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Abstract 

The proliferation of the SARS-CoV-2 global pandemic has brought to attention the 
need for epidemiological tools that can detect diseases in specific geographical areas 
through non-contact means. Such methods may protect those potentially infected 
by facilitating early quarantine policies to prevent the spread of the disease. Sampling 
of municipal wastewater has been studied as a plausible solution to detect pathogen 
spread, even from asymptomatic patients. However, many challenges exist in wastewa-
ter-based epidemiology such as identifying a representative sample for a population, 
determining the appropriate sample size, and establishing the right time and place 
for samples. In this work, a new approach to address these questions is assessed using 
stochastic modeling to represent wastewater sampling given a particular community 
of interest. Using estimates for various process parameters, inferences on the popula-
tion infected are generated with Monte Carlo simulation output. A case study at the 
University of Oklahoma is examined to calibrate and evaluate the model output. Finally, 
extensions are provided for more efficient wastewater sampling campaigns in the 
future. This research provides greater insight into the effects of viral load, the percent-
age of the population infected, and sampling time on mean SARS-CoV-2 concentration 
through simulation. In doing so, an earlier warning of infection for a given population 
may be obtained and aid in reducing the spread of viruses.
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Introduction
Public health officials continue to work toward a more efficient and representative way 
to identify and follow the spread of viral infections. With the sufficient mapping of an 
outbreak, preventative measures can be implemented, and lives may be saved. In recent 
years, nasal polymerase chain reaction (PCR) tests have been used to track the spread of 
the Ebola and SARS viruses [1]. While these tests are both accurate and reliable, popu-
lations can be restricted in terms of access to testing due to geographical boundaries, 
financial limits, or other societal factors. In recent years, wastewater-based epidemiol-
ogy (WBE) has become a more popular method in the public health sector for track-
ing the prevalence of a virus in a geographic region anonymously and overcoming social 
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factors that currently limit access to widespread testing by measuring the concentration 
of a chemical or biological constituent in municipal wastewater. Initially, WBE was used 
to determine illicit drug use [2, 3] but in recent years has expanded to include pharma-
ceuticals and personal care products, industrial chemicals, lifestyle markers, and, most 
recently, biomarkers like SARS-CoV-2 [4, 5]. Recently, the National Academies of Sci-
ences has recommended the formation of a national wastewater-based infectious disease 
surveillance system to inform public health action [6]. Since it can be used to capture 
information on individuals who are potentially asymptomatic or otherwise not tested, 
the technique offers a unique perspective [7]. In the future, WBE of SARS-CoV-2 could 
provide public health officials with essential information on the spread of the virus to 
appropriately apply targeted health measures.

The first modern paper on WBE was written by Christian Daughton in 2001, which 
concerned the surveillance of illicit drug use [2]. However, this paper was primarily the-
oretical in nature, as it took 4 years for cocaine to be successfully extracted and quanti-
fied from wastewater. Since this initial investigation on illicit drug use, further studies 
have expanded their scope to include alcohol, tobacco, and other drug usage along with 
pathogens like Ebola and SARS [5]. Among the numerous WBE publications in the lit-
erature following Daughton’s research, there are two primary attributes for differentia-
tion: the choice of sampling technique utilized by the researchers and computational 
processes selected for analysis. With emphasis on research published within the last ten 
years, these focus areas are further highlighted.

Sampling techniques

There are currently three standard WBE sampling techniques: grab samples, time-
weighted composite samples, and flow-weighted composite samples. Grab samples, 
which are taken any time of the day, capture the wastewater that is passing by the collec-
tion point at that given time. In contrast, time-weighted composite samples are taken at 
regular time intervals and averaged arithmetically, and flow-weighted composite sam-
ples are taken at regular flow intervals for a more realistic measure of total mass given 
diurnal fluctuations in flow and concentration.

Curtis et al. [8] analyzed the variability between grab samples and 24-h time weighted 
samples and determined that calculations to determine viral load between the two sam-
ples exaggerated their differences. The difference in these samples can be attributed to 
dilution and interferences with other constituents in municipal wastewater. Graywater 
comes from non-toilet appliances (e.g., shower, dishwasher, sink) and is a major dilutive 
factor in measuring biological concentrations in wastewater [9]. Thus, graywater volume 
must be accounted for in an experimental study to determine the true concentration of 
the WBE analyte in question.

Another cause of variation in WBE is sample location in relation to the sewage sys-
tem. A recent study noted that samples taken from the influent of municipal wastewa-
ter treatment plants (WWTPs) can be heavily influenced by the accumulated dilatation 
at the end of the sewershed [10]. In Bibby and Peccia [10], five sampled WWTPs each 
served a population between 100,000 and 1,000,000 people. Due to this, the research-
ers found a wide variety of different pathogens in the wastewater. This illustrates one 
complication that may result from sampling a large population: when the total volume 
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of wastewater increases due to the accompanying graywater contribution, the virus con-
centration is further reduced or diluted. A Hong Kong-based study compared viral load-
ing at different locations within a sewershed: a hospital ward, a residential building, and 
a wastewater treatment plant [11]. Similar to previous literature, as the sample popula-
tion got larger, the results became more variable and less trustworthy due to the patho-
gen becoming too diluted for the current testing processes.

In contrast, similar to this study, some researchers have examined smaller popula-
tions for WBE sampling. Bivins and Bibby (2021), Gibas et al. (2021), and Karthikeyan 
et al. (2021) performed studies of specific university campus buildings to compare with 
large-scale infection rates [12–14]. Moreover, Barrios et al. (2021) and Spurbeck et al. 
(2021) sampled small neighborhoods as a mechanism for designing health interven-
tion policies at the community level [15, 16]. Oh et al. [17] outline the many benefits of 
conducting WBE at the scale of a neighborhood or small population. One predominant 
realization in all of these studies is the reduction in variability observed across the virus 
measurements.

Equally as important as sample location are the temporal characteristics of a sample. 
Evans et al. [18] identified temporal profiles of wastewater systems that vary largely from 
building to building. This is due to many factors, including, but not limited to: the num-
ber of people in the building, the building’s use, and the schedule that people use the 
building. These factors can greatly influence the amount of graywater that appears in 
a sample and may affect the calculated positive COVID-19 cases for a particular geo-
graphic region.

Computational processes

Most WBE literature involve studies that utilize common analytics to explain their 
results. Hart and Halden [19] employed a computational analysis model from the U.S. 
Environmental Protection Agency to estimate sewage travel time, flow rates, and veloc-
ity. They then used cost metrics to estimate savings in testing a population for a virus. 
Salvatore et al. [20] document using techniques in principal component analysis specifi-
cally designed to analyze temporal data. The methods enabled one to establish regres-
sion models for predicting temporal changes in wastewater measurements.

There are limited previous research studies, however, that incorporate simulation and 
WBE data to predict the number of positive cases associated with a certain pathogen. 
Wang et  al. [21] utilized Monte Carlo simulation to evaluate tobacco consumption in 
a population paired with WBE. Ahmed et al. [22] utilized the same simulation method 
to estimate the number of people who were infected with a virus, assuming various dis-
tributions for model attributes. Both studies by Wang et al. [21] and Ahmed et al. [22] 
supported looking at very broad populations for the purpose of evaluating detection in 
general.

The previous literature has not considered variations in a community population. 
Specifically, they did not focus on any sample populations less than a couple thousand 
residents. The long-term goal of WBE will be to tailor public health policies to specific 
areas, thus both controlling the disease while also minimizing collateral damage of pub-
lic health policies. This work proposes a framework for analyzing different-sized popula-
tions and by conducting sensitivity analysis. We conjecture that the mean SARS-CoV-2 
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concentration will vary from community to community, simply based on the parameters 
defined for a specific sample population.

There are many challenges to implement WBE. Many factors can impact interpreta-
tion of the pathogen concentration data collected using WBE. First, depending on the 
location where the samples are taken, it can be difficult to estimate the population that 
is being sampled, especially in commercial districts. In addition, the concentration of 
SARS-CoV-2 copies in a sample may depend on a wide variety of considerations such as 
dispersion factors, infrastructure design, and population activity. To fully gain an under-
standing of these effects, it may require years of conducting experimental sampling pro-
cedures in tandem with community testing for COVID. For these reasons, there is an 
opportunity for simulating WBE efforts, a technique that can be further refined with 
greater future knowledge of sampling outcomes. If coupled with a real-world SARS-
CoV-2 sampling study, methods in simulation may facilitate estimating fairly accurate 
infection rates prior to an outbreak.

In the sections that follow, a methodology for simulating a sampling process is 
described that seeks to produce a mean SARS-CoV-2 concentration for a given sample 
population. Finally, a real-world sampling case study is performed at the University of 
Oklahoma (OU) to compare with the simulation output and support validating various 
parameter settings. Research extensions are also described thereafter, so that valuable 
insights for improving WBE viral load detection may be obtained.

Methods
A stochastic modeling approach is presented that models WBE processes for varying 
size populations. This involves designing a Monte Carlo simulation in ProModel (version 
10.8.81), a discrete-event simulation software package, using distributions for various 
parameters described in this section. Prior to outlining the steps of our methodology, 
several relevant assumptions in modeling are described.

Assumptions

While the intent is to reduce error as much as possible in simulating SARS-CoV-2 sam-
pling for a given population, some assumptions must be made. In these cases, previous 
literature on the topic is investigated or known information regarding the population is 
sought to arrive at feasible and acceptable settings. The following paragraphs describe 
many of the parameters that must be considered in the development of a simulation 
approach.

Of particular interest is the average number of times an adult will defecate per day. 
Walter et al. [23] concluded that 98% of healthy individuals defecate between three 
times per day and three times per week. This study was confirmed by Mitsuhashi 
et al. [24] that also supported the “3 by 3” metric. A more specific study conducted 
by Bharucha et al. [25] on a group of women concluded that 80% of subjects without 
gastrointestinal issues defecated between 0.9 and 1.7 times per day. Other studies 
suggest that it depends on the age and gender of the population, as male populations 
less than 35 years old are found to have a greater stool frequency than other demo-
graphic areas. More active populations are reported to pass stools more frequently 
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than sedentary groups [26]. This information provides, at best, a starting point when 
looking at a particular community of interest.

The proportion of the population that sheds a virus is also a parameter of inter-
est. Szymczak et  al. [27] concluded that only between 40-50% of COVID-positive 
people shed the virus in their feces. Cuicchi et al. [28] found that 46.5% of those with 
confirmed COVID-19 cases shed the virus in their feces. Young et al. [29] confirmed 
that 50% of confirmed COVID-19 cases shed SARS-CoV-2 genetic copies in their 
stool, but non-detectable amounts in their urine. The number of copies/L of SARS-
CoV-2 in any one defecation must also be considered and can be highly variable [30]. 
Pan et  al. (2020) reported levels between  105 and  108 copies/L, Zang et  al. (2020) 
detailed levels between  108 and  109 copies/L, and Han et al. (2020) concluded that 
copy levels can reach up to  1010 copies/L [31–33].

Another parameter of interest is the size or volume of each defecation as this 
affects sampling efficiency and sewage throughput; for this parameter, several 
sources were referenced. First, Sender et  al. [34] calculated that the average adult 
human has a defecation volume between 0.15 L and 0.25 L per day, assuming a 
once per day defecation schedule. However, Strid et al. [35] concluded that volume 
depends on population activity. For example, athletes tend to eat more food and 
thus defecate more frequently and of greater size. Sanjoaquin et  al. [36] supports 
this same conclusion denoting that those who drink more water (like athletes) have 
larger defecations. Finally, a guide published by the Registered Nurses’ Association 
of Ontario suggests that “normal” defecations for an adult population are between 
0.25 L and 0.50 L, the average of which is 0.375 L, still larger than Sender et al. [37] 
concluded.

There are also assumptions to consider regarding the sampling system, the infra-
structure, and the flow composition. Many recent efforts utilized grab sampling for 
long term WBE studies [9, 18, 22, 38]. From real-world analysis, it takes approxi-
mately two minutes for a common autosampler to take a 100 mL sample. Moreo-
ver, the travel time in a wastewater pipe is often considered to be negligible with 
respect to mean SARS-CoV-2 concentration, even on the scale of a wastewater treat-
ment plant [39]. Schussman and McLellan [39] also assumed there would be a mod-
erate temperature prevalent in the wastewater pipe that would not have an impact 
on virus survival. Regarding the composition of the flow in the wastewater pipes, 
Oteng-Peprah et al. [40] estimated that 75% of the wastewater in standard household 
pipes is considered “graywater,” coming from other sources such as showers or baths, 
and laundry or sink water. This figure ranges between 50 and 80%, depending on the 
different water uses in residential facilities [41].

Finally, the concentration of SARS-CoV-2 in wastewater may be expressed in vari-
ous ways depending on the sampling strategy. In particular, when performing grab 
sampling such as in this study, some researchers may assume the sample results 
represent the average concentration for an entire day [42–44]. To mitigate against 
variability in detecting pathogens, Bivins et al. (2021) and Augusto et al. (2022) rec-
ommend performing daily grab samples during the peak flow rate in any given com-
munity, usually between noon and 6 p.m. [12, 45].
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Modeling approach

The goal of the simulation is to model the mean SARS-CoV-2 concentration for the com-
munity of interest. A first step is to collect and analyze flow data for a particular community 
of interest. This is necessary to establish a baseline for the environment as different-size 
populations will undoubtedly have varying levels of flow. Daily trends within a week may 
also exist—capturing representative data for each of the days in the week can facilitate pro-
viding a good representative picture of the flow rate. Next, utilizing some knowledge of the 
community, previous research, and the collected flow data, a distribution for defecations 
is defined for the simulation. After further identifying parameter settings tied to various 
assumptions, simulation trials are generated to establish the long-term behavior for the 
mean SARS-CoV-2 concentration. Figure  1 illustrates the procedural flow of these steps 
toward establishing our model.

Step 1: flow analysis

Production of graywater can vary greatly depending on geographic location, lifestyle, cli-
mate, sewage infrastructure, among other cultural factors. Graywater production varies 
between 20 L∙c/d in Gauteng, South Africa (province containing Johannesburg and Preto-
ria), and 151 L∙c/d in Muscat, Oman (the capital of Oman) [36]. Tuscon, Arizona, measured 
at the production level of 123 L∙c/d [36]. With such a wide variation, it is imperative that 
flow data be collected and analyzed prior to a simulation being designed. Two important 
factors that can be determined from the flow data are (i) a general knowledge of the flow 
rate of the community of interest which leads to measurements that will be used to com-
pute the daily mean SARS-CoV-2 concentration and (ii) information regarding the percent-
age of graywater in the wastewater pipe. Both factors will greatly affect the accuracy of one’s 
calculations.

Step 2: defecation distribution identification

The identification of the distribution is derived from two main factors: knowledge of the 
given population and the collected flow data. As discussed previously, the age, gender, and 
activity of the population will influence the size and amounts of defecation in any given 
time interval. Examining the collected flow data may also provide insights into explainable 
trends and peaks such as the times when population density is greatest or completely inac-
tive. Using these two factors, the defecation distribution can then be identified for the fur-
ther use of simulation.

Step 3: Monte Carlo simulation sampling

The total number of individuals in a community of interest is identified. Given information 
from step 2 estimating when these individuals will defecate throughout the day, one or more 
cumulative density functions (CDFs) may be established for a 24-h period. The total num-
ber in the population is further broken down into three different groups: COVID-negative, 

Fig. 1 Modeling approach procedures
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COVID-positive shedding, and COVID-positive non-shedding. As mentioned previously, 
only a percentage of the population of interest will shed the virus in the local wastewa-
ter. The chosen defecation distribution for a population based upon weekly flow data and 
knowledge of the community then influences the number of COVID-19 positive defeca-
tions detected in a sampling operation.

In terms of the software, ProModel, entities are created to represent each defecation 
based upon the size of the population. Entity attributes are utilized to delineate between 
COVID-negative, COVID-positive shedding, and COVID-positive non-shedding feces in 
the right proportions. They are further held in a group queue and released from this mod-
ule according to the distribution of interest. Upon departing the group queue, the enti-
ties enter another brief queue representing the sampling operation. The time in this latter 
queue is equivalent to the time it takes sampling equipment to collect a sample. On a given 
day, specimens that contain SARS-CoV-2 particles may then be detected when a sample is 
taken. Once entities depart the second queue, they are released from the simulated process 
until a new distribution is generated.

Step 4: SARS‑CoV‑2 concentration computations

The previous paragraphs explain the numerous assumptions and parameters that must be 
defined to support an accurate Monte Carlo simulation for wastewater-based epidemiol-
ogy. These factors ultimately culminate in the calculation of the concentration of copies of 
SARS-CoV-2 virus per liter of wastewater, as shown at Eq. 1:

where C is the concentration of copies of SARS-CoV-2/L, derived from the total number 
of SARS-CoV-2 copies in the wastewater divided by the volume of the wastewater in the 
sewer. In the numerator, c+ represents the number of COVID-19 positive defecations at 
that time, k is the number of SARS-CoV-2 copies/L in a defecation, and Vd represents 
the volume of a defecation per person. In the denominator, Q represents the community 
flow rate in liters per second at the moment that the sample is being collected, and ts 
represents the time it takes for a sample to be taken in seconds. Using these variables, 
the concentration C in copies of SARS-CoV-2/L can be calculated.

To calculate Eq. 1, the number of COVID-positive defecations will be taken from the out-
put of the Monte Carlo simulation. The other two terms in the numerator are identified based 
upon knowledge of the community of interest and the flow analysis results. The denominator 
determines how much wastewater is flowing by the sampling location as the sample is taken. 
Finally, similar to some previous research efforts, the simulation will calculate a SARS-CoV-2 
concentration in copies/L at a specified time of the day, and this concentration will be assumed 
to be the average concentration throughout the day. Daily concentrations will then be used to 
identify a running average concentration observed over a longer period of time.

Results and discussion
Case study: a community of interest

Data utilized for this project was part of a larger unpublished data set from monitoring 
for SARS-CoV-2 in wastewater from residence halls on the campus of the University of 

(1)C =
copies

L
=

total#of copies

total wastewater Vol.
=

c+kV d

Qts
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Oklahoma during the fall semester of 2020 and the spring semester of 2021. The commu-
nity of interest for this particular study consisted of approximately 325 students, which 
were both male and female, generally between the ages of 18 and 22 years old, and many 
that were college athletes. In accordance with the procedures outlined in the “Modeling 
approach” section, the first step is to analyze the flow for the community of interest. As 
mentioned previously, the flow may be highly variable across different-sized populations 
with diverse supporting infrastructure. Using a flow sensor installed in a sewage pipe 
from a manhole south of a residence hall, the flow rate was collected each minute for a 
6-month period between December 2020 and May 2021 using refrigerated Avalanche 
autosamplers from Teledyne Isco of Lincoln, Nebraska. Discarding a small number of 
days when the flow sensor malfunctioned, the average daily flow rate was recorded for 
each day of the week (see Appendix). The manhole location was selected to represent the 
combined flow from all the residents that utilized the facility.

Identifying the defecation distribution, the second step of the modeling approach, 
requires considering both characteristics of the community of interest and observing the 
flow data. The residents are students who exhibit high activity in the morning, afternoon, 
and evening hours with requirements to attend classes and participate in daily athletic 
practices. Depending on the day of the week, the population may also exhibit high activ-
ity in the late-night hours. Each day of the week depicts some trend whereby some outli-
ers may be present. When all the flow data is merged into one plot and a higher-order 
trend line is used to depict the average at each minute of the day (Fig.  2), a bimodal 
pattern is observed with peaks at the midday and evening hours. In addition, there are 
instances where no flow is observed or where it is at a minimum, primarily between the 
hours of midnight and 6 a.m.

It is important to note that the data depicted in Fig.  2 includes graywater which, as 
previously indicated, is assumed to be 75% of the total flow. Another significant consid-
eration is the fact that this population is primarily young and athletic; as discussed in 
the “Assumptions” section, athletes are found to defecate more than an average person. 
Given this information and the supporting data, it is assumed that this population defe-
cates, on average, twice a day. Furthermore, with the peak flow occurring when students 

Fig. 2 Merged flow data with mean trend line (OU community of interest)
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are likely returning from morning classes and then returning from afternoon activities 
and dinner, the distributions for each defecation are assumed to be based upon a nor-
mal distribution with means at 10:30 a.m. and 7:30 p.m., respectively. To account for 
the spread of the data observed, a 2-h standard deviation is used with each distribution. 
Figure 3 depicts the approximate defecation distributions and their alignment with the 
time of day. The six-sigma limits for a normal distribution account for more than 99% of 
the observational data. Given a 2-h standard deviation, the distribution will span a total 
of 12 h, enabling one to achieve a bimodal pattern for the midday and evening hours.

Upon establishing a program to generate the defecation distributions in ProModel, the 
third step in the modeling approach calls for the development of a Monte Carlo simula-
tion to perform a sampling process. To complete this step, several parameter values out-
lined in the “Assumptions” section are identified.

First, like the actual sampling process conducted at the residence hall, a “grab sam-
ple” is performed at noon each simulated day. It is important to note that this process 
accounts for times when SARS-CoV-2 is detected or not detected, but it is not specifi-
cally generating random samples representative of false negatives (not detecting virus 
when it is present) or false positives (detecting the virus when it is not present). A “sam-
pling location” is established in the simulation similar to a wastewater pipe, whereby 
once a defecation occurs, it enters a group queue for a two-minute period before flow-
ing out of the system. The 2-min period is designed to replicate the time taken for a 
real-world autosampler to physically sample a specimen. The number of defecations 
observed at the sampling location is recorded and used in future calculations.

Secondly, each defecation volume is established at 0.375 L, in accordance with the 
research discussed previously on athletes and average adults [34, 37]. In addition, based 
upon estimations from September 2020 to May 2021 and the actual COVID copy counts 
discovered via sampling, a % COVID-positive rate is established for the simulated popu-
lation. Moreover, given the community of 325 students, one half of all COVID-positive 
individuals will shed the virus in their feces, in accordance with previous research.

Although there are likely effects such as dispersion that can be considered, for the 
purpose of this initial study, instantaneous sampling is performed. That is, the dura-
tion of travel between the time the defecation occurs and when it is sampled is zero. 
This assumption aligns with the recent research of Schussman and McLellan [39], 
whereby mean SARS-CoV-2 concentrations change very little from source to sample, 
even on the scale of a wastewater treatment plant. The size and scale of this particu-
lar community of interest do not necessarily warrant considering effects such as viral 
decay or mortality during the time frames of water transport and sample detection. In 

Fig. 3 Defecation distribution alignment with time of day
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contrast, if larger systems or processes make up a community of interest, additional 
evaluation may be required.

The fourth and final step in the modeling approach is to calculate the mean con-
centration of SARS-CoV-2 in copies/L. Given our case study scenario with a popula-
tion of 325 students, a proportion of this population is COVID-positive and sheds 
the virus in their feces. A grab sample is taken at noon on a given day of the week 
during a 120-second duration of time. With a suspected viral load and the community 
flow rate at that specific time, the mean SARS-CoV-2 concentration is calculated. For 
instance, based upon the randomly generated defecation distribution for a popula-
tion suspected to have a 15% COVID-positive rate where the simulation sample finds 
two COVID-positive defecations at noon on a Monday, the viral load of a feces for a 
person (p) is assumed to be  108 copies/L, and the community flow rate at that time is 
2.149 liters per second, the mean concentration for that day is:

Prior to performing an analysis of the sensitivity related to solutions generated by 
the Monte Carlo simulation, several experiments are conducted on the long-range 
behavior of the mean SARS-CoV-2 concentration. Under various settings, up to 1000 
trials (each trial representing 1 day) of the simulation are generated with a calculated 
running average of the mean concentration. These settings include varying the popu-
lation infected (5–25% infected), the viral load  (106–1010 copies/L), and the time that 
the sample is taken (8 a.m.–11 p.m.). In each instance, the mean appears to converge 
at some value after approximately 500 trials. Figure  4 illustrates a convergence to 
roughly 10 copies/L when the population infected is 5%, the viral load is  106 copies/L, 
and a noon sample time is performed.

Based upon the results of these initial experiments, a total of 500 trials was chosen for 
all experimental runs in this study. Given multiple parameters of interest, an analysis of 
the sensitivity in the results was performed.

C =
(2 p) 108 copies/L (0.375 L/p)

(2.149 L/s)(120 s)
= 290, 853 copies/L

Fig. 4 Simulation output, running mean SARS-CoV-2 concentration (L/s), 1000 trials
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Sensitivity analysis

Each parameter in the calculation of the mean SARS-CoV-2 concentration has some var-
iability associated with it. Variation can occur in the viral load for each feces, as previous 
research outlined in the “Assumptions” section denotes intensities in the range from  106 
to  1010 copies/L. The time of the day that a sample is taken can also be a significant fac-
tor depending on the distribution chosen for individual defecations. For instance, given 
the defecation distributions that we identified for our community of interest, samples 
at 10 a.m., noon, and 11 p.m. correspond to 0.25, 0.75, and 1.75 standard deviations for 
the distributions, respectively. The smaller the standard deviation, the greater likelihood 
that COVID-positive feces may be discovered in our samples. The Monte Carlo simula-
tion also requires some estimation of the number of COVID-positive individuals in the 
population. Sampling in highly populated communities or areas with larger catchments 
may influence the detection rate for SARS-CoV-2 [46, 47].

To analyze the effects of viral load, sampling time, and COVID-positive rates in our 
scenario, multiple experiments were performed. Figures 5, 6, and 7 depict the observed 
results of varying these parameters on the mean SARS-CoV-2 concentration. In particu-
lar, Fig.  5 displays three different experiments where 5% of the population is deemed 
COVID-positive and a viral load of  106 copies/L is assumed. Each experiment involves 
performing grab samples at different times of the day repeated over a duration of 500 
trials, the first using a sampling time of 10 a.m., the second at noon, and the third at 
11 p.m. The effect of the parameter settings and the sampling time on the simulated 
mean SARS-CoV-2 concentration is observed. After 500 trials, mean concentrations of 
approximately 2, 10, and 25 copies/L result from the 11 p.m., noon, and 10 a.m. samples, 
respectively.

In Fig. 6, three similar experiments are performed, but with 10% of the population 
deemed COVID-positive and setting the viral load at  108 copies/L. After 500 trials, 
we observe mean concentrations of approximately 750, 1500, and 4000 copies/L for 
the 11 p.m., noon, and 10 a.m. samples, respectively.

And in Fig. 7, the results are examined with 15% of the population deemed COVID-
positive and a viral load setting of  1010 copies/L. After 500 trials, we observe mean 
concentrations of approximately 75,000, 300,000, and 600,000 copies/L for the 11 
p.m., noon, and 10 a.m. samples, respectively. The breadth of the outcomes in mean 

Fig. 5 Simulation output, rolling mean SARS-CoV-2 concentration (L/s) when population infection is 5%, viral 
load is  106, and grab sample time varied



Page 12 of 21Martin et al. Journal of Engineering and Applied Science           (2023) 70:11 

SARS-CoV-2 concentration account for the wide range of inputs in the COVID-posi-
tive infection rates, viral load, and sampling times.

To identify the specific effects of the various parameters on the mean SARS-CoV-2 
concentration, additional observations are made. In a follow-on experiment, the 
noon sample is selected and the simulation is run with 10% of the population deemed 
COVID-positive and a viral load setting of  108 copies/L. After 500 days, a mean con-
centration of 125,290 copies/L is obtained. When this result is compared to Figs.  6 
and 7 for the noon sample, we observe a 100-fold increase in viral load corresponds 
to a roughly 100-fold increase in mean SARS-CoV-2 concentration while a roughly 
½-fold decrease in the percentage of population infected corresponds to a ½-fold 
decrease in concentration. In contrast, when viral load and the percent of the popula-
tion infected are fixed such as in Figs. 5, 6, and 7, a shift of just 2 h in the simulated 
sample time results in a decrease of more than one-half the concentration in copies/L. 
The different units of measurement among the parameters, however, creates difficulty 
in directly comparing their individual “sensitivities.”

While it is apparent that each of the measures has some effect on the concentration, 
the greatest change in the overall mean is undoubtedly attributed to the scale, range, 
and variability of the viral load parameter. This can be directly observed by adjusting 

Fig. 6 Simulation output, rolling mean SARS-CoV-2 concentration (L/s) when population infection is 10%, 
viral load is  108, and grab sample time varied

Fig. 7 Simulation output, rolling mean SARS-CoV-2 concentration (L/s) when population infected is 15%, 
viral load is  1010, and grab sample times are varied
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the viral load from  106 to  1010 copies/L in Eq. (1), whereby a ten thousand-fold increase 
results in the mean SARS-CoV-2 concentration. The overwhelming effects of viral load 
on SARS-CoV-2 concentration are further substantiated by other researchers perform-
ing real world studies [48–50].

Comparison with local measurements

For a 9-month period between September 2020 and May 2021, in addition to analyz-
ing the flow rate for the community of interest, a sampling campaign was performed to 
monitor the actual mean SARS-CoV-2 concentration. During this period, 34 grab sam-
ples, 33 time-weighted samples, and 100 flow-weighted samples were collected on dif-
ferent days from the dormitory sewer. Aside from the composite samples, which were 
drawn over a 24-h period, the samples were collected at approximately noon on each 
day. After collection, samples were immediately transported to the analytical labora-
tory on the campus of the University of Oklahoma and analyzed for the N1 SARS-CoV-2 
marker using a kit-less analytical method described in Kuhn et  al. [38]. The sampling 
results are displayed in Fig. 8. Of note, the mean SARS-CoV-2 concentration was found 
to be 247,000 copies/L for the grab samples, 109,000 copies/L for the time-weighed sam-
ples, and 165,000 copies/L for the flow-weighted samples. These figures would serve as a 
baseline for evaluating the Monte Carlo simulation output.

From Figs.  5, 6, and 7, it may be possible to infer a confidence interval for the case 
rate of the community of interest, especially if greater information on the viral load is 
available. The different scales observed on the y-axis are a direct result of the different 
viral loads; given our parameters, this factor will produce results that may vary as much 
as  104 in magnitude. For instance, if the population infection rate is assumed to be 5%, 
as shown in Fig. 5, but the viral load is established at  108 copies/L, the graph will look 
very much the same but on a scale one hundred times larger in magnitude. For our sce-
nario, if we assume the viral concentration of one fecal event is slightly above average at 
 1010 copies/L, we can expect from this analysis that the population infection rate is likely 
within a range of 8-13% during this period (a mean SARS-CoV-2 concentration close to 

Fig. 8 Actual SARS-CoV-2 concentration for sample population using different sample collection methods
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300,000 copies/L is observed in Fig. 7, whereas the actual sampling process resulted in 
noon grab samples with mean concentrations close to 250,000 copies/L).

However, there exist several factors that may suggest the simulation is slightly over-
estimating mean concentration. First, the simulation assumes that the 325 students are 
always using the bathroom facilities at the residence hall during any given day, when in 
fact, they may use any campus facility. Secondly, the simulation does not account for 
holiday breaks or periods of time when the facilities may be completely empty. Finally, 
the simulation assumes that all students in the residence hall have slightly above average 
defecation size and frequency. In reality, it may depend on the type of student activ-
ity whereby more energetic individuals truly only produce these results. With greater 
knowledge in future research of these subject areas, higher precision may be possible 
with simulation.

Future applications

A complementary goal of this research was to create a generic, stochastic modeling 
approach that could be applied to different populations. To extend this work to less 
homogeneous populations, the bimodal distribution assumed in this work may be more 
skewed: with the variance of the evening peak greater than the morning peak (as is com-
monly observed in flow rates of larger sewersheds). The rate and mass of each defecation 
event could also impact the assumed distribution. Observed differences in flow, defeca-
tion frequency, and SAR-CoV-2 load per event correspond to greater variation in life-
style of the population; which could be impacted by gender, diet, BMI, exercise habits, 
and genetics [36]. To extend this work to a heterogeneous population when the behav-
iors and demographics can be assumed of the sub-populations, the bimodal distribu-
tion could be substituted for a multivariate probability distribution. To extend this work 
to larger communities, identifying representative sampling locations (i.e., interceptors 
where the sample is well mixed) where the flow is monitored would allow a detailed 
accounting of dilution from inflow and infiltration (I&I) and non-residential discharges 
[47, 51].

Factors relating to mechanical dispersion within the sewer collection system need to 
be considered as well, especially for larger communities of interest. In this case study, 
the effects of dispersion were deemed negligible, given that the pipe supporting the 
residence hall was small and a small population was studied. For extremely large popu-
lations, sampling can occur at an interceptor where the wastewater is well mixed. How-
ever, when sewershed sampling occurs in rural areas or targeting smaller sewersheds 
lacking mixing, dispersion should be explored as an experimental factor.

Additionally, the time of sampling requires greater attention. In a practical application 
of WBE, samples will only be taken once or twice a day due to the financial and time 
cost of taking samples. Therefore, it is important that the samples accurately represent 
the infection rate of the community of interest. In this study, we analyzed three different 
sampling times. Future studies may consider factors such as the different sample types 
and alternative equipment for optimizing sampling collection strategies both temporally 
and spatially. Greater analysis in sampling times is needed, as well as how the results 
from those samples contrast with the actual case count of the community of interest. 
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With accurate sampling times and results, public health officials can better control the 
spread of disease in the community.

Conclusions
This work seeks to take an initial step forward in using stochastic modeling to study 
WBE. A general framework is proposed that can be modified for any size community of 
interest. It begins with a study of the flow data which, when combined with knowledge 
of the population, leads to identifying a defecation distribution for the individuals. A 
Monte Carlo simulation is then produced to model the sampling process based upon 
this distribution and various parameters. Finally, as a result of the flow characteristics, 
the viral load, and the repetitive nature of the simulation, a mean SARS-CoV-2 concen-
tration is obtained.

In the “Sensitivity analysis” section, a specific community of interest was observed 
whereby the effect of three parameters on the mean SARS-CoV-2 concentration was 
studied. An experimental investigation of the parameters, namely viral load, the percent-
age of the population infected, and sampling time, led to several research findings. First, 
the breadth of variability in the mean SARS-CoV-2 concentration when altering vari-
ous parameters is easily observed for a particular population. This may provide a greater 
future awareness of the changes observed across different populations, especially since 
communities of interest have unique characteristics in terms of demographics, graywa-
ter content, and infrastructure. Second, among the three parameters, viral load exhib-
ited the most influence on the mean SARS-CoV-2 concentration, due to its scale, range, 
and variability. While the percentage of the population infected and the choice of sam-
pling time also showed significant influence, a comparison of the two parameters offered 
inconclusive results. Third, the sensitivity analysis may enable one to make inferences 
on the degree to which a population is infected when quantities such as viral load are 
known or assumed. Greater knowledge of highly influential parameters such as viral 
load may certainly lead to increased precision in estimating infection rates, a typical goal 
of wastewater-based epidemiology studies.

In conclusion, the methods and findings for this research work can be applied in vari-
ous ways. The proposed analytical framework can be extended to larger communities 
when factors such as those described in the “Future applications” section are examined. 
In addition, approaches in simulation offer an ability to perform “what if ” analysis and 
explore different scenarios without real-world experimentation. Future stochastic mode-
ling efforts with WBE studies may provide supplementary information that further opti-
mizes viral collection and detection processes. The results for this study can also be used 
to impart awareness of the degree or significance to which factors may affect sampling 
outcomes. Finally, with greater future knowledge of subject areas such as human fac-
tors and infrastructure effects in wastewater epidemiology studies, approaches in simu-
lation may gain added precision and accuracy in their formulation. In turn, public health 
officials may achieve better insights and then gain efficiencies in shaping public health 
policy.
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Appendix
The daily flow for a particular residence hall at the University of Oklahoma is analyzed 
over a six-month period, to provide a baseline for future measurements. Shown in the 
following figures are the average readings for each day of the week during the 6-month 
period:

Figures 9, 10, 11, 12, 13, 14 and 15

Fig. 9 Monday average readings for daily flow

Fig. 10 Tuesday average readings for daily flow
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Fig. 11 Wednesday average readings for daily flow

Fig. 12 Thursday average readings for daily flow
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Fig. 13 Friday average readings for daily flow

Fig. 14 Saturday average readings for daily flow
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