluation (RII = 0.853). Proper selection of plant species (RII = 0.936) before implementation of bioengineering technique is needed at hill road, but the high installation costs (RII = 0.841) could be the major limitation. Bioengineering application has a bright future if proper actions are taken in time. Solutions need to be formulated and implemented by understanding the major limitations of bioengineering technique.

Keywords: Hill road construction, Bioengineering, Krishna Bhir, Jogimara, Banepa-Bardibas Highway, Landslide, Relative importance index

Introduction

Bioengineering is an alternative for the usual engineering techniques where vegetation is used as a primary tool. It uses green infrastructure to protect from natural calamities like landslide and soil erosion in the form of soil stabilization and improved drainage function [1]. The civil engineering has been incorporating the concept of bioengineering in order to reduce the overall cost of the mitigation measures used for landslide. The immediate protection in the form of physical structure is provided by physical construction techniques, whereas vegetation techniques used in bioengineering need time to

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/public cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

show its effect [2]. The Nepalese geology has also been very favorable to bioengineering techniques in the recent times due to its cost-effectiveness, low labor cost, and local availability of useful materials [3].

Nepal is a mountainous country consisting of three major regions, namely mountains, hills, and Terai. Most hill districts of Nepal lack of adequate rural transportation resulting in isolation, poor access to markets, high prices of commodities, irregular public services, and low economic opportunities [4]. To address the above said social inequalities and physical, social, and economic hardship to the local people due to lack of access, the government of Nepal has given high priority to construct hill roads as a prime infrastructure services to assist in realizing the goal of alleviation of poverty. The construction of road in these regions has become a major challenge which has introduced the concept of Green Road and bioengineering technique for solving these problems [5]. The concept of bioengineering in hill road construction was introduced in Nepal 40 years ago with roadside plantations in a US-assisted project on the Dhangadhi-Dadeldhura highway in western Nepal [6]. Nepal has been suffering from water-induced disaster problems including soil erosion, debris flow, landslides, and flooding which are common due to the unstable landscape. Soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. The main soil bioengineering techniques used in Nepal are brush layering, palisades, live check dams, fascines, and vegetative stone pitching [7].

The Krishna Bhir is a cliff located in Dhading District by the side of Prithivi Highway, approximately 83 km from Kathmandu Valley. The landslide disaster at Krishna Bhir has become very infamous due to its serious and dreadful effects which have worsened the socio-economic and environmental condition of the region [8]. The feeble geology, rapid deforestation, poor drainage system, and increase in mechanical activities have further weakened the Krishna Bhir slope leading to frequent landslides. Bioengineering was applied to this area by the Department of Road — Nepal, in order to stop the mass movement of the hill slope and to strengthen it. Although it was an effective solution, the Krishna Bhir slope has reverted back to its volatile state again [9]. Hence, this article evaluates the problems of hill road construction at Krishna Bhir using bioengineering techniques with the future recommendations to prevent the impending landslide problems.

Methods

This study utilizes both the primary and secondary research. A mixed-method research is used in the study where combination of both the qualitative and quantitative data is used in order to answer the designated research question. Primary data was collected through semi-structured questionnaire, focus-group discussion, in-depth interviews (IDI) with key informats, and direct field observation. Secondary data regarding the research was collected from published and unpublished literature of department of roads, detailed project report (DPR) of Krishnabhir, and different publications of the Department of Road (DoR) books, newspapers, journal, and research papers and from different related concerned offices.

The study area for the study covered two selective sites which include Krishnabhir (Jogimara) and Banepa Bardibas Highway. A total of 240 respondents were selected for the survey which included 180 technical respondents (engineers and subengineers) and 60 non-technical respondents (community people, traffic police). For quantitative data, a set of multiple-choice questionnaires was prepared for all the respondents where Likert's scale was used to get views of each respondent with the scale ranging from 1 to 5 (1=n0 impacts, 2=negligible impact, 3=marginal impact, 4=moderate impact, and 5=major impact). Relative importance index (RII) was used to summarize the impact of each problem indicator [10].

 $RII = (\Sigma W/N) \times A$

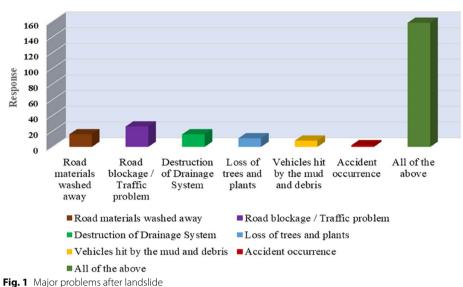
where

W = Weighting as assigned on Likert's scale by each respondent in a range from 1 to 5 (1 = no impacts, 2 = negligible impact, 3 = marginal impact, 4 = moderate impact, and 5 = major impact)

A =Highest weight (here, it is 5)

N = Total number in the sample

For the qualitative data, field observation was carried out by personal visitation of the construction sites and collection of information. MAP surveys are derived from traditional private sector distribution surveys using lot quality assurance sampling (LQAS) [11]. The IDI was carried out among the six experts who were highly experienced and qualified on the field of road maintenance and construction works. Semi-structured interview questionnaires were prepared for the respondents, and the response was recorded in the form of video as well as written text. Focus-group discussions were carried out between road construction experts, road users, road supervisors, and construction contractors. The qualitative data was analyzed using descriptive statistics and presented in the graphical form of charts, figures, and tables. Computer software, Arc-GIS, and Microsoft Tools were used for the overall data analysis. Privacy, confidentiality, and anonymity were maintained throughout the research, and written consent was taken from all the selected participants.


Results

Socio-demographic data

The general sociodemographic information of the respondents revealed that most of them are from age group of 40–49 (technical, 53%) and 18–29 (non-technical, 48%). Most of the technical as well as nontechnical respondents were males (79% and 73%, respectively). Most of the technical respondents were engineers (54%), employed (57%), had experience of more than 5 years (65%), and were involved in nongovernmental jobs (66%). The nontechnical respondents were mostly farmers (34%) and local representatives (33%).

Problems due to landslide

According to the survey conducted among 240 respondents, Fig. 1 shows that area hit by landslide that had fragile rocks mostly suffered problems of roads being washed away, road blockage, traffic problems, damage to drainage system, loss of trees, loss of property, and increase of accidents. Most of the respondents agreed that all the above were the major problems in the landslide hit area. In addition,

Table 1 Perception on problems after landslide

n=240			
Items	Yes	No	Maybe
Loss of property and lifestyle	79%	7%	14%
Disturbance on movement of goods and services	57%	7%	36%
Loss of water availability, quantity, and quality	79%	7%	14%
Damage water supply system	60%	36%	4%
Damage sewage disposal system	58%	39%	3%

most of the respondents agreed that there was loss of property and lifestyle (79%), disturbance in maintenance of goods and services (57%), loss of water availability, quality and quantity (79%), damage to water supply system (60%), and damage to sewage disposal system (58%) due to landslide (Table 1).

Problems before construction period

Table 2 shows that among 180 respondents, majority of them agreed that the improper planning at office before construction, inadequate priorities of office work before project execution, improper division of site segment, problems with access to site, lack of determining civil engineering works, improper selection of bioengineering technique, improper design of the civil engineering structure and bioengineering system, improper calculations of required quantities and rates, problems in budget finalization, and improper preparation of documents for the project were major hurdles before the implementation of the construction work. The inadequate priorities of office work before project execution (RII = 0/954, mean = 4.772) were the major problem before construction work started using the bioengineering techniques.

Problems after Landslide

ltem	Frequency of "5" responses	Frequency of "4" responses	Frequency of "3" responses	Frequency of "2" responses	Frequency of "1" responses	Weighted total	RII	ltem mean
Improper planning at office	118	25	14	12	11	767	0.852	4.261
Inad- equate priorities of office work	165	3	4	2	6	859	0.954	4.772
Improper divisions of site segment	125	35	14	2	4	815	0.906	4.528
Assess to site	107	30	17	19	7	751	0.894	4.172
Lack of determin- ing civil engineer- ing works	116	48	10	2	4	810	0.826	4.500
Lack of selection of right bioengi- neering technique	147	21	6	2	4	845	0.939	4.694
Improper design of civil engi- neering structures and bioengi- neering system	157	11	6	2	4	855	0.950	4.750
Improper calcula- tions of required quantities and rates	91	37	19	22	14	718	0.798	3.923
Budget finaliza- tion	85	47	19	11	18	710	0.789	3.944
Improper arrange- ments of imple- menta- tion and prepara- tion of the docu- ments	104	37	12	19	8	750	0.833	4.167

Table 2	Problems	before cons	struction v	vork (n = 180)
---------	----------	-------------	-------------	--------	---------	---

ltem	Frequency of "5"	Frequency of "4"	Frequency of "3"	Frequency of "2"	Frequency of "1"	Weighted total	RII	Mean
	response	response	response	response	response			
Site clear- ance	14	49	36	37	44	492	0.547	2.733
Incorrect method of slope stabi- lization	86	20	22	32	20	660	0.733	3.667
Inaccurate selection of plant species	54	48	36	26	16	638	0.709	3.544
Installation of bioen- gineered system	95	36	15	14	20	712	0.791	3.956
Improper use of bio- engineering materials	29	14	61	51	25	511	0.568	2.839
Problem du	e to inadequa	ate involveme	ent of local co	ommunity				
Lack of awareness about bio- engineering principle	57	29	33	17	44	578	0.642	3.211
Lack of training	121	15	12	22	10	755	0.839	4.194
Demand more salary	61	48	39	16	16	662	0.736	3.678
Threat from local community	13	36	20	24	87	404	0.449	2.244
	ue to transpo	rtation of cor	nstruction ma	terial at the s	ite			
Lack of raw materi- als	57	29	33	17	44	578	0.642	3.211
Shortage of drivers	15	27	25	18	95	389	0.432	2.161
Damaged road condi- tions	85	38	24	17	16	699	0.777	3.883
Landslide and flood	19	34	17	23	87	415	0.461	2.306
Traffic issues	57	19	54	13	37	586	0.651	3.256
Problems du	ue to storage	of constructi	on material a	t the site				
Lack of proper assessment	78	19	23	17	43	612	0.680	3.400
Unavail- ability of space	87	53	17	14	9	735	0.817	4.083
Local community issues in their private land	37	34	19	23	67	491	0.546	2.728

Table 3 Problems during construction work (n = 180)

ltem	Frequency of "5"	Frequency of "4"	Frequency of "3"	Frequency of "2"	Frequency of "1"	Weighted total	RII	Mean
	response	response	response	response	response			
Problems as	sociated with	n mobilizatio	n of manpow	er				
Lack of training before and after the construc- tion period	113	27	13	16	11	755	0.839	4.194
Insufficient number of skilled manpower	66	62	27	9	16	693	0.770	3.850
Inad- equate involve- ment of local com- munity	41	35	14	23	67	500	0.556	2.778
Inad- equate installer (unfamiliar with bioen- gineering principle)	9	34	17	43	77	395	0.439	2.194
Safety manage- ment	8	29	18	37	88	372	0.413	2.067
Problem ass	ociated with	mobilization	of plant and	species at the	e site			
Improper covering of surface due to deep slope	20	27	43	59	31	486	0.540	2.700
Improper selection of vegetation types	109	32	17	9	13	755	0.839	4.194
Improper selection of plant propaga- tion	53	55	14	23	35	608	0.676	3.378
Improper functioning of armor	15	34	21	43	67	427	0.474	2.372
Difficult to follow of contour walting	9	29	28	46	68	405	0.450	2.250
		n unavailabili	ty of seedbed					
Insufficient work space	43	37	33	38	29	567	0.630	3.150
Lack of irrigation system	44	32	17	22	65	508	0.564	2.822

Table 3 (continued)	inued)
---------------------	--------

ltem	Frequency of "5" response	Frequency of "4" response	Frequency of "3" response	Frequency of "2" response	Frequency of "1" response	Weighted total	RII	Mean
Unavail- ability of locally adapted plants	56	55	14	23	32	620	0.689	3.444
Unavail- ability of seedbed fertilization	90	57	11	13	9	746	0.829	4.144
Problem ass	ociated with	political issue	es during con	struction per	iod			
Influence on tender award	14	37	33	38	58	451	0.501	2.506
Demand of job to political worker	131	25	8	7	9	802	0.891	4.456
Demand of commis- sion	83	45	14	17	21	692	0.769	3.844
Delay due to strike and protest	26	47	21	41	45	508	0.564	2.822

Table 3 (continued)

Problems during construction period

According to Table 3, the improper installation of bioengineered system (RII = 0.791, mean = 3.956) was the main problem during the construction period using the bioengineering technique. In terms of the involvement of local community during construction, lack of training (RII = 0.839, mean = 4.194) was the major hurdle that caused the lack of involvement. In terms of transportation of the construction material, damaged road conditions (RII = 0.777, mean = 3.883) were also another major hurdle that created problems construction. The unavailability of space (RII = 0.817, mean = 4.083) during the storage of construction material created another major problems during the construction works. There were no major disasters during the construction materials (RII = 0.821, mean = 4.106) caused major problems in mobilization of the construction of the construction generates during the construction phase. In terms of mobilization of manpower, lack for training for the workers before and during the construction problem.

The improper selection of the vegetation types (R = 0.839, mean = 4.194) during the construction phase also caused problems in proper utilization of the available plant species. Bioengineering is only successful if there is availability of proper seedbed, but there was unavailability of seedbed preparation at the site due to lack of seedbed fertilization (R = 0.829, mean = 4.144). Political issues also caused problems during construction when demand of the job to the political workers increased (R = 0.891, mean = 4.456) at the construction site (Table 3).

Benefits after bioengineering

Among the 180 technical respondents, majority agreed that after the implementation of bioengineering construction works, the maintenance costs of the live plants around that area decreased after their establishment (RII = 0.972, mean = 4.861). Other changes that were seen include slope stabilization, erosion control, low cost and long-term maintenance cost than traditional methods, ground water control, and environmental benefits of wild life habitat (Table 4).

Problems after construction work

According to the respondents, the major problem after the implementation of the bioengineering during construction work was seen in site monitoring and evaluation (RII=0.853, mean=4.267) (Table 5). The problems during the maintenance work was seen mainly in the mulching process (RII=0.184, mean=4.072). During the maintenance, the workers were mostly using the improper method of mulching as well as weeding at the planted sites (Table 6).

Purposed solutions of problems before implementation

Among the 180 technical respondents, most of them agreed to the fact that the proper selection of plant and species (RII=0.936, mean=4.678) could be one of major solutions to avoid the problems (Table 7). Other solutions include focus on appropriate design and technology, consideration to plant propagation, proper mobilization of construction equipments and tools, and training for the manpower.

Limitations of the bioengineering technique

In terms of the major limitations of the bioengineering technique (Table 8), the high construction and installation cost (RII=0.841, mean=4.2056) and limited amount of locally adapted plants around that area (RII=0.814, mean=4.072) were the most relevant limitations. Other limitations include the following: takes long term for functioning, construction and installation cost are high, and difficulty to control human or animal traffic at the site.

Discussion

Bioengineering has been utilized in construction management for a very long time and is showing high relevance in the recent times. Live vegetation has been in use for a very time in order to reduce soil erosion, for bed stabilization, to protect seawalls and sand dunes from the force of water. Bioengineering provides long-term protection, which is capable of self-regeneration as well [12]. The increasing popularity of soil and water bioengineering constructions has paved way for living plants and supplementary materials to be included in various construction projects. It has also improved the ecological values and the values of landscape aesthetics together with the technical benefits of the bioengineering technique [13]. Soil bioengineering is present in Nepal since 30 years to deal with the problems of erosion on slopes, high way construction, and stabilization of the riverbank. Nepal's landscape has been quite familiar to the bioengineering techniques

ltem	Frequency of "5" responses	Frequency of "4" responses	Frequency of "3" responses	Frequency of "2" responses	Frequency of "1" responses	Weighted total	RII	ltem mean
Slope stabiliza- tion	24	29	30	34	63	457	0.508	2.539
Erosion control	138	28	8	2	4	834	0.927	4.633
Low- cost and long-term mainte- nance cost than traditional methods	124	27	12	9	8	790	0.878	4.389
Control ground water	22	11	45	53	49	444	0.493	2.467
Low main- tenance of live plants after they estab- lished	166	7	4	2	1	875	0.972	4.861
Environ- mental benefits of wild life habitat	85	52	23	18	2	740	0.822	4.111
Improved water qual- ity and quantity	45	78	18	14	25	644	0.716	3.578
Improved strength overtime as root system devel- ops and increases structural stability	47	30	21	37	45	537	0.597	2.983
Promo- tion of aesthetic values	120	41	10	5	4	808	0.898	4.489
Engage- ment of local com- munity staff	68	22	24	18	48	584	0.649	3.244
Reduce disaster	78	39	25	21	17	680	0.756	3.778
Develop- ment of agricul- tural land	35	26	29	35	55	491	0.546	2.728

Table 4 Benefits after bioengineering (n = 180)

	(continued)

ltem	Frequency of "5" responses	Frequency of "4" responses	Frequency of "3" responses	Frequency of "2" responses	Frequency of "1" responses	Weighted total	RII	ltem mean
Improve the life span of road pave- ment	128	32	11	6	3	816	0.907	4.533

Table 5	Problems after	construction work (n = 180)

ltem	Frequency of "5" responses	Frequency of "4" responses	Frequency of "3" responses	Frequency of "2" responses	Frequency of "1" responses	Weighted total	RII	ltem mean
Site monitor- ing and evalua- tion	121	23	12	11	13	768	0.853	4.267
Remov- able of lateral support	22	11	45	53	49	444	0.493	2.467
Routine mainte- nance	69	47	28	22	14	675	0.750	3.750
Animal damage (protect live plant from animals)	87	38	18	22	15	700	0.778	3.889
Natural disaster	41	42	28	41	28	567	0.630	3.150
Human interven- tion	45	78	18	14	25	644	0.716	3.578
Defor- estation	47	30	21	37	45	537	0.597	2.983

as well, and many construction activities have started using the different bioengineering techniques. In terms of the projects in Nepal, the major bioengineering technique used is brush layering, palisades, live check dams, fascines, and vegetative stone pitching [3].

The above study was also conducted to evaluate the effectiveness of bioengineering techniques and the problems encountered while incorporating the bioengineering technique in the construction works at Krishna Bhir and Banepa Bardibas Highway. Both the responses of the technical personnel and the nontechnical personnel in the study area were collected to know about the current situation of the construction site, implementation of bioengineering technique, its usefulness in the construction area, and its after effect. From the responses obtained, it was concluded that although the bioengineering technique had been beneficial to solve the problems related to landslide and soil erosion, the lack of preparation, design, proper implementation, maintenance, monitoring, evaluation, and other relevant factors had caused the slope and road to revert-back to its

ltem	Frequency of "5" responses	Frequency of "4" responses	Frequency of "3" responses	Frequency of "2" responses	Frequency of "1" responses	Weighted total	RII	ltem mean
Protec- tion of planted sites	91	19	41	15	14	698	0.776	3.878
Weeding	87	32	21	17	23	683	0.759	3.794
Mulching	92	46	18	11	13	733	0.814	4.072
Grass cutting	56	7	114	2	1	655	0.728	3.639
Watering	83	28	38	14	17	686	0.762	3.811
Apply for preven- tive mainte- nance	67	38	41	23	11	667	0.741	3.706

Table 6 Problems during site monitoring and evaluation (n = 180)

deteriorating state. According to [14], the poor preparation and maintenance culture are the major problems that affect the projects like the one in this research. The problems in proper implementation of the bioengineering technique, problems in transportation of raw materials, problems in storage of raw materials, lack of community participation, political issues, lack of mobilization of manpower, lack of proper selection of plant species for bioengineering, and lack of seedbed for fertilization caused ruckus during the construction activities. In addition, political influences during the construction phase also caused problems here and there. Projects in Nepal have a high political influence and changes its picture according to the people in power which was also seen in this project [15]. Not only during the construction period the improper planning and design of the project before its implementation were responsible but also for the future events that occurred in the area. Problems like improper planning at office before construction, inadequate priorities of office work before project execution, improper division of site segment, problems with access to site, lack of determining civil engineering works, improper selection of bioengineering technique, improper design of the civil engineering structure and bioengineering system, improper calculations of required quantities and rates, problems in budget finalization, and improper preparation of documents for the project were some of the hurdles that created a negative impact on the project even before it started. After the construction was over, the lack of proper maintenance activities, monitoring, and evaluation added up to already existing problems. After the evaluation of all the results, it can be clearly seen that the problems occurred due to the unfamiliarity, lack of awareness, lack of knowledge, lack of training, and lack of skills among the people that were fully involved in the construction work using the bioengineering technique. Due to lack of proper information and knowledge about the bioengineering technique, the pre and post phase of the construction work suffered a lot. Lack of awareness among the community people also added up to the problems. The participation of users in up-front decision-making (within the project design and planning phases, including the capacity to make meaningful choices among a series of options offered to them) leads to positive results in terms of any kind of construction

ltem	Frequency of "5" responses	Frequency of "4" responses	Frequency of "3" responses	Frequency of "2" responses	Frequency of "1" responses	Weighted total	RII	ltem mean
Appro- priate design, technol- ogy	134	19	11	9	7	804	0.893	4.467
Proper selection of plant and spe- cies	154	12	3	4	7	842	0.936	4.678
Consid- eration of plant propaga- tion	149	14	8	5	4	839	0.932	4.661
Proper mobiliza- tion of construc- tion equip- ment and tools	56	7	114	2	1	655	0.728	3.639
Provi- sions of proper training of man- power	138	28	8	2	4	834	0.927	4.633
Proper aware- ness of bioengi- neering princi- ples to the local commu- nity	41	42	28	41	28	567	0.630	3.150
Proper monitor- ing and supervi- sions	129	29	7	9	6	806	0.896	4.478
Proper aware- ness about limit, rules, and regula- tions relating to the bioengi- neering tech- nique	89	30	16	24	21	682	0.758	3.789

Table 7 Purposed solutions of the problems (n = 180)

ltem	Frequency of "5" responses	Frequency of "4" responses	Frequency of "3" responses	Frequency of "2" responses	Frequency of "1" responses	Weighted total	RII	ltem mean
Proper arrange- ment of water drainage system	64	37	24	29	26	624	0.693	3.467
Proper waste water disposal system	54	47	34	18	27	623	0.692	3.461

Table 7 (continued)

project which was lacking in this project [16]. People responsible for carrying out the construction design, choosing the bioengineering tools and system, budget finalization, and preparation of initial documents, and fixing out priorities seemed to lacking proper training and skills to perform their responsibility. The cracks in the initial phase caused the project to get affected in the later phase. Unfamiliarity about the seasonal plants, importance of seedbeds, vegetation type, and plant selection in construction bioengineering may caused more hurdles leading to an unsatisfactory result.

Although benefits like slope stabilization, erosion control, ground water control, protection of wild life habitat, improved water quality and quantity, promotion of aesthetic values, reduction of disaster, development of agricultural land, and improvement in the life span of road pavement were seen [17], these were not there to stay for a long term. The failure of post implementation maintenance phase created a big question mark on the effectiveness and long-term stability of the construction project. Problems in protection of planted sites, weeding, mulching, grass cutting, watering, and lack of preventive maintenance caused the implemented construction work to suffer for long term. So, the technical respondents emphasized that before starting any bioengineering construction works in the future, special emphasis should be placed on appropriate design and technology, proper selection of plant and species, proper plant propagation, proper mobilization of construction equipment and tools, proper training of manpower, proper awareness of bioengineering principles to the local community, proper monitoring and supervisions, and proper awareness about limit, rules, and regulations relating to the bioengineering technique. With the emphasis on these factors, the projects like these could lead to a more successful result for a long term. But we should not forget that every process and procedure has its own limitations. Bioengineering also has its own limitations which need to be considered in the initial phases, so as to receive least problems in the execution of any projects in the future [18]. Lack of skilled bioengineering experts, expensive construction and installations costs, unpredictability of plants, and unfamiliar installation techniques are the major limitations of bioengineering according this study. Hence, in the future, the projects like the Krishna Bhir construction need to focus on initial phase preparation and post implementation maintenance together with limitations of the bioengineering implementation for the success and effectiveness of the project.

ltem	Frequency of "5" responses	Frequency of "4" responses	Frequency of "3" responses	Frequency of "2" responses	Frequency of "1" responses	Weighted total	RII	ltem mean
Installation season is often limited to plant dormant seasons	91	19	41	15	14	698	0.776	3.878
Site access limited	87	32	21	17	23	683	0.759	3.794
The avail- ability of locally adapted plant may be limited	92	46	18	11	13	733	0.814	4.072
Labor needs are inten- sive and skilled; experi- enced labor may not be available	56	7	114	2	1	655	0.728	3.639
Installers may or may not be familiar with bioengi- neering principles and design	83	28	38	14	17	686	0.762	3.811
Alternative prac- tices are aggres- sively marketed and often more widely accepted by the society and con- tractors	67	38	41	23	11	667	0.741	3.706
Plant successive rate is only 75–80%	45	54	34	25	22	615	0.683	3.4167
Takes long term for functioning	87	44	21	15	13	717	0.797	3.9833

Table 8	Limitations of bioengineering technique ($n = 180$)

ltem	Frequency of "5" responses	Frequency of "4" responses	Frequency of "3" responses	Frequency of "2" responses	Frequency of "1" responses	Weighted total	RII	ltem mean
Construc- tion and installation cost are high	114	24	18	13	11	757	0.841	4.2056
Difficult to control human or animal traffic at the site	67	39	24	35	16	649	0.721	3.5856
Due to flood and drought condition, installation may be destroyed	89	31	15	29	16	688	0.764	3.8222
Supple- mental planting may be needed after the comple- tion of the project	83	48	12	18	19	698	0.776	3.8778

Table 8 (continued)

Conclusions

Hence, bioengineering can be a very successful tool for any construction project like the one in Krishna Bhir and Banepa Bardibas Highway if the focus is shifted on making people aware of bioengineering and providing required training and knowledge to respective personnels. The initial design and preparation phase should be given special consideration, so that bioengineering techniques are executed efficiently. During the construction phases, manpower utilization, raw material availability, skill development, etc. need to be given special focus for proper execution of the project. Post implementation maintenance also need to go hand in hand with the project so that overall effective result is obtained. Although there were several problems during the hill road construction and post maintenance, bioengineering application has a bright future if proper actions are taken in time. Solutions need to be formulated and implemented by understanding the major limitations of bioengineering technique in the near future for the success of it in the hill road construction works.

Abbreviations

IDI	In-depth interviews
DoR	Department of road
DPR	Detailed project report
RII	Relative importance index
lqas	Lot quality assurance sampling

Acknowledgements

The authors would like to thank the team members and supervisors who supported them during the research work.

Authors' contributions

All authors contributed to the study development and have read and approved the final version. Preparation of the original project, wrote the manuscript, formal analysis and investigation, and methodology were written by PS and KRD.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Availability of data and materials

All presented data are available under my request.

Declarations

Competing interests

The authors declare that they have no competing interests.

Received: 13 January 2023 Accepted: 6 April 2023 Published online: 25 April 2023

References

- 1. Salter D, Howell J, Eagle S (2020) Bioengineering for green infrastructure. 20. Available from: https://www.adb.org/ terms-use#openaccess%0Ahttp://www.adb.org/publications/corrigenda
- 2. Shrestha AB, Karim R, Shah SH (2010) Bioengineering measures. Resour Man Flash Flood Risk Manag 15–29
- Dhital YP, Kayastha RB, Shi J (2013) Soil bioengineering application and practices in Nepal. Environ Manage 51(2):354–364
- 4. Dhital MR (2015) Geology of the Nepal Himalaya: regional perspective of the classic collided orogen [Internet]. Geology of the Nepal Himalaya: regional perspective of the classic collided orogen. Springer International Publishing; [cited 2022 Dec 6]. 1–498 p. Available from: https://www.researchgate.net/publication/283774832_Geology_of_the_Nepal_Himalaya_Regional_perspective_of_the_classic_collided_orogen
- 5. DoR. Standard specifications for roads and bridges. Nepal Gov. 2073;5:708
- 6. DOR (2019) Roadside Bio-Engineering Site Handbook (2076–01–12).
- 7. Chalise D, Kumar L (2019) Land degradation by soil erosion in Nepal: a review 3(1)
- 8. No news from Krishna Bhir is good news- Nepali Times [Internet]. [cited 2022 Dec 6]. Available from: https://archive. nepalitimes.com/news.php?id=13871#.Y47zUnZBw2w
- Maskey S (2016) A case study of the Krishna Bhir slope failure disaster: past and present scenario at a glance. Int J Rock Eng Mech [Internet]. [cited 2022 Dec 6];2(April):1–10. Available from: https://www.researchgate.net/publi cation/301286663_A_Case_Study_of_the_Krishna_Bhir_Slope_Failure_Disaster_Past_and_Present_Scenario_at_a_ Glance
- Azman NS, Ramli MZ, Razman R, Zawawi MH, Ismail IN, Isa MR (2019) Relative importance index (RII) in ranking of quality factors on industrialised building system (IBS) projects in Malaysia. In: AIP Conference Proceedings [Internet]. AIP Publishing LLC AIP Publishing; [cited 2022 Dec 6]. p. 020029. https://doi.org/10.1063/1.5118037
- 11. Duarte BPM, Wong WK (2019) Optimal design of multiple-objective lot quality assurance sampling (LQAS) plans. Biometrics 75(2):572–581
- 12. Evette A, Labonne S, Rey F, Liebault F, Jancke O, Girel J (2009) History of bioengineering techniques for erosion control in rivers in western Europe. Environ Manage 43(6):972–984
- von der Thannen M, Hoerbinger S, Muellebner C, Biber H, Rauch HP (2021) Case study of a water bioengineering construction site in Austria. Ecological aspects and application of an environmental life cycle assessment model. Int J Energy Environ Eng [Internet] 12(4):599–609. Available from: https://doi.org/10.1007/s40095-021-00419-8
- Chandra Dahal R, Raj DK (2020) A review on problems of the public building maintenance works with special reference to Nepal. Am J Constr Build Mater 4(2):39–50
- Rai K (2008) The dynamics of social inequality in the Kali Gandaki 'A' dam project in Nepal: the politics of patronage. Hydro Nepal J Water, Energy Environ 1:22–28
- Davidson CH, Johnson C, Lizarralde G, Dikmen N, Sliwinski A (2007) Truths and myths about community participation in post-disaster housing projects. Habitat Int 31(1):100–115
- Rey F, Bifulco C, Bischetti GB, Bourrier F, De Cesare G, Florineth F, et al (2019) Soil and water bioengineering: practice and research needs for reconciling natural hazard control and ecological restoration. Sci Total Environ [Internet] 48:1210–8. Available from: https://doi.org/10.1016/j.scitotenv.2018.08.217
- Fernandes JP, Guiomar N (2018) Nature-based solutions: the need to increase the knowledge on their potentialities and limits. L Degrad Dev 29(6):1925–1939