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Abstract 

The problem of global warming, along with environmental concerns, has already 
led governments to replace fossil-fuel vehicles with low-emission electric vehicles 
(EVs). The energy crisis and environmental problems, such as global warming and air 
pollution, are essential reasons for the development of electric vehicles (EVs). Electric 
vehicles are one of the most fascinating and essential fields to emerge in recent years. 
According to the current report, electric vehicles are attempting to replace older, tra-
ditional automobiles. These vehicles not only help to reduce pollution but also to save 
natural resources. The presence of electric vehicles may cause several problems for the 
conventional electrical grid due to their grid-to-vehicle (G2V) and vehicle-to-grid (V2G) 
charging and discharging capabilities. With increased EV adoption, many power quality 
(PQ) issues in the electrical distribution system arise. With the penetration of EVs in dis-
tribution networks, power quality issues such as voltage imbalance, transformer failure, 
and harmonic distortion are expected to arise. The focus of this research is on exploring 
and reviewing the issues that the integration of EVs poses for electrical networks. The 
existing and future situations of electric vehicles’ integration, as well as new research on 
the subjects, have been reviewed in this paper. This study provides a thorough exami-
nation of power quality issues and their mitigating approaches.

Keywords: Electric vehicles, Power quality, Harmonics power flow, Harmonics and 
voltage imbalance, Mitigation techniques

Introduction
Due to the emission of harmful gases and environmental pollutants, conventional vehi-
cles are being replaced with plug-in hybrid electric vehicles (EVs). As a result, electric 
vehicle usage is increasing. Electric vehicle chargers and renewable energy sources such 
as solar are critical in reducing our reliance on fossil fuels, and they represent the nor-
mal progression of our energy structure [1]. Due to the nonlinear nature of the load, 
the temperature of the transformer and its associated loss rise during EV battery charg-
ing, reducing the transformer’s lifetime. The non-linear nature of some loads during EV 
charging induces total harmonic distortion (THD) in the charging current, i.e., the THD 
of the current influences the power quality of the distribution network [2, 3]. Active 
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power filters and FACTS devices such as shunt and series active power filters, dynamic 
voltage restorers, and unified power quality conditioners (UPQC), etc. are utilized to 
overcome these issues. Power quality concerns such as neutral currents, reactive power 
needs, and THD rise as AC/DC functions on high-frequency switches are changed. Sev-
eral papers on electricity power quality [3–5] and the grid have already been published 
in the literature. Regarding the optimization objective, Fig.  1 shows the maximization 
and minimization objective functions of electric vehicle integration into an electric dis-
tribution system.

An EV battery charger is a device that charges electric vehicles. One or more power 
electronics circuits that are utilized with a proper converter transform AC electrical 
energy into DC to charge the batteries at a certain voltage. The battery charging mecha-
nism of electric vehicles (EVs) is a critical power electronic component that introduces 
nonlinearity into the network, resulting in harmonic distortion of the electric grid 
side voltage or current [6]. The negative effects of this harmonic distortion include an 
increased insulation temperature voltage, a lower power factor, decreased insulation life, 
decreased efficiency, and increased heating losses, as shown in Table 1.

Unregulated EV connection and disconnection in the grid cause voltage imbalance. 
Due to the voltage imbalances in the electric grid, the cost of voltage correction devices 
may rise. Switching losses in the AC-DC converters of the electric vehicle charging sta-
tion account for a portion of the power loss [15, 16]. When electric vehicles are inte-
grated into the grid, the distribution transformer is the part of the system that is most 
susceptible to failure. An electric vehicle’s harmonic level can vary from 3% at the begin-
ning of charging to about 28% at the end [17, 18]. In addition to the charging action, 
there are various other functions for improved grid integration, especially in terms of 
electricity quality. The research on charging EVs and their influence on the power grid 
will assist stakeholders in implementing mitigation strategies and implementing the nec-
essary technologies to reduce the negative impact on the power distribution system. This 
work illustrates numerous impacts on the power distribution system as a result of EV 
charging through various research reviews. This work illustrates various impacts on the 
power distribution system as a result of EV charging through various research reviews. 
This article investigates the causes of EV-related power quality issues in the distribu-
tion system and possible mitigation measures that distribution companies must use to 

Fig. 1 Electric vehicles objective function
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address these issues. These PQ challenges are reviewed as shown in Fig. 2, with a focus 
on distribution transformer protection.

Main text
“Literature review” section describes the overview of the charging impact of EVs on the 
distribution grid and EVs controlled and uncontrolled charging. “Issues in electric vehi-
cle’s integration on distribution grid and their mitigation measures” section describes 
the issues with electric vehicles’ integration on the distribution grid and its mitigation 
measures. “Calculation of power quality parameters of supply system” section includes 
the calculation of power quality parameters. “Approaches to mitigate impact of EV on 
power quality” section describe an approach to mitigating EVs impact on power quality 
and also describe different types of facts devices. “Some others power quality issue” sec-
tion describe an overview of some other types of power quality issues in EV integration 
with the grid. “Discussion” and “Conclusions” sections concludes the overall review of 
this paper.

Literature review
Charging impact of EVs on the distribution grid (voltage unbalances and fluctuation)

Due to uneven magnitudes and phase angles of voltages in a 3-phase power system 
(under- or over-voltages), a voltage unbalance problem occurs, and it can be caused by 

Table 1 Challenges of electric vehicle integration in power quality

Challenges Description

Power losses With a large number of unregulated and single-phase EV charging stations, power loss 
rises. High EV penetration causes distribution transformer losses and overloading [7–10]

Voltage Unbalance Single phase electric vehicle charging large load increases voltage unbalance, due to 
incorrect distribution of all single-phase load by three phases of system [9]

Voltage Fluctuations Impact increase as charging rate and penetration increases [11–13]

Harmonics Impact increase as charging rate and penetration increases also increases with random EV 
charging [14, 15]

Fig. 2 Power quality issues
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a variety of factors, i.e., a home distribution network in a city, and single-phase loads 
are imposed heavily, notably in remote areas. The impact of EV charging and discharg-
ing on the voltage imbalance in a residential low voltage (LV) distribution grid has been 
evaluated using the Monte Carlo modelling approach due to the uncertainties in EV 
charging rates and connection sites [19]. The findings showed that EVs have a negligible 
effect on the voltage balance at the feeder’s beginning, but they can increase the feeder’s 
end voltage imbalance factor. Because most domestic loads are connected to only one 
phase, voltage unbalance is always present in the network, even in the absence of low-
carbon technology. Figure 3 shows the pattern of EVs charging on peak load or appar-
ent power. It shows that the graph is acquiring a peak value between a time duration of 
16 h and 20 h.

Single-phase photovoltaics (PVs), household battery storage, and EV charging stations 
can all contribute to system voltage imbalance. Power distribution systems with long 
power lines have negative sequence voltage components present, resulting in a significant 
order of unbalance in the system’s line current [20]. Low negative sequence impedance 
causes 6–10 times the voltage unbalance in a power circuit [21]. As a result, phase cur-
rents that flow in excess can damage cable insulation and trip overload protection circuits, 
shortening the life of the cable, increased losses, additional heating effects, and vulner-
ability of the system to failures (because an unbalanced system may not be able to feed 
loads efficiently) are some of the repercussions [22]. As a result, identifying and deter-
mining the presence of voltage unbalance in a circuit is critical to deal with it quickly and 
ensure that the power system and linked loads run smoothly. Figures 4 and 5 show the 
comparison of charging levels for different levels of AC and DC charging with respect to 
voltage and current. Level 1 chargers are available in both slow and fast charging modes, 
depending on whether the power supply is ac or dc. Level 1 ac chargers are 120-V, single-
phase ac with power ratings ranging from 1.4 to 1.9 kW. At 6 amps of current, charging 
the battery takes 10 to 36 h. Level 1 DC chargers with voltage ranges of approximately 
200 V to 450 V and up to 36 kW for plug-in hybrid electric vehicles with 80-A current 
rating level 2 chargers work on both on-board and off-board chargers at different power 
levels. Level 2 ac chargers rectify 240-V single-phase ac supplies up to 4 kW to 19.2 kW 

Fig. 3 Impact of EVs charging on voltage unbalance
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for plug-in hybrid electric vehicles at an 80-A current rating. Level 2 dc chargers have the 
same voltage level as level 1 dc chargers, but they contain 90 kW at a 200-A current rating 
for off-board charging [23–25].

Advancements in electric vehicle chargers require fast charging through the charger. 
With level 3 chargers, the battery can be charged in less than 30 min. As it reduces the 
charging time, it comes with level 3 charging or fast charging. Level 3 ac chargers have 
a power rating greater than 20  kW for single-phase and three-phase ac power at off-
board charging. Level 3 DC chargers charge ultra-fast with 600-V DC up to 240 kW at 
400 amperes of current [17, 18]. When a utility provides a symmetric load at high power 
levels, grid stability is improved. Renewable energy grid integration is standardized, 
ensuring optimum safety as well as maintenance procedures, consistent performance 
of operation, and capability of testing. As a result, interconnecting renewable sources 

Fig. 4 Comparison of AC and DC level (voltage)

Fig. 5 Comparison of AC and DC level (current)
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ensures that cascade failure is avoided [19]. The harmonic current and its matching 
phase angle are given in Eqs. (1) and (2). The harmonics are introduced into the dis-
tributed system and, when charging, produce switching oscillations. Apart from regu-
lar EVSEs, focus must be given to renewable energy grid integration with appropriate 
standardization. Because the voltage imbalance’s effect is determined by the power 
range of the device.

Electric Vehicle controlled and uncontrolled charging nature

An increase in EV linked to the distribution system affects the voltage profile in the sys-
tem. Single-phase on-board charging starts at 1.6 kW for families and rises to tens of 
kW for fast charging. Uncontrolled charging occurs when electric vehicles are allowed to 
charge and discharge at the same time. If the public is aware of the incentives and penal-
ties that are assessed to the consumer during peak and off-peak hours, they can choose 
whether to charge their EVs immediately or to consider a good time to charge. The cost 
of charging power is determined by the ideal charging conditions and the EV driver’s 
eagerness. For charging EVs, the tariff is higher in the afternoon and evening and lower 
at night and in the morning.

Figure 6 shows that around the same time as the peak for the existing demand occurs, 
the green peak showing the desire for EV charging also appears.

In Fig.  7, the peak demand from EV charging is compensated by the off-peak con-
sumption from the current demand.

The average distance traveled by electric vehicle is between 25 and 30 miles. Based on 
the vehicle mileage analysis, following factors are defined: -

1. Utility factor
2. Electric range utility factor
3. State of charge (SOC)

1. Utility factor (UF): the percentage of daily vehicle miles that are less than or equal 
to the stated distance is known as UF [22–24]. This factor indicates how many miles 
driven on gasoline would be replaced by miles driven on electricity if all vehicles 
were converted to PHEVs. Plug-in hybrid electric vehicles (PHEVs) are characterized 
by their all-electric range (AER). A PHEV-k is one that can travel a certain distance 
entirely on electricity.

(1)IHarmonics = IFundamental ∗
IHarmonics − ISpectrum

IHarmonics − Spectrum

(2)φHarmonics = φHarmonics−Spectrum + h ∗ φFundamental − φFundamental−spectrum

(3)UF =
∑N

i=1Dei
∑N

i=1Di
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 Dei is the distance traveled by electric vehicle, Di is the total distance traveled by 
vehicle i. N is the number of vehicles, Higher the AER more miles are driven using 
electricity. A UF of 1 therefore denotes that all miles traveled are powered by electri-
cal energy.

2. Electric range utility factor: the ratio of actual miles driven on electricity to the total 
miles traveled on electricity is known as the electric range utility factor (ERUF) [25, 
26].

 Dei is the distance traveled by electric vehicle. N is the no. of vehicles. k is the AER of 
PHEVs.

3. State of charge (SOC): the amount of charge left in the vehicle when it arrives is 
known as the state of charge (SOC). Based on distance travelled and the PHEV’s 
AER, one can calculate a vehicle’s SOC. The proportion of the total charge used to 
represent SOC [27–29]. Figure 8 shows the nature of the state of charge for four with 
respect to electric vehicles, charging time is increasing because the voltage is increas-
ing, and then it becomes constant. The current is also constant for a while, and then 
it gradually decreases to zero.

Assume PHEV-k is completely charged and has travelled x miles, the SOC of the vehi-
cle is computed as follows:

Chargers for electric vehicles must be always accessible at all times during the 24-h 
periods. Therefore, charging infrastructure for EVs battery charging for public location, 
home and work place is essential [30]. Due to electric vehicle charging load, objective 
function for optimization of power system demand shows in Eqs. (9), (10), and (12).

(4)ERUF =
∑N

i=1Dei

N ∗ k

(5)SOC =

{

100 ∗
(

k−d
k

)

d ≤ k

0, d > k

Fig. 8 Variable nature of charging rates for four EVs
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During period of light load, we can ignore workplace power so Eq. (9) becomes:

Issues in electric vehicle’s integration on distribution grid and their mitigation 
measures
Voltage unbalance mitigation in electric distribution system with EVs

A phase reconfiguration strategy is another way to reduce the voltage imbalance factor. 
In [31], the financial implications of a phase reconfiguration to lessen the negative effects 
of the unbalanced EVs on an LV distribution system have been evaluated. The findings 
confirmed that a phased reconfiguration strategy could reduce the imbalance impact 
of EVs by utilising the time-of-use tariff. Additionally, managing EV charging and dis-
charging can lessen the phase unbalance issue [32]. A system’s voltage can be balanced 
by making the best choice possible for connecting points (phases a, b, or c), charging and 
discharging power rates, and charging and discharging status. A control mechanism is 
being developed to coordinate all electric vehicles’ smart charging and increase the load 
profile of the electric vehicle linked to the electrical grid network [33]. The communica-
tion system that enables this coordination of charging between the electric vehicles and 
the aggregator collects and transmits data. In order to standardize the voltage profile, the 
load profile is smoothed. Voltage regulators can be used to reduce a network’s imbalance 
index. The PQ for voltage imbalances and variations is improved using energy storage 
devices, feeder capacitors, and D-STATCOM [34]. Though some EVs would occasionally 
achieve higher peak voltages. The decentralized controller, unlike the central controller, 
charges the electric vehicles locally [35]. The use of less communication infrastructure 
reduces the cost of this dispersed control.

The neutral current that flows as a result of the phase voltage imbalance is not consid-
ered by the electric vehicle current charger. Because the input from distributed energy 
resources is likewise dynamic, the distributed energy resources require coordination 
in addition to the electric vehicle. While the distributed energy resources and electric 
vehicles are linked to the distributed network, neutral current and voltage unbalance 
must all be regulated [36, 37]. The benefits and drawbacks of both the centralized and 
decentralized EV charging coordination models are examined. For smart charging in the 
electrical distribution system, active power balancing can be achieved using the droop 
controller topology. Although the reactive power delivered into the dispersed network 
by power electronics equipment such as rectification and switching converters adds to 
the burden on the distribution network, a droop controller-based controller is described 
in [38] for a balanced system, and reactive power correction is achievable using the aux-
iliary equipment specified in [39]. To reduce the voltage unbalance, zero and negative 
sequence voltages are generated.

(6)
Max.EV for charging =

∑24

t=1

{

EVHOME(t) + EVWORKPLACE(t) + EVROAD SIDE(t)
}

∗ EVPENETRATION LEVEL

(7)Power req.for charging max.EV = Max.EV for charging × Power required for charging Single EV

(8)
Max.EV for charging =

∑24

t=1

�

EVHOME(t) + EVROADSIDE(t)
�

∗ EVPENETRATION LEVEL
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Harmonics impact and its mitigation technique in distribution grid

Harmonics are the sinusoidal component of a periodic waveform whose frequency is a 
multiple of the fundamental power frequency’s integer [40]. Harmonic power-waveform 
distortion occurs when there is a mixing of the first, second, third, and other harmonics. 
Non-sinusoidal voltage and current waveforms are given in Eqs. (12) and (13).

Where, H is the harmonic order, w0 is the fundamental frequency, φh is the phase shift 
of voltage and current for harmonics.

The total harmonic distortion (THD) components, which calculate the effective value 
of the harmonic contents of a distorted waveform, can be used to quantify the harmonic 
components of distorted waveforms [41]. THD can be stated as a percentage for voltage 
and current.

Harmonics are injected by nonlinear devices, i.e., EV chargers, as shown in Fig.  9. 
Because of the inverter’s semiconductor switches, PV systems are harmonic sources. 
The inverter technology, solar radiation, temperature, and network parameters all affect 
total harmonic distortion [42, 43]. The low penetration of EVs and the slow charging rate 
have little effect on the network’s PQ harmonic distortion. Fast charging rates and the 
increasing penetration of EVs, however, could cause significant voltage and current har-
monic distortion. Furthermore, the author discovered that the charging of arbitrary EVs 
may deviate from the normal level of the voltage harmonic.

(9)V (t) = vDC +
∑Hmax

H=1
vHrms(cosHw0t + φh)

(10)I(t) = iDC +
Hmax
∑

H=1

iHrms(cosHw0t + φh)

(11)THDV =

√

∑Hmax

H=2 vH
2

v1

(12)THDI =

√

∑Hmax

H=2 iH
2

i1

Fig. 9 Harmonic distortion where the waveform composed of 3rd and fundamental
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Power filter design and control are often part of the grid-tied converters’ harmonic 
mitigation methods. Modulation techniques (SPWM, SVPWM, DPWM, SHE, inter-
leaving, and power filter design (L-, LCL-filter, etc.) are typically used to reduce switch-
ing frequency noise [44]. Current harmonic amplification most likely results from the 
employment of a shunt active power filter. Through the absorption or injection of har-
monic currents into or out of the network, other research studies like [45] have deemed 
EVs to be harmonic compensators. EVs can also engage in the marketplace for ancillary 
services related to harmonic and reactive power.

On an electrical distribution system, the combined impacts of photovoltaics and elec-
tric vehicles on voltage profiles and harmonic distortions were investigated [46]. The 
findings indicated that while photovoltaic and electric vehicles increase the total har-
monic distortion of voltage, they are still able to reduce voltage fluctuation [47].

The influence of current and voltage harmonics produced by photovoltaic systems 
has been addressed using a variety of strategies. The two most common ways to elimi-
nate harmonics in a system are passive and active filters. However, more compensators 
are needed for the power system [48]. Utilizing inverter control mechanisms is another 
strategy for harmonic compensation.

Several techniques, including modelling approaches, system conditions, and solution 
approaches, can be used to solve the harmonic power flow problem. The two types of 
solution approaches are coupled and decoupled. Nonlinear systems with strong cou-
plings between harmonics can be accurately solved using a coupled solution approach. 
Convergence issues may occur in big power systems with numerous nonlinear loads, 
despite the fact that Newton-based harmonic power flow offers an accurate solution 
because it incorporates harmonic couplings at all frequencies.

A more uniform load demand profile can result from implementing an off-peak charg-
ing plan. In order to deal with the effects of electric vehicle charging on secondary ser-
vice voltages and transformers, an infrastructure improvement strategy is suggested in 
[49]. Infrastructure improvements are required for this approach. With this method, the 
service transformer’s kVA rating is increased, and the secondary circuit is rearranged 
using a second service transformer.

Impacts of transformer in EV charging and its mitigation methods

EV power demand, Plug-in and plug-out time, however, they did not assess the future 
electric vehicle demand and the possible mitigation by EV demand flexibility or quantify 
the peak load of the transformer. The future of electric vehicles would greatly benefit 
from the adoption of solid-state transformers [50]. Its ability to interface with an AC 
or DC grid system and simplicity of dynamic control are the reasons behind this. As a 
result, these characteristics would make it simple to integrate DERs like electric vehi-
cles (EVs), high-penetration solar panels (PVs), energy storage, etc. The SSTs have the 
capacity to enhance communication, protection, and power quality. The medium- and 
low-voltage transformers on which the charging load is expected are selected based on 
the parking areas. Since the economics of such a big change are frequently impractical, 
upgrading the transformer in response to demand is not a good strategy.
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By using demand-side control, EV charging can be delayed. EVs with fully charged bat-
teries shouldn’t needlessly be charged. To obtain a transformer overloading mitigation 
effect, those EVs must be encouraged. It is clear that transformer degradation is a result 
of the system’s increased EV penetration.

Current harmonics produced by electric vehicles can result in increased transformer load 
loss, a rise in temperature, and decreased transformer lifetime [51, 52]. Transformer losses 
are classified as either no load loss or load loss.

Transformer load loss consists of copper loss, eddy current losses, and stray losses caused 
by stray electromagnetic flux in the windings.

Figure 10 depicts the variation of transformer hourly load demand with respect to time, 
i.e., the duration of 24 h.

A rule-based system that regulates the charging time in accordance with the client’s pref-
erences, including whether to charge electric vehicles during peak demand or not, reduces 
loss in the transformer in the electrical distribution network [53, 54]. An optimization tech-
nique with the goal of reducing voltage and heat stress on the transformer is described as an 
objective function in [54]. The algorithm evaluation is based only on the EV batteries’ state 
of charge (SOC), not the preferences of the client. The algorithm is to be evaluated based on 
the state of charge (SOC) of the electric vehicle’s batteries, not the customer’s preferences 
[54]. Even though the objective function only considers thermal stress and voltage, the opti-
mization objective also takes failure hazard into account. The distribution transformer’s 
ageing factor [55, 56] is as follows:

Distribution transformer loss of life (DTLL) given in Eq. (20)

(13)PLOAD LOSS = PCOPPER LOSS + PEDDY−CURRENT LOSS + PSTRAY LOSS

(14)PTOATL LOSS = PLOAD LOSS + PNO LOAD LOSS

(15)Aging acceleration factor = exp(
15000

383
−

15000

αH + 273
)

(16)Insulationlifeof Transformer = 9.8× 10−18exp(
15000

αH + 273
)

Fig. 10 Transformer hourly load vs hours graph
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PEV penetration levels as low as 10% may cause distribution transformer overloading 
[57]. Two residential distribution circuits, and predicts that with significant (60%) PEV 
deployment, distribution infrastructure costs might rise by 19% and energy losses could 
rise by 40% [57, 58]. Using the performance indicator, the advanced controller serves 
as the decision-making mechanism for resolving distribution transformer failure. Deci-
sion-making considerations include the battery’s SoC, the SoC needed for the subse-
quent trip, the amount of time left before departure, and the needs of the EV owner [59].

Power quality issue due to power electronics devices and its mitigation measure in grid

EV chargers convert alternating current to direct current, allowing EV batteries to be 
charged. Harmonics are introduced into the grid during this power conversion pro-
cess by high-frequency switching converters used in power electronics, which lower 
the power quality of line current in the grid as shown in Fig. 11. Such harmonic injec-
tion shortens the lifespan of distribution transformers by overloading them electrically 
and thermally. Other issues include overusing the grid’s current capacity, an imbalance 
between supply and demand in the utility grid, grid voltage, etc. [60, 61].

Both the grid structure and the location of the PV capacity inside the grid have an impact 
on voltage fluctuation. Inconvenient or seeming light flickers may increase in frequency 
over time due to the rise in EV usage. The voltage profile is improved during fluctuation 
transients by the algorithmic method described here [62]. Half of the input DC link voltage 
is used to reduce the switch voltage stress. The connection of large residential loads, the 
integration of sizable loads like EVs themselves, heat pumps, or unforeseen circumstances 
like distant problems are a few of the main factors that could result in voltage reductions. 
Usually, the transformers in low-voltage distribution grids only have offload tap-changers, 
which allow a voltage drop on the high-voltage side to spread to the low-voltage part.

Flexible ac transmission systems (FACTSs) and voltage-source converters with intel-
ligent dynamic controllers are becoming more common in order to improve power qual-
ity. Additionally, distributed FACTS have a significant impact on power quality, energy 
efficiency, and power factor [63, 64].

(17)DTLL =
Aging acceleration factor × time

insulation_lifenormal

Fig. 11 Electrical vehicle fast charging station 150 KW
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A two-stage battery charger is used, with the first stage, the AC-DC stage, being 
controlled by sinusoidal pulse width modulation and the second stage, the DC-DC 
stage, being controlled by a predictive duty cycle. Utilizing predictive control, which 
eliminates the DC bias from the transformer current by managing its peak value, it 
is possible to quickly control a battery current. At the source of DC-DC converters, 
power factor correction (PFC) adjustment is possible [65, 66]. The charge efficiency 
is increased by a proposed bridgeless CUK converter that functions as a PFC-based 
converter. Total harmonic distortion is decreased in accordance with the regulations, 
and an improvement in power quality is confirmed by the power quality index. The 
approach exhibits satisfactory charging efficiency. In the electric vehicle-linked dis-
persed system, the PFC uses an interleaved converter [67]. Together with the output 
voltage harmonics, the input current harmonics are also decreased.

The load profile, voltage variation, harmonics, power losses, voltage, frequency, 
and number of EVs charging meet the criteria for oscillatory stability. These effects 
could be controlled by the application of a feeder capacitor bank, tap transformer 
replacement, energy D-STATCOM, a filter for the charging station, coordination, 
and storage, using a distributed generator, charging, and time-of-use (ToU) tax, and 
so forth [68, 69].

The oscillatory stability of the grid is anticipated to be impacted by the widespread 
integration of EVs into the power grid. However, because the characteristics of EV 
loads differ greatly from those of traditional constant impedance, current, and power 
(ZIP) loads, it is crucial to model EV loads in detail in order to examine their effects 
on the oscillatory stability of the grid. An EV charging system load model that com-
bines a constant power component and a voltage-dependent negative exponential 
component has been established, and it includes an AC-DC converter, a DC-DC con-
verter, a filter, and associated control devices.

Calculation of power quality parameters of supply system
Voltage unbalance calculation

Voltage unbalance occurs when the three phase voltages are mismatched in magni-
tude and/or do not differ in phase angle by 120°, according to IEEE Standards (1995). 
In a three-phase network, voltage unbalance can be seen as a relationship between 
negative and positive sequence voltages. The voltage imbalance percent is computed 
as [20, 21]:

(18)Voltage unbalance (%) =
v2

v1
∗ 100

(19)=

√

1−
√
3− 6ϒ

1+
√
3− 6ϒ

(20)ϒ =
V 4
ab

+ V 4
bc
+ V 4

ca

(V 2
ab

+ V 2
bc
+ V 2

ca)
2
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Where, v2 is the negative sequence voltage and v1 is the positive sequence voltage, 
respectively.

Based on (PEA, 2009), the acceptable voltage unbalance is limited to 2%.

Voltage deviation calculation

A bus voltage magnitude may differ from the rated value. Small percentages of these var-
iations are frequently accepted, but if they exceed specified thresholds, they are regarded 
as disturbances.

The voltage deviation of a line is represented by Eq.  (6). It shows that voltage devia-
tion is highly dependent on the reactive power of inductive lines [70, 71]. Because of the 
lower reactance and resistance ratios, voltage deviation of distribution lines is affected 
by both active and reactive power. The IEEE 1547–2003 standard recommends that volt-
age deviation should not be greater than around the base value.

Distribution network parameters

The three most important operating criteria for the distribution network are voltage 
stability, power losses, and reliability. In this part, the methodology for calculating the 
distribution network’s voltage stability, power losses, and reliability is explained in 
more detail.

Voltage stability

Voltage stability is the capacity of the power system to maintain consistent, acceptable 
voltages for all buses when external disturbances occur [72, 73]. When voltage instabil-
ity occurrences occur, the network’s bus voltage gradually drops. Sudden disturbances, 
fault circumstances, and line overloading can cause the system to become unstable. The 
voltage of all system buses must be within acceptable limits, which is a voltage stability 
requirement utilized in many stability studies.

Based on the estimation of the voltage stability factor (VSF) from the PV curve, the 
voltage stability is examined. Active power and voltage are graphically represented by 
the PV curve in Fig. 12. It shows changing voltage with rising active power; finding 

(21)�Vd =
RP1 + XQ1

V1
= V1 − V2

Fig. 12 PV Curve
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the voltage of each bus in the distribution network is the first step in designing the 
PV curve. The Newton–Raphson method and other common load flow analysis tech-
niques have major drawbacks when used to determine the voltage of radial distribu-
tion networks due to their large R/X ratios. Compared to transmission systems, the 
R/X ratio is highly prominent in distribution systems. When analyzing the voltage 
stability of distribution networks, all buses’ voltages must fall within an acceptable 
range (6% of their nominal value).

Mathematically it is expressed as:

Power losses

Distribution network power losses are i2r losses of the line. The mathematical expres-
sion for calculating the line losses for the two-bus system shown in Fig. 13 is as pro-
vided in Eq. 23.

and total power losses are represented in Eq. 24

Reliability

Power system reliability analysis has become a challenging area of study. The reli-
ability of generation, transmission, and distribution are all key considerations in 
power system reliability analysis. Data on the failure rate, repair rate, average out-
age time, and outages are statistically significant for evaluating the distribution net-
work’s reliability indices [74]. The reliability indices of the distribution network are 
broadly divided into customer- and energy-oriented, as shown in Fig.  5. The three 
main subcategories of customer-oriented reliability indices are the System Average 
Interruption Frequency Index (SAIFI), System Average Interruption Duration Index 
(SAIDI), and Customer Average Interruption Duration Index (CAIDI). The energy-
oriented reliability indices are further divided into energy not served (ENS) and aver-
age energy not served (AENS). The correlation between SAIFI and SAIDI depends on 
how frequently and for how long interruptions occur. Customer dissatisfaction due to 

(22)VSF =
|dv|
|dP|

∀P < Pmax

(23)Pk = i2r

(24)Pt =
∑n

k=1
Pk

Fig. 13 Two-bus system single line diagram
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interruption is quantified by CAIDI. AENS is the average load curtailment index as a 
result of service interruptions.

Approaches to mitigate impact of EV on power quality
The current electric vehicle charging station faces several challenges that must be 
overcome to provide reliable, high-quality electricity as shown in Table 2, and positive 
impacts and control features of different type of facts devices in power quality and elec-
tric vehicles system as shown in Table 3. Flowchart for power quality issues mitigation 
and bidirectional converter controlling was created as shown in Fig. 14.

With a three-phase, three-level rectifier/inverter, the three-phase grid voltage is recti-
fied to a DC voltage (see Fig. 14). The EV-side controller, the grid-side interface control-
ler, and the centralized charging controller level make up the charging station control 
system. Phase currents and utility voltages are converted from a-b-c coordinates to a 
d-q frame using the Park transformation, which is then produced by the PLL. A reac-
tive power controller creates the q-axis current reference in the reactive power support 
mode. However, the PCC voltage controller produces the q-axis current reference signal 
and voltage support for the AC system. EV is charged and discharged at the EV-side 
controller using a DC/DC power converter to handle the charge and discharge of the EV 
batteries. The three-level AC/DC inverter/converter is regulated at the grid-side control-
ler by maintaining a constant DC-bus voltage and managing the reactive power sent to 
or received from the grid by the three-phase three-level (TPTL) rectifier. The primary 
connection between the grid and the EVs is the bidirectional AC-DC power converter. 

Table 2 Approaches to mitigate impact of EV on power quality

Impacts Mitigation techniques Description

Impact on power losses Coordinating EV charging/discharging 
and with distributed generators

Optimal coordinated operation and 
scheduling of EV charging in low volt-
age distribution line and to minimize 
power loss, EV charging demand can be 
synchronized with distributed and RE 
sources [75–77]

Impact on voltage unbalance Phase reconfiguration technique, 
voltage regulators, Management of EV 
charging and discharging

Optimization of EV and phase 
reconfiguration technique to mitigate 
voltage unbalance. Flywheels, super 
capacitors, battery storage systems 
(BES), capacitive energy storage system 
(CES) and super conducting magnetic 
storage system (SMES), DVR, DSTATCOM 
can be used to reduce voltage unbal-
ance [78, 79]

Impact on voltage fluctuations Charging management, voltage 
regulators, active and reactive power 
control strategy

Transformer tap changes, capacitor 
bank can be used to reduce voltage 
fluctuations. Coordinating EV charging 
used in a control manner to regulate 
network voltage to reduce voltage 
fluctuations [78, 80, 81]

Impact on harmonics Filters, absorb or inject harmonic 
current

Shunt filter, series filter, resonance filter 
and hybrid filter, and harmonic analyzer 
can be used to mitigate harmonics 
distortion in distribution network. EVs 
can take part in harmonics and reactive 
power ancillary services
[82, 83]
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This converter functions as a rectifier in the EV charge mode, changing the utility’s AC 
voltage into the DC bus voltage. When operating in V2G mode, it performs the function 
of an inverter, converting DC voltage to AC voltage and redistributing electricity to the 
grid. The EV battery will be charged and discharged using the suggested bi-directional 
PWM DC/DC converter. Because of the short duty cycle and the lower output power, 
the current ripple in the inductor will grow in this scenario. Likewise, the converter effi-
ciency will be poorer. It is clear that the TPTL converter performs more effectively in 
boost and buck operation modes. But after comparing every aspect of these two con-
verters, it becomes clear that the three-level DC/DC converter performs better in almost 
all areas.

Due to the voltage imbalances in the electric grid and other power quality issues, the 
cost of voltage correction devices may rise. Switching losses in the AC-DC converters of 
the electric vehicle charging station account for a portion of the power loss [75–83].

Fig. 14 Proposed flowchart for Power quality issues mitigation and bidirectional converter controlling
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Due to the non-linear nature of EV chargers and distribution networks, an effective 
controller must be used in place of a standard control technique. Using the current 
references Id and Iq, the regulator determines the necessary reference voltages for the 
inverter (reactive current). In the case of G2V mode, the Iq reference is set to zero, while 
in the case of V2G mode, it has a predetermined value. The current regulator’s necessary 
active current Id reference is established.

To increase the lifespan of the EV battery and keep the battery operating at a 
higher performance level, a corresponding battery management strategy of charging 
or discharging should be pursued and created. The procedures of CC and CV charg-
ing are combined during the process of charging a battery [27–29]. CC charging is 
typically used to charge an EV battery until it reaches the charge voltage level. Then 
CV charging is used, enabling the charge current to taper until it is very low.

Some others power quality issue
Phantom loading effect in power quality

After the initial data gathering phase, it was discovered that some of the charging 
stations were using energy even when there were no EVs attached to those stations, 
which was an oddity. There turned out to be two types of this “phantom” loading [77, 
78]. The digital circuitry, LCD panels, and indicator lights present in most of charg-
ing stations are responsible for a modest degree of phantom loading. Whether an EV 
is charging at the station or not, these ancillary circuits always use a small amount of 
power. Level 3 DC rapid chargers with a battery bank are the second type of phantom 
loading. The battery bank, which is separate from the charger at the site, allows the 
charger to direct power from both the utility and the battery bank, reducing current 
surges on the utility feeder.

Load imbalance and DC charger

Systems are often created with the loads distributed evenly among the three phases. 
By balancing the loads, the terminal voltages produced on each of the three branches 
and the current in each are about equal. The system was found to be loaded substan-
tially heavier for one phase or the other depending on which units were in operation 
at any given time at electric avenue due to the vast number of level I and II charg-
ing stations, which are single-phase equipment [79]. Currents might flow through the 
neutral line as a result of unbalanced loading. In severe situations, these neutral cur-
rents can result in excessive heating since neutral lines frequently have smaller diam-
eters than hot lines. A voltage imbalance brought on by a load imbalance might cause 
issues for three-phase loads reliant on equal phase voltages. The size of the negative 
sequence component divided by the magnitude of the positive sequence component, 
stated as a percentage, is the ratio that characterizes an unbalanced three-phase sys-
tem (IEEE Std. 1159–1995). It was discovered that the system’s voltage imbalance 
never went above 1% at any given time. This is far less than the IEEE’s suggested max-
imum of 3% [80].
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DC offset in power quality

Due to a rise in transformer saturation and the resulting heating, additional stress on 
the insulation, and other negative effects, DC in AC networks can be harmful (IEEE Std 
1159–1995). Many of the charging events occurred at varied times during the cycle, and 
in all three cases, the DC offset was comparable [81].

Discussion
In this paper, we analyzed the power quality issue and its mitigation approach. From 
the simulation graph of Fig. 3, which shows the graph of EV charging on peak load with 
respect to time. The load curve is studied throughout the entire week and it is suggested 
that EV charging can be accomplished when the load is around 50% of the peak load 
demand during the hours of midnight to 3:00 a.m. At different times during the day, the 
voltage drop on the grid exceeds the permitted limit of 0.93 pu, which leads to a volt-
age imbalance between the system’s three phases. It could be analyzed from the result 
amount of voltage drop mostly occurs during peak load. A comparison of all the levels of 
AC and DC charging shown in Figs. 3 and 4 with respect to voltages and current.

A simulation graph of Figs. 6 and 7, which show a typical daily demand profile with 
base and intermediate loads supplying enough generation to meet most of the demand. 
This graph shows that with these peak alignments, once the two demands are added up, 
the present peal would be amplified. This gives information on how well the controlled 
charge scenario levels the demand profile, which is important if the network opera-
tor depends on grid imports to meet demand. The uncontrolled weekly total electrical 
demand is shown in the graph with 100% EV adoption.

Issues in electric vehicle’s integration on the distribution grid, such as voltage unbal-
ance issues, harmonic impact issues, transformer impact, and issues related to power 
electronic devices are analyzed in this paper. Voltage imbalances and variations are 
improved using energy storage devices, feeder capacitors, and D-STATCOM. Phase 
reconfiguration strategy and droop controller-based controller etc., improved the volt-
age unbalance problem on the distribution grid. Variation of transformer hourly load 
demand with respect to time as shown in Fig.  10. In order to enhance power quality, 
flexible ac transmission systems (FACTSs) and voltage-source converters with sophis-
ticated dynamic controllers are becoming more widespread. Furthermore, distributed 
FACTS significantly affect power factor, energy efficiency, and quality of power.

An increase in industrial and commercial consumption, the Morning Peak, which 
occurs between 8 and 9am, follows the Night Lean at 4am to 5am. Daytime leaning 
can be categorized as occurring between 1 and 2 pm, with evening peaking occurring 
between 5 and 8 pm. Hence, it may be concluded that India has a peak in the evening 
(5  pm–7  pm, approximately), about 225,034  MVA at 9  pm. Residential lights, HVAC, 
and manufacturing industries’ usage make up a sizable portion of this, but commercial 
consumption is essentially at a standstill at this time. In order to enhance power quality, 
flexible ac transmission systems (FACTSs) and voltage-source converters with sophis-
ticated dynamic controllers are becoming more widespread. Furthermore, distributed 
FACTS significantly affect power factor, energy efficiency, and quality of power.

A proposed flowchart presents the bidirectional control, mitigation of power qual-
ity issues, MPPT technique and battery management system using a three-level 
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converter on both the grid and EV sides. At the grid interface point, or the point of 
common coupling (PCC), the three-level grid side converter (GSC) can take part 
in reactive power support. It is necessary to create an efficient controller that can 
implement the transformer disturbance controller, harmonic reduction, and voltage 
imbalance management. Future implementation must move towards the efficient con-
troller because it is feasible at the EVSE end. A comparison is made between the facts 
devices as shown in Table 3. which shows their benefits, drawback, and control fea-
tures in power quality and electric vehicles.

Conclusions
This paper’s context effectively covered a variety of power quality problems that arise 
from the integration of EVs in electric distribution networks and mitigation strategies. 
From this review, it is evident that high penetration of EVs can have a negative effect on 
the grid’s stability and power quality because energy sources are intermittent and EV 
loads are unpredictable. These negative effects on power quality and grid stability, how-
ever, can be mitigated by coordinating or combining the operational strategies of inte-
grating EV systems. Large-scale EV loads are also considered significant participants in 
the future energy market because of their high penetration and potential to influence 
the price and outcome of the wholesale energy market in the future smart grid. Utiliz-
ing strategies for battery charge scheduling, supporting renewable energy sources, and a 
few other techniques, the voltage unbalance issue is reduced. A composite controller is 
designed that can implement transformer disturbance, harmonics reduction, and volt-
age imbalance management. Active harmonic filters and fact devices can be designed 
and put into use in addition to EV integration to reduce harmonics produced by non-
linear devices and supply highly reactive power that satisfies the specifications. Due to 
their ease of refit and scale, as well as their direct efficacy in reducing the harmonic volt-
age, parallel-coupled active harmonic filters have various benefits. The offered active fil-
ters provide dynamic reactive power adjustment and can filter harmonics up to the 50th 
order. To reduce the loss of transformer life, the ant colony optimization, particle swarm 
optimization, and Firefly algorithm’s optimization problem can be expanded.
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