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Abstract 

Transit-oriented development (TOD) has long been recognized as a significant model 
for prospering urban vibrancy. However, most studies on TOD and urban vibrancy do 
not consider temporal differences or the nonlinear effects involved. This study applies 
the gradient boosting decision tree (GBDT) model to metro station areas in Wuhan 
to explore the nonlinear and synergistic effects of the built-environment features on 
urban vibrancy during different times. The results show that (1) the effects of the built-
environment features on the vibrancy around metro stations differ over time; (2) the 
most critical features affecting vibrancy are leisure facilities, floor area ratio, commercial 
facilities, and enterprises; (3) there are approximately linear or complex nonlinear rela-
tionships between the built-environment features and the vibrancy; and (4) the syner-
gistic effects suggest that multimodal is more effective at leisure-dominated stations, 
high-density development is more effective at commercial-dominated stations, and 
mixed development is more effective at employment-oriented stations. The findings 
suggest improved planning recommendations for the organization of rail transport to 
improve the vibrancy of metro station areas.

Keywords: Urban vibrancy, TOD, Built environment, Gradient boosting decision tree, 
Nonlinear effects, Synergistic effects, Different times

Introduction
Building vibrant urban spaces promotes human activities and interaction [1], which are 
crucial for cities to remain resilient and to attract more human resources and economic 
capital [2]. This concept has been a heated topic of discussion in urban geography, and 
urban and rural planning research and practice. In China, with the great economic 
achievements of rapid urbanization since the Reform and Opening Up, urban problems 
such as “social isolation,” “ghost towns,” and “urban decay” have also occurred, which 
resulted in the decline and dissolution of urban vibrancy [3, 4]. In particular, due to 
the 2019 COVID-19 pandemic, people’s ability and willingness to engage in economic 
and social activities have been dramatically reduced [5]. Transit-oriented development 
(TOD) has long been recognized as an effective policy for promoting urban vibrancy 
[6]. The TOD concept was introduced by Calthorpe [7] as a pedestrianized urban area 
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with public transportation as the pivot and integrated development to address the unre-
stricted urban sprawl. Its promotion not only boosts public transportation ridership and 
alleviates, but also creates more activity and community life by allowing more people to 
live closer to each other [8, 9]. However, since people fear that crowded public transport 
systems would increase the risk of viral infection, human activities around metro sta-
tions have declined most dramatically [10]. As the epidemic gradually abates, it is cru-
cial to explore the factors influencing urban vibrancy around metro stations to promote 
urban economic recovery, sustainable mobility, and social interaction.

The built environment has long been considered a significant factor influencing urban 
vibrancy, mainly in terms of density, diversity, design, destination accessibility, and dis-
tance to transit (5Ds) [11, 12]. It has been shown that compact mixed-use development 
and a good pedestrian environment are essential ways of promoting urban vibrancy [13, 
14]. Station areas, developed under TOD principles, are usually characterized by mul-
tidimensional features like high density, mixed land use, pedestrian friendliness, a full 
range of facilities, and easy access to public transport, making TOD areas a vibrant part 
of everyday life [15, 16]. Furthermore, residents’ daily mobility and congregations exhibit 
high spatial and temporal regularity, as people often travel to a place with specific inten-
tions [17]. Therefore, the extent to which the environment influences human activities 
may also change over time [18, 19]. However, in the existing studies on the built-envi-
ronment features and urban vibrancy in public transportation areas [20], there is a bias 
toward comparing spatial differences and less focus on temporal differences. Therefore, 
exploring the relationship between the built-environment features and the vibrancy 
around metro stations during different times is necessary.

In existing studies of urban vibrancy and built-environment features, a linear rela-
tionship is often assumed, with ordinary least squares or geographically weighted 
regression used [12, 21, 22]. These studies provide a solid basis for understanding the 
relationship between the built-environment features and urban vibrancy but ignore 
the possible nonlinear and synergistic effects of the two [23]. In recent years, scholars 
have gradually adopted machine learning to elucidate the more refined nonlinear sta-
tistical relationship between them. For example, Yang et al. [8] used the gradient boost-
ing decision tree (GBDT) to demonstrate that there is not only a linear relationship 
between them but also a nearly flat-curve correlation or a nonlinear association that 
varies within a certain range. GBDT can also compare the relative importance of the 
independent variables and provide a basis for the planner’s decision time sequence [24, 
25]. Moreover, the effects of the built-environment features of TOD on vibrancy may be 
moderated by third-party variables. Studies have applied the Shapley additive explana-
tions (SHAP) to interpret GBDT model results and provide “Shapley interaction values” 
to capture feature interactions at the local level (i.e., per sample) [26, 27]. Interaction 
is the simultaneous influence of two or more independent variables on the dependent 
variable, providing more information about how the built environment collaborates to 
shape urban vibrancy [20].

To fill these gaps, this study uses multi-source big data from 210 metro station areas 
(MSAs) from Wuhan in 2021. It measures urban vibrancy by metro ridership, smart-
phone location records, and social media check-ins over four specified time intervals: 
AM peak (7:00–9:00), midday hours (11:00–13:00), PM peak (17:00–19:00), and night 
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hours (20:00–22:00) on weekdays. Subsequently, using the GBDT and SHAP explanatory 
models, we determine the relative importance of built-environment features and explore 
in more detail the nonlinear and synergistic effects of the features on the vibrancy of 
MSAs during different times. With the above model, we can reveal the differences in 
the effects of built-environment features on urban vibrancy during different times, (2) 
identify the nonlinear and synergistic effects of built-environment features on the MSAs’ 
vibrancy, and (3) suggest improved planning recommendations for the organization of 
rail transport to promote the vibrancy around metro stations.

This study makes a dual contribution to the literature. First, focusing on the metro 
station stations, this study enriches the existing literature by providing a comprehen-
sive understanding of the impact of various influences on urban vibrancy, including the 
built environment, metro station characteristics, socioeconomic factors, and different 
times. Second, this study examines the effects of individual built-environment features 
on urban vibrancy and the synergistic effects among features, which is more helpful in 
guiding transportation planning and related policies around metro stations.

Methods
Research design

We conducted the design for this study, as shown in Fig. 1. The design consists of four 
steps: (1) measuring a composite vibrancy index during different times, (2) construct-
ing built-environment features of TOD based on the “5Ds,” (3) applying the GBDT 
and introducing the SHAP interpretation to investigate the nonlinear and interaction 
effects during different times, and (4) proposing an optimization strategy for the MSAs’ 
vibrancy.

Study area

Wuhan is central China’s political, economic, and cultural center, with a permanent pop-
ulation of 13,648,900 in 2021. The city is divided into three parts—Wuchang, Hankou, 
and Hanyang. The confluence of the Yangtze and Han rivers form an urban pattern of 

Fig. 1 Research design
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two river meetings and three standing towns. Central and urban development areas 
mainly bound urban space. At the end of 2019, there was an outbreak of the COVID-
19 pandemic in Wuhan, which led to the metro being blocked for 3 months, severely 
restricting people’s activities around the metro stations. After the unblocking, public 
transportation was gradually put into everyday use and the city’s vibrancy slowly recov-
ered. By January 2021, Wuhan had opened and operated nine metro lines with 210 
stations (transfer stations were not counted repeatedly). Using previous studies as refer-
ences [28], we used an 800 m radius as the distance threshold for 210 MSAs, as shown in 
Fig. 2.

Variables

The dependent variable in this study was the vibrancy of the MSAs. Based on existing 
research [12, 14], we extracted the combined vibrancy for the three variables of metro 
traffic, smartphone location records, and social media check-ins during different week-
day times using the factor analysis method. Factor analysis is a statistical method pro-
posed by Spearman [29] to extract common factors among some variables that have 
some correlation. According to Bartlett’s test with KMO=0.713 and p≈0.000 in SPSS, 
we believe the use of factor analysis is appropriate. Principal factor analysis was then 
employed to extract the composite index with 83.275% of the variance, conveying the 
primary information of the variables. Table 1 shows the solution of the factor analysis 
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Fig. 2 Study area in Wuhan, China

Table 1 The solution of the factor analysis and descriptive statistics of the surface attributes

Indicators Descriptive statistics Factor weights Communalities

N Mean Std Initial Extracted

Ln (metro ridership) 840 5.836 1.338 0.835 1.000 0.697

Ln (smartphone location records) 840 6.328 0.989 0.947 1.000 0.897

Ln (social media check-ins) 840 1.930 1.869 0.875 1.000 0.765
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and descriptive statistics of the surface attributes. Metro ridership data was obtained 
from smart card data for our four specified periods from March 15 to 19, 2021, pro-
vided by the Wuhan Institute of Strategic Transport Development. Smartphone location 
records data were obtained from the Baidu Heat Index for the same periods. Baidu Heat 
Index records the geographical location of mobile users obtained by the Baidu engine at 
a certain point in time, projecting the user on a digital map, which can accurately rep-
resent the existence of people [8]. Social media check-ins data was obtained from the 
social media platform Sina Weibo, which collected check-ins for the four time periods 
on weekdays from March to May 2021.

The built-environment features of the MSAs were constructed according to the 5D 
principle. The density included the number of permanent residents of MSAs estimated 
from the population data of the neighboring communities and the floor area ratio (FAR) 
and average building height calculated from building data. The land use dimension 
consisted of four indicators: the land use mix calculated based on the entropy method, 
the number of leisure facilities (i.e., sports and recreation, parks, and plazas), commer-
cial facilities (i.e., shopping, restaurants), and enterprises (i.e., companies, businesses) 
obtained by reclassifying the Gaode POI dataset. At the design level, two spatial design 
network analysis (sDNA) indicators (NQPDA and DivA) were used to represent the cen-
trality and network detour ratio of the streets using the spatial syntax method [20]. Fur-
thermore, the distance to the city center and sub-centers was chosen to represent the 
accessibility of the area, as well as the number of bus routes to illustrate transfer capac-
ity. For the characteristics of subway stations, we considered the number of entrances 
and exits, transfer stations, number of reachable metro stations within 20 min, and 
opening time. The socioeconomic factor included was the average house price in MSAs, 
calculated based on second-hand house transaction data for Wuhan in 2020, collected 
by Chain Home. The descriptive statistics of urban vibrancy and the built-environment 
features of MSAs are shown in Table 2.

Modeling approach

A GBDT model was constructed for this study to analyze better the nonlinear effects of 
built-environment features on the MSAs’ vibrancy and the differences in the effects [8, 
20]. The GBDT generates forecasting models in an ensemble of models, and in this case, 
a regression tree. The algorithm’s objective is to minimize the loss function [25]. The 
regression tree is defined as follows:

where the parameter εm is denoted as each regression tree I(x; εm) in the split position 
and the mean value of the terminal nodes in the regression tree αjm is estimated by mini-
mizing the loss function [24]. The optimization process consists of several iterative steps.

First, initialize the weak learner f0(x):

Secondly, for the number of iterative rounds m(m = 1, 2, 3, …, M), there are:

(1)F(x) =
∑m

i=1
fm(x) =

∑m

i=1
αjmI(x; εm)

(2)f0(x) = argminε
N

i=1
L yi, ε
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Table 2 Descriptive statistics of variables

Dimensions Sub-dimensions Variables Descriptions Mean Std.

Urban vibrancy Integrated vibrancy During AM peak Integrated vibrancy from 
7 to 9

5.347 1.263

During midday hours Integrated vibrancy from 
11 to 13

5.264 1.317

During PM peak Integrated vibrancy from 
17 to 19

5.625 1.400

During night hours Integrated vibrancy from 
20 to 22

5.068 1.492

Built-environment 
features of MSAs

Residents Number of residents Natural logarithm of the 
number of permanent 
residents

8.69 1.58

Building form Floor area ratio = Grossfloorarea
MSAArea

1.33 0.85

Average building height = Grossfloorarea
Grossbuildingfootprint

21.03 8.16

Land use Land use mix An entropy index measuring 
a mixture of residential, 
public, commercial, industry, 
green and other land uses 
Landuse =

−
∑k

i=1
P
ki
ln (Pi )

ln k
 , 

where k is the type of land 
use and Pki is the proportion 
of type-i land use to the total 
land area [24]

0.64 0.19

Number of leisure facilities Natural logarithm of the 
number of leisure service 
POIs

2.52 1.32

Number of enterprises Natural logarithm of the 
number of enterprises’ POIs

4.12 1.22

Number of commercial 
facilities

Natural logarithm of the 
number of commercial 
service POIs

5.79 1.62

Street network configura-
tion

Street centrality An sDNA measure of 
centrality for street network 
segments called NQPDA

17.20 5.31

Street network detour ratio An sDNA measure of the 
degree to which the actual 
network deviates from the 
straightest path called DivA

1.33 0.06

Regional accessibility Distance to the city center Distance to the city center of 
Wuhan (km)

11.970 7.212

Distance to the sub-center Minimum distance to the 
sub-centers of Wuhan (km)

7.228 5.888

Access to transfer Number of bus routes Natural logarithm of the total 
number of routes for each 
bus station

4.61 1.38

Metro station features Reachable metro stations 
within 20 min

The number of metro sta-
tions that one station can 
reach within 20 min

39.03 23.56

Number of entrances and 
exits

Calculate the number of 
entrances and exits in each 
metro station

4.65 2.45

Transfer station The number of rail transit 
lines passing through the 
station

1.14 0.37

Opening time Time since the metro station 
opened (month)

72.01 44.40

Socioeconomic Average housing price Average housing price for 
each MSA (K RMB)

17.178 5.473
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(a) For each sample i(i = 1, 2, 3, …, N), we calculated the negative gradient (i.e., residuals) 
εim:

(b) Fit a regression tree to the residuals εim and obtain the leaf node region of the mth 
tree Ajm where j = 1, 2, 3, …, J, i.e., a tree consisting of J tree of leaf nodes.

(c) For leaf region j, calculate the best-fit value, εjm:

 (iv) Updating strong learners fm(x):

Finally, the operation is concluded, and the final learner is obtained

In this study, we introduced a learning rate factor φ(0 < φ ≤ 1) to bind the residual 
learning outcomes for each regression tree [30].

The modeling process for this study was performed using the GBDT package in 
Python 3.6. First, we randomly divided the data into two parts: a training set (80%) and 
a test set (20%). We then applied Huber as the loss function and used 5-fold cross-vali-
dation techniques to adjust the seven parameters to obtain the optimal combination of 
parameters, as shown in Table 3.

To explain the results of the GBDT, we chose the SHAP model developed by Lundberg 
and Lee [31]. This technique helps to understand the nonlinear and synergistic relation-
ship between the built-environment features and vibrancy. Inspired by cooperative game 

(3)εim = −

[

∂L
(

yi, f (xi)
)

∂f (xi)

]

f (x)=fm−1(x)

(4)εjm = argmin
ε

∑

xi∈Ajm

L
(

yi, fm−1(xi)+ ε
)

(5)fm(x) = fm−1(x)+
∑J

j=1
εjmI

(

x ∈ Ajm

)

(6)f (x) = fM(x).

(7)fm(x) = fm−1(x)+ φ ·
∑J

j=1
εjmI

(

x ∈ Ajm

)

, 0 < φ ≤ 1

Table 3 Parameters specified in the model

Hyper-parameters Descriptions Optimal 
hyper-
parameters

learning_rate Iteration speed 0.01

n_estimators Number of iterations/trees 800

subsample Subsampling 0.8

min_samples_split Minimum sample 3

min_samples_leaf Minimum number of samples 2

max_features Maximum number of features log2

max_depth Maximum tree depth 21
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theory, SHAP constructs an additive explanatory model in which all features are con-
sidered “contributors” [32]. When the model is nonlinear or the input features are not 
independent, SHAP calculates a weighted average by ranking all the possible features. 
SHAP interprets the prediction of the model as the sum of the imputed values of each 
input feature, where the assigned values are the Shapley values [28] calculated according 
to the following equation:

where φ0 is the constant that explains the model and is the predicted mean of all training 
samples. Each feature has a corresponding Shapley value, i.e., φj:

where {x1, ⋯, xp} is the set of all input features, p is the number of all input features, 
{x1, ⋯, xp} ∖ {xj} is the set of all possible input features that do not include{xj}, and fx(S) is 
the set of feature subsetsS of predictions. The weight |S|!(p−|S|−1)!

p!  can be interpreted as 
follows: the denominator p! represents the combination of p features in arbitrary order-
ing and the numerator |S| ! (p − |S| − 1)! denotes the combination of p features under a 
particular ordering after determining the subset S; |S|!(p−|S|−1)!

p!  is the proportion of fea-
ture combinations of subset S, and the sum of all possible subsets is equal to one.

The most obvious advantage of the Shapley value over traditional feature importance 
analysis is that it reflects the influence of the features in each sample and also shows the 
positive and negative nature of the influence. To capture the effects of pairwise inter-
actions directly, we use Shapley interaction values, which ensure consistency while 
explaining the predicted local interaction effects [20].

Assuming that there are N samples with M features, the dimension of the Shapley 
value is N × M, whereas the dimension of the Shapley interaction values is N × M × M. 
That is, corresponding to one feature of a sample, the Shapley value consists of a single 
attribution value φj, while Shapley interaction values are attributed by a series of inter-
action attribution values {φi1, φi2, ⋯, φiM}. When the Shapley interaction value is greater 
than zero, the two variables generate a synergistic effect on vibrancy (i.e., a positive 
interaction), and vice versa have a negative interaction effect.

Results
Vibrancy of MSAs in Wuhan

Figure 3 displayed the spatial and temporal distribution of MSAs’ vibrancy during dif-
ferent times in Wuhan. In terms of time, people had relatively higher activity frequency 
and the highest agglomeration during PM peak, followed by the night and midday hours, 

(8)g(x) = φ0 +
∑M

j=1
φj

(9)φj =
∑

S⊆{x1,··· ,xp}\{xj}

|S|!(p− |S| − 1)!

p!

(

fx
(

S ∪
{

xj
})

− fx(S)
)

(10)φi,j = S ⊆ \
{

i, j
} |S|!(M − |S| − 2)!

2(M − 1)!
δij(S)

(11),when i  = j, and δij(S) = fx
(

S ∪
{

i, j
})

− fx(S ∪ {i})− fx
(

S ∪
{

j
})

+ fx(S)
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and the lowest activity frequency and agglomeration during AM peak. Spatially, the 
distribution of MSAs’ vibrancy in Wuhan showed a clear center-edge structure, with 
the vibrancy inside the Third Ring Road significantly higher than outside. In addition, 
there was spatial heterogeneity in urban vibrancy among the three towns. Among them, 
Hankou old town on the north bank of the Yangtze River had the highest vibrancy, fol-
lowed by Wuchang old town on the south bank. The results suggest that the degree of 
urban activity and crowd gathering was related to different types of time and space.

Relative importance of built-environment features

We performed a covariance diagnosis on the independent variables. The variance inflation 
factors were all less than 10, proving that multicollinearity was not a problem. After that, we 
constructed the GBDT model and interpreted it by SHAP. The R-squared of the training and 
test sets of the model during four times was all above 0.75, indicating that our model was valid.

As shown in Fig.  4, nine features contributed more than 0.1 during different times. 
Among them, the number of leisure facilities and FAR were the two most influential vari-
ables on vibrancy during all times, and the number of commercial facilities ranked third 

Fig. 3 Urban vibrancy of MSAs during different times in Wuhan
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during midday and evening hours. These variables evenly changed predicted vibrancy by 
0.26, 0.23, and 0.17, respectively, during night hours, which was significantly higher than 
during other times. The third highest during AM peak was the number of residents, with 

Fig. 4 Relative importance of built-environment features during different times
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a contribution of 0.16, and the third highest during PM peak was the number of enter-
prises, with a contribution of 0.17. The mean Shapley values for the distance to the city 
center and sub-center were higher during midday hours at 0.14 and 0.12, respectively. 
Subsequently, the contribution of street centrality did not vary much across time, and the 
contribution of land use mix was higher during PM peak and night hours.

Nonlinear effects of built-environment features

Figure 5 showed a partial dependency plot derived from the GBDT model, where we vis-
ualized the impact of the nine key independent variables on predicting MSAs’ vibrancy 
during the periods with the highest contribution. Overall, leisure facilities, commercial 
facilities, and the distance to the sub-center had approximately linear associations with 
urban vibrancy, while the others exhibited complex nonlinear effects. Specifically, the 
FAR reflected specific nonlinear and threshold effects on urban vibrancy, with the inhib-
itory effect on vibrancy gradually decreasing to no effect as it increased from 0 to 1.4. 
Then, the effect showed a positive correlation with an approximate logarithmic curve 
and stabilized as the FAR grew beyond 2.2.

Fig. 5 Local effects of built-environment features on the vibrancy
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The number of enterprises, distance to the city center, the number of residents, street 
centrality, and land use mix also showed diverse nonlinear correlations. The number 
of enterprises from 3.5 to 6 showed an approximately linear positive correlation with 
vibrancy. Besides, the distance to the city center had an upward trend in the 5km range 
(approximating Wuhan’s second ring road), after which it gradually decreased and 
dropped to a negative value in the area 12km away (approximating Wuhan’s third ring 
road), indicating that the further the distance outside the central city area had a greater 
inhibiting effect on vibrancy. Moreover, the number of residents showed a weak upward 
trend in the field from 8 to 11. Street centrality was positively correlated with vibrancy 
from 5 to 22, with no change in the local effect beyond 22. Similarly, the land use mix 
contributed to vibrancy after exceeding 0.6, with no change for further increases.

Interaction effects among built-environment features

Our study further investigated the interaction among built-environment features. There 
were synergistic effects between leisure facilities and bus routes, commercial facilities 
and floor area ratio, and employment facilities and land use mix, as shown in Fig. 6. Lei-
sure facilities and bus routes could generate synergistic effects, with a positive effect on 
vibrancy when the number of leisure facilities was less than three and the number of 
bus routes was in the range of 3–5, and when the number of leisure facilities was greater 
than three and the number of bus routes was greater than five. Similarly, there was an 
interaction between commercial facilities and FAR. For MSAs with FAR below 1.5, the 
interaction became larger as commercial facilities increased, and a synergistic effect was 
generated after the number exceeded 3.5. However, for MSAs with FAR above 1.5, the 
interaction was negative when the number of commercial facilities ranged from 5.5 to 

Fig. 6 Local interaction effects among built-environment features
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6.8. Their interaction increased with increasing commercial facilities again when the 
number exceeded 6.8. Moreover, there was an interaction between enterprises and the 
land use mix, with their Shapley interaction value increasing with the number of enter-
prises when the land use mix was greater than 0.6, generating synergistic effects when 
the number of enterprises exceeded 5.

Discussion
Improving urban vibrancy can facilitate human activities and interactions, enhance the 
attractiveness of urban spaces, and offer more easeful living conditions for residents 
[1, 33]. TOD is considered to promote urban vibrancy, yet in reality, its implementa-
tion does not always lead to vibrant daily life. To better respond to the decline in the 
vibrancy of public transportation areas since the epidemic, planners wanting to improve 
the vibrancy around metro stations must rethink how to optimize the built environment 
of metro station areas. From the above results, we obtain five main findings.

First, there was spatial-temporal variability in the MSAs’ vibrancy in Wuhan. The temporal 
differences were similar to the results of previous studies. For example, Wu et al. [34] showed 
that people’s activity frequency was relatively low during typical sleep and work time and rel-
atively high during leisure and dinner time. Wang et al. [19] showed that crowd activity was 
most dispersed in the morning and then began to climb in intensity in these neighborhoods 
as workers and tourists flocked to the core. Spatially, the distribution of MSAs’ vibrancy in 
Wuhan showed a clear center-edge structure and spatial heterogeneity among the three 
towns, which was consistent with the study of Li et al. [4]. He found that urban vibrancy 
appeared to be much higher on the northern bank of the Yangtze River, where the old city of 
Hankou was located, and less active in the broader area at the city’s periphery.

Second, the relative importance of built-environment features influencing MSAs’ 
vibrancy indicates that leisure facilities, FAR, commercial facilities, and employment 
facilities were the most dominant explanatory variables. The results for leisure, commer-
cial, and employment facilities were consistent with existing studies. Li et al. [4] found 
that shopping and leisure density were positive factors that induced urban vibrancy. In 
addition, Wu et al. [35] showed that industries POI and business POI were the largest 
contributing factors influencing urban vibrancy. That is probably because to revitalize a 
place, it is necessary to provide as many services as possible and create opportunities for 
people to enjoy various daily activities. However, the importance of FAR was inconsist-
ent with the spatiotemporal vibrancy study in Shenzhen [22], where the floor area was 
not a good predictor. The difference may be because the analysis in this study was based 
on the vibrancy of metro station areas, and some studies have found that the effect of 
floor area on vibrancy varies depending on the distance to the nearest metro station [11].

Third, there were significant differences in ranking the effects of built-environment 
features on MSAs’ vibrancy during different times. Leisure facilities, FAR, and com-
mercial facilities contributed remarkably more at night than at other periods. The land 
use mix was also relatively more important at night, which was in line with the find-
ings of previous studies [13, 34]. They showed that consumption POI, land use mix, and 
FAR were more influential at night. This suggests that people tend to engage in diverse 
activities at night, especially leisure and business-related activities and that buildings 
can provide space for intensive and continuous activities. Besides, the contribution of 
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enterprises was significantly higher during PM peak, while that of residents was higher 
during AM peak, which was different from the findings of previous studies on vibrancy. 
Chen et al. [22] showed that population density contributed more to urban vibrancy in 
the evening and that company POI had a weaker temporal association with vibrancy 
from 10:00 to 22: 00 on weekdays. It may be because the vibrancy around metro stations 
would be more associated with the commuting behavior of residents on weekdays, with 
people leaving from their residential neighborhoods during AM peak and leaving from 
work during PM peak [25, 36].

Fourth, there were approximately linear or complex nonlinear relationships between 
the built-environment features and MSAs’ vibrancy. Leisure and commercial facilities 
showed an approximately positive linear relationship, the distance to the sub-center 
showed a negative linear association, and most of the built-environment features had 
complex nonlinear effects. For example, the nonlinear pattern of FAR was similar to 
the relationship between building form and vibrancy in Shenzhen [20]. It can be con-
sidered that buildings are the carriers of various functional services and facilities. Low 
building density substantially inhibits vibrancy. After the FAR exceeds 1.4, vibrancy 
improves with the increase of the index. Still, once the building demands have been 
generally satisfied, further improvements of FAR for vibrancy promotion will be less 
effective and even ineffective. The number of enterprises needed more than 3.5 to 
show a positive correlation with vibrancy. One explanation is that fewer enterprises 
have little effect on vibrancy, while with enough enterprises, the MSAs are employ-
ment-oriented making vibrancy greater as enterprises increase. Besides, the nonlin-
ear pattern of street centrality was also consistent with the results of previous studies. 
For example, Yang et al. [8] found that street density boosts vibrancy, saturating after 
reaching 32,000 m/km2. It can be assumed that well-connected streets can attract 
pedestrians; however, once the demand for access is generally satisfied, the effect of 
further increasing street centrality to promote vibrancy will be reduced or even inef-
fective. Moreover, the local effect of the land use mix was similar to the results of 
a study on ridership in Washington [37]. This may be because higher land use mix 
implies more diverse and rich activities in the area, which is conducive to attracting 
people [38], while after reaching 0.6, the relationship between various activities is bal-
anced and the promotion of vibrancy is at its highest.

Finally, some features produced synergistic effects when certain conditions were 
met. The study found that multimodal transportation was more effective at leisure-
dominated stations, high-density development was more effective at commercial-dom-
inated stations, and mixed development was more effective at employment-oriented 
stations. Fewer leisure facilities and medium bus routes, and more leisure facilities and 
bus routes generated synergistic effects, while fewer recreational facilities and more 
bus routes had adverse interaction effects. This might be because MSAs with fewer 
leisure facilities lack attractiveness to residents, and increased bus routes can drive 
regional traffic to and from the area. However, when transit is abundant, a conveni-
ent external transportation system may promote outbound travel and reduce vibrancy, 
consistent with previous research findings [39]. With sufficient leisure facilities, well-
developed public transport will drive residents outside the area for activities. Simi-
larly, there were synergies between low FAR and medium commercial facilities, and 



Page 15 of 18Peng et al. Journal of Engineering and Applied Science           (2023) 70:18  

between high FAR and sufficient commercial facilities, while the interaction value 
between high FAR and medium commercial facilities was negative. It can be argued 
that, for low-density MSAs, increased commercial services trigger more economic 
activities. However, the increase may take space away from commercial-dominant 
activities for high-density station areas. Yet when there are enough commercial facili-
ties, MSAs become commercial-dominated, allowing synergies to increase, which is 
consistent with the findings of Guangzhou’s exploration of community vibrancy [40]. 
Additionally, high land-use mix and sufficient enterprises generated synergies. This is 
probably because the increase of enterprises in mixed development areas will employ 
more people, creating vibrancy.

These findings have important planning and policy implications for promoting the res-
toration of urban vibrancy around metro stations since the epidemic. First, to make more 
efficient use of limited resources, priority is given to improving the MSAs in leisure facil-
ities, floor area ratio, commercial facilities, and employment facilities. Second, the rela-
tive importance during different times indicates the different mechanisms of influence 
on the vibrancy of TOD areas. Based on prioritizing the provision of leisure services and 
balancing building density, it is more helpful to facilitate the recovery of MSAs’ vibrancy 
by conforming to the national policy to activate nighttime businesses and markets vig-
orously and by improving the arrangement related to community residents during AM 
peak and the attributes related to employment facilities during PM peak. Third, the non-
linear relationships between built-environment features and vibrancy provide a range of 
effective intervals to promote MSAs’ vibrancy. In planning practice, leisure, commercial, 
and employment services can be improved toward areas with higher negative Shapley 
values, and the FAR should be set from 1.4 to 2.2 to accelerate vibrancy best. Finally, 
the identified synergies suggest that planning TOD to facilitate vibrancy should focus 
on multiple dimensions. In the future, it would be possible to develop rail stations by 
combining a leisure-led approach with multimodal transportation, a commercially led 
approach with high-density development, and an employment-oriented approach with 
mixed development.

However, there are some limitations to this study. First, we selected data with tem-
poral variability to measure the vibrancy. Two of these data sources are only available 
from smartphone users, which may cause the measure to be less comprehensive. Fur-
ther research should include non-smartphone users and find available data from more 
dimensions, such as economy and culture, or through questionnaires to obtain residents’ 
feelings. Second, only the vibrancy data change over time, whereas the variables of TOD 
remain the same. More detailed temporal factors, such as the opening hours of leisure 
and commercial facilities, should be considered. Finally, this study selected four times 
on weekdays in 2021 for comparison. Further research could delve into the temporal and 
spatial changes in human behavior.

Conclusions
This study examines the nonlinear and synergistic effects of the built-environment fea-
tures on urban vibrancy during different times at the TOD level in Wuhan through the 
GBDT and SHAP explanatory models. We systematically constructed the built-environ-
ment features of TOD based on the 5D framework and measured an integrated vibrancy 
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index based on multiple big data sources across specified periods. The study shows dif-
ferences in the effects of built-environment features on the MSAs’ vibrancy over time. 
Combined rankings during different times show that the most important contributors to 
the MSAs’ vibrancy are a higher number of leisure, commercial, and employment facili-
ties and high FAR. Moreover, we found that there were approximately linear or complex 
nonlinear relationships between the built-environment features and the MSAs’ vibrancy, 
and synergistic effects among some features.

Our study evaluated the comprehensive vibrancy of metro station areas over time and 
built a framework of explanatory variables affecting the vibrancy from the perspective of 
the built environment. We described the nonlinear effects of built-environment features 
on the MSAs’ vibrancy and proposed planning suggestions related to the organization 
form of rail transport. It promoted the city’s balanced, healthy, and sustainable develop-
ment from the perspective of urban planning. Meanwhile, it provided a reliable theo-
retical framework for future academic research on the influence of built-environment 
features on MSAs’ vibrancy.
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