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Abstract 

In order to explore an accurate method to evaluate the corrosion of reinforced con-
crete structures, the spontaneous magnetic flux leakage (SMFL) signal distribution on 
the surface of reinforced concrete specimens under different corrosion degrees was 
scanned based on SMFL technology. The influence of steel bar length, steel bar diam-
eter, and other parameters on the distribution of SMFL signal was studied. The correla-
tion between steel bar corrosion and the characteristic magnetic index of concrete 
structure was explored. Based on the naive Bayesian model, the classification evalua-
tion of the steel bar corrosion degree of concrete structure was carried out. The results 
show that the variation of SMFL signal is affected by the corrosion degree α. When the 
lift-off height and the thickness of concrete protective layer remain unchanged, the 
slope between the peak and trough of Bz (magnetic induction intensity along z direc-
tion) curve increases with the increase of α, and the trough of Bx (magnetic induction 
intensity along x direction) curve decreases with the increase of the corrosion degree 
α. The peak and trough of magnetic signal curve can be used as the basis for deter-
mining the corrosion position. There is a strong correlation between the magnetic 
characteristic index β, γ, and the steel corrosion degree α obtained by SMFL. Through 
the characterization relationship between α, β, and γ, the corresponding models of 
single and comprehensive index β and γ were established. The results showed that the 
accuracy of β and γ integrated discriminant Naive Bayesian model-III reached 90.7%, 
which proved that the evaluation method has high reliability. This study explores the 
application of SMFL in corrosion detection of concrete structures.

Keywords:  Spontaneous magnetic flux leakage effects, Concrete beam structures, 
Rust detection, Naive Bayesian model, Magnetic dipole model

Introduction
The safety and durability of bridges and their attached structures is a crucial field of 
bridge engineering research [1]. Due to the potential impact on the structure’s bear-
ing capacity, the corrosion of metal components has become a research hotspot [2]. 
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Currently, the detection of steel corrosion in reinforced concrete is mainly based on 
electrochemical and physical methods.

As a non-destructive method, the electrochemical method has advantages such as high 
sensitivity, fast test speed, and local measurement, but its measurement has many influ-
ential factors, complicated analysis, and lack of quantification [3]. The physical method 
(mainly including the infrared thermal imaging detection technology, X-ray detection 
technology, etc. [4].) reflects the corrosion of reinforcing steel by measuring the change 
of physical properties caused by the corrosion of reinforcing steel. The infrared ther-
mal imaging detection technology has high detection accuracy, fast detection speed, and 
wide detection range, but it is difficult to accurately quantify the depth of defects [5]. 
X-ray detection technology has high detection accuracy and it has high detection effi-
ciency, but X-ray radiation has a great impact on the human body [6]. For applying non-
destructive testing of steel corrosion in concrete structures, factors such as the testing 
theory’s accuracy, the testing equipment’s complexity, and the feasibility of long-term 
use need to be considered. Compared with other detection, SMFL detection technology 
can compensate for other detection methods’ shortcomings.

The SMFL detection technology collects the magnetic leakage signals emitted by fer-
romagnetic materials at rust, damage, and microcracks according to the magnetic mem-
ory properties of metals. It can diagnose the presence of defects or stress concentrations 
in components by detecting and analyzing the surface leakage magnetic field strength of 
ferromagnetic components and its change characteristics and locates the location of the 
defects at the same time [7]. Compared with other nondestructive testing technologies, 
the SMFL testing technology can not only detect the macro defects of components but 
also detect the micro damage caused by internal stress concentration. It also has out-
standing advantages such as high efficiency, simplicity, low cost, and strong applicability. 
It has extremely important research value and economic significance in the field of non-
destructive testing of reinforcement corrosion in concrete structures [8].

For the magnetic inspection of reinforced concrete structures using leakage detec-
tion techniques, researchers have conducted in-depth studies in recent years. Orbe 
proposed a magnetic-based approach to evaluate the mechanical properties of steel 
fiber concrete [9]. H. Zhang et  al. investigated the correlation between SMFL char-
acteristic signals and structural corrosion of reinforced concrete [10]. J. Zhang et al. 
studied the qualitative and quantitative relationship between the corrosion rate of 
steel bars and magnetic induction strength [11]. Polydorides used tomography to ana-
lyze the magnetic induction intensity of the rusted reinforced concrete column itself 
[12]. Sun et  al. used a concrete pile with a bored-in-place process and analyzed the 
magnetic anomalies of its internal reinforcement and summarized the relevant char-
acteristics [13]. Szielasko et al. implemented the detection of reinforcement corrosion 
in reinforced concrete columns based on the MFL method [14]. Titus realized the cor-
rosion detection of prestressed steel strands of prestressed concrete box girder bridges 
based on the MFL method [15]. Gaydecki et al. introduced the effective nondestructive 
magnetic imaging and condition assessment method of steel bars in detail [16]. Ben-
itez et al. introduced in detail the effective non-destructive magnetic imaging and state 
assessment method of steel bars in prestressed concrete structures [17]. Zhang et al. 
and Liu et  al. explored the assessment method for the degree of corrosion through 
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in-depth research on the SMFL signal characteristics of corroded reinforced concrete 
beams [18, 19]. Pang et al. proposed a method based on SMFL curve characteristics 
based on the previous research on the tensile test of outsourced concrete specimens to 
realize the calculation and correction of the stress in the reinforcement stage [20, 21]. 
Yang et al. based on SMFL completed the related research on the quantitative assess-
ment of the corrosion degree of corroded steel bars [22]. Zhao explored the influence 
of steel bar diameter on the corrosion SMFL signal through in-depth research on the 
internal corrosion of corroded concrete specimens [23].

However, a unified standard for calculating the corrosion degree of reinforced concrete 
structures is yet to be determined by SMFL detection technology. The existing methods 
can only reflect the corrosion grade to a certain extent. Therefore, it is very important to 
explore a corrosion evaluation method that can be efficient, simple, nondestructive, and 
quantitative, and establish a quantitative evaluation system applicable to this method. 
In order to realize the evaluation of reinforcement corrosion in concrete structures, this 
paper takes the corroded reinforcement of concrete structures as the object of a series 
of test studies. Further, it explores the classification evaluation method of reinforcement 
corrosion of concrete structures.

Theoretical background
Three‑dimensional magnetic dipole model

A three-dimensional magnetic dipole model is established to simulate the defect shape 
in the corroded area of the steel bar. The three-dimensional magnetic dipole corroded 
fault model of the trapezoidal groove is shown in Fig. 1. For the convenience of calcula-
tion, the circular cross-section with diameter d is transformed into a rectangular section 
with side length d, and the steel length is 2l. The notch is placed in the center of the rebar 
as a trapezoidal notch. The bottom and top of the notch are 2c in the x direction, and the 
bottom is 2a in the y direction. The top of the notch is 2a+2b in the y direction, and the 
depth is h along the z direction.

Assume that the x—y plane is on the upper surface of the steel bar, and the origin is 
located at the geometric center of the top surface of the notch. At the ends of both sides 

Fig. 1  Three-dimensional magnetic dipole corrosion fault model of trapezoidal groove part
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of the steel bar, with the depth η along the x direction and the depth λ along the y direc-
tion as the center. There is a surface magnetic charge with a length along the x direction 
of dη, a height along the y-axis direction of dλ, and a magnetic charge density of ρms. The 
magnetic field generated by the surface magnetic charge at any point P(x,y,z) in space is 
shown in Eq. (1):

The magnetization causes the two sidewalls of the trapezoidal slot to form two mag-
netic charge surfaces. On the charge surface, the charge is a surface of opposite polarity 
and equal charge density, assuming no charge distribution on the bottom surface of the 
trapezoid groove. Then, the left and right sides of the groove wall are centered on the 
depth η along the x direction and the depth δ along the z direction, the length along 
the x direction is dη, the height along the z axis direction is dδ, and the width along 
the side wall direction is (b2+h2)-2/hdδ. It is assumed that the internal magnetization of 
the steel bar is uniform, the surface magnetic charge is ρms, and the vacuum permeabil-
ity is μ0=4π×10−7H/m. From these two surface magnetic charges at any point in space 
P(x,y,z) generated by the magnetic field strength, as shown in Eq. (2):

The SMFL signal intensity components Bx, By, Bz can be obtained by integrating along 
the x, y, and z directions respectively, as shown in Eq. (3):

Naive Bayesian model

Naive Bayesian (NBC) models use relevant probability theory and statistics to classify 
a sample dataset. The model does not consider the relationship between the features of 
the test samples, does not require a large number of test samples, and has high classifica-
tion efficiency. Objectively, it avoids subjective bias caused by using only previous sam-
ples and also avoids overfill fitting caused by using only sample information [24].

The naive Bayesian model is based on Bayes’ theorem, assuming that the terms of the 
features are independent of each other and learning the standard input probability dis-
tribution in the output through a training group. After learning based on the model, 
input X for searching and output Y with the maximum posterior probability. There is a 
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sample data set D = {d1, d2, ⋯, dn}, the characteristic attribute set of the corresponding 
sample data is X = {x1, x2, ⋯, xd}, and the class variable is Y = {y1, y2, ⋯, ym}, that is, D can 
be divided into ym categories. Where x1, x2, ⋯, xd are independent and random, the prior 
probability of Y is Pprior = P(Y), and the posterior probability of Y is Ppost = P(Y| X), which 
can be obtained by the naive Bayesian algorithm. The posterior probability can be calcu-
lated from the prior probability Pprior = P(Y), the evidence P(X), and the class conditional 
probability P(Y| X) [25].

The class conditional probability P(Y| X) is given in Eq. (4).

Since the naive Bayesian model has the property that the eigenquants are independent 
of each other. Given the category of y, Eq. (5) can be further obtained from Eq. (4).

From the above two equations, the posterior probability can be calculated to obtain 
the calculation Eq. (6).

Since the magnitude of P(X) is fixed, it is sufficient to compare only the numerator 
part of the above equation when comparing the posterior probabilities. Thus, a naive 
Bayesian calculation of the sample data belonging to category yi can be obtained, and the 
equation is given in (7).

Methods
Experimental design

Preparation of test specimens

In this experiment, reinforced concrete specimens of different sizes are designed, 
and the structural form is single-reinforced concrete. The type of steel bar is HRB400 
threaded steel bar, both ends are exposed, and the middle is wrapped with C30 concrete, 
with a range of 80cm. The diameter R of the steel bar is 12mm, 16mm, and 20mm. The 
length L is 100cm, 150cm, and 200cm, and the thickness C of the outer concrete protec-
tive layer is 3cm, 4cm, and 5cm. The width W of the design corrosion area along the 
reinforcement direction is 10cm and 15cm, respectively. The structure of the specimen 
is shown in Fig. 2.
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The specimen was corrupted by the electrochemical corrosion method. The reinforced 
concrete specimen was wrapped with an absorbent towel in the middle of the specimen 
and was always in a wet state so water could penetrate the concrete. The ATS3005S-3D 
dual DC power supply of ATTEN (Nanjing, China) was used to accelerate the corrosion 
of reinforced concrete specimens. Set the current constant to 1A. The positive electrode 
of the power supply connects the steel bar to oxidize it, and the negative electrode of the 
power supply connects the carbon rod to place the carbon rod in the towel. A 5% NaCl 
solution was prepared in the container as the electrolyte, and a siphon formed a closed 
current loop. The corrosion process of reinforced concrete structure specimens is shown 
in Fig. 3.

Reinforced concrete specimens of different sizes are named and distinguished by “L-C-
R-W.” For example, “100-3-12-10” means the member is 100cm long, the outer concrete 
protective layer is 3cm thick, the steel bar diameter is 12mm, and the towel along the 
length of the steel bar covering the concrete corrosion width is 10cm. Each reinforced 
concrete specimen is corroded to different degrees. According to the preliminary pre-
rust experiment, the shape of the rust zone obtained by this method is an approximately 
trapezoidal groove, similar to the three-dimensional magnetic dipole corrosion fault 
model with the trapezoidal groove in 2.1. In this test, the steel bars were corroded to dif-
ferent degrees by controlling the corrosion time (t/h). The specific working conditions 
are shown in Table 1.

Fig. 2  Schematic diagram of the dimensions of the reinforced concrete structure specimen

Fig. 3  Corrosion process diagram of reinforced concrete structure specimen
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The test platform

The test SMFL signal scanning adopts a three-dimensional magnetic scanning device 
to collect the spatial magnetic signal of the test piece. The automatic three-dimensional 
magnetic scanning device is composed of a control computer with a SMFL scanning 
control system, a three-axis mechanical displacement system, and a control cabinet. The 
control cabinet contains the stepping motor and programmable logic controller (PLC) 
inside, and the external is connected to the control computer through the serial port 
server. PLC can control the scanning system’s moving rate and rest time through the 
computer input instruction to realize the detection automation. The control computer 
sends the SMFL scan instructions to the PLC and HMR2300 sensor through the serial 
port server, and then, the PLC sends the control instructions to the stepper motor. A 
stepping motor drives the three-axis automatic displacement system, and the three 
motors control the movement of the scanning device in three directions, respectively. 
Then, the digital information, such as displacement and SMFL signal, is processed by the 
serial port server and fed back to the control computer. HMR2300 is a 3D intelligent dig-
ital magnetometer produced by Honeywell Corporation in the USA. Its detection accu-
racy is 6.9 × 10−2mG, and the range is ±2Gs. It can realize the acquisition of 3D space 
magnetic signals with controllable speed and path. HMR2300 is equipped with three 
reluctance sensors distributed in the X, Y, and Z directions. It can simultaneously detect 
the magnetic induction intensity in three dimensions of space and input the results to 
the control computer. Finally, it outputs the spatial coordinates X, Y, and Z of the data 
acquisition point on the scanning path and the distribution of the magnetic induction 
components Bx, By, and Bz, as shown in Fig. 4.

The three-axis micro-magnetic scanning system is used to collect the initial SMFL sig-
nals of each group of reinforced concrete structural specimens. As shown in Fig. 5, in 

Table 1  Rust condition

Specimen model Sample Time Specimen model Sample Time Specimen model Sample Time
t/h t/h t/h

100-3-12-10 1# 12 150-3-12-10 19# 48 200-3-12-10 37# 84

100-3-12-15 2# 12 150-3-12-15 20# 48 200-3-12-15 38# 84

100-3-16-10 3# 12 150-3-16-10 21# 48 200-3-16-10 39# 84

100-3-16-15 4# 12 150-3-16-15 22# 48 200-3-16-15 40# 84

100-3-20-10 5# 12 150-3-20-10 23# 48 200-3-20-10 41# 84

100-3-20-15 6# 12 150-3-20-15 24# 48 200-3-20-15 42# 84

100-4-12-10 7# 24 150-4-12-10 25# 60 200-4-12-10 43# 96

100-4-12-15 8# 24 150-4-12-15 26# 60 200-4-12-15 44# 96

100-4-16-10 9# 24 150-4-16-10 27# 60 200-4-16-10 45# 96

100-4-16-15 10# 24 150-4-16-15 28# 60 200-4-16-15 46# 96

100-4-20-10 11# 24 150-4-20-10 29# 60 200-4-20-10 47# 96

100-4-20-15 12# 24 150-4-20-15 30# 60 200-4-20-15 48# 96

100-5-12-10 13# 36 150-5-12-10 31# 72 200-5-12-10 49# 108

100-5-12-15 14# 36 150-5-12-15 32# 72 200-5-12-15 50# 108

100-5-16-10 15# 36 150-5-16-10 33# 72 200-5-16-10 51# 108

100-5-16-15 16# 36 150-5-16-15 34# 72 200-5-16-15 52# 108

100-5-20-10 17# 36 150-5-20-10 35# 72 200-5-20-10 53# 108

100-5-20-15 18# 36 150-5-20-15 36# 72 200-5-20-15 54# 108
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order to avoid the end effect of the steel bars, the start and stop positions of the Y direc-
tion scanning are set in the concrete-coated concrete 50mm outside the steel bar. The 
lift-off height of multiple magnetic signal probes is set to advance at a speed of 500mm 
per minute and continuously capture the magnetic flux. Scan the SMFL signal along 
the Z direction at the geometric center position of the specimen and at the positions 
of 100mm and 200mm apart on both sides, and rise from the center lifting height at a 
speed of 300mm per minute to a lift-off height of 705mm, both in 2s. One acquisition 
rate collects the SMFL signal above the specimen. Before the corrosion test, the scan-
ning equipment performs the first magnetic signal acquisition to obtain the initial mag-
netic signal of the sample.

Results

Figure 6 shows the surface condition of each outsourced concrete reinforcement speci-
men after the test. After the corrosion is completed, the concrete on the surface of the 
reinforced concrete structure is chiseled with a tool hammer. Measuring the diameter 
of the uncorroded part and the minimum diameter of the corroded part of all the rebar 
with a vernier caliper, as shown in Fig.  7. After completion of corrosion according to 
the designed corrosion condition, the actual section corrosion degree “α” is calculated 
according to Formula (8), which is listed in Table 2.
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Fig. 4  Automated magnetic field scanning system
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Fig. 5  Schematic diagram of magnetic flux leakage signal scanning of reinforced concrete structure 
specimen. a Schematic diagram of the Y-direction scanning of the specimen. b Schematic diagram of the 
Z-direction scanning of the specimen

Fig. 6  Surface condition of corroded steel bar of concrete structure specimen
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where ΔW represents the quality reduction of the steel bar after corrosion. W repre-
sents the quality of reinforcement before test. l represents the length of reinforcement 
corrosion interval. ρ represents the density of reinforcement. Ro represents the measured 
diameter of the steel bar in the non-corroded area. Rc represents the minimum diameter 
of the corroded steel bar in the corroded area.

The magnetic signals before and after the corrosion of the specimen are analyzed. The 
results show that the magnetic induction intensity Bx in the X direction and Bz along the 
Z direction are more sensitive and regular to the corrosion of steel bars, so the distribu-
tion of the magnetic signals Bx and Bz is mainly analyzed.

Take 14# and 26# specimens as examples. As shown in Figs. 8 and 9, when the rust 
degree α is close to or equal to 0, the Bz curve of each lift-off height is monotonically 
decreasing and reaches the maximum value near both ends of the curve. The Bx curve of 
each lift-off height basically presents an envelope shape and the curves do not intersect 
with each other. The initial magnetic signal at the end of the specimen begins to change 
abruptly at the end, showing irregularity, which is mainly due to the partial damage and 
stress concentration of the specimen caused by the cutting of steel bars. When the rust 
degree α is larger than 0, the monotonicity of the Bz curve of each lift-off height changes 

Fig. 7  Internal situation of steel bar corrosion of concrete structure specimen

Table 2  Corrosion degree of specimen

Sample α Sample α Sample α Sample α Sample α Sample α

1# 0.142 10# 0.107 19# 0.567 28# 0.266 37# 0.993 46# 0.425

2# 0.095 11# 0.102 20# 0.378 29# 0.255 38# 0.662 47# 0.408

3# 0.080 12# 0.068 21# 0.319 30# 0.170 39# 0.558 48# 0.272

4# 0.053 13# 0.425 22# 0.213 31# 0.851 40# 0.372 49# 0.276

5# 0.051 14# 0.284 23# 0.204 32# 0.567 41# 0.357 50# 0.851

6# 0.034 15# 0.239 24# 0.136 33# 0.479 42# 0.238 51# 0.718

7# 0.284 16# 0.160 25# 0.709 34# 0.319 43# 1.134 52# 0.479

8# 0.190 17# 0.153 26# 0.473 35# 0.306 44# 0.756 53# 0.459

9# 0.160 18# 0.102 27# 0.399 36# 0.204 45# 0.638 54# 0.306
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Fig. 8  Bz curve and Bx curve of specimen 14# before and after corrosion

Fig. 9  Bz curve and Bx curve of specimen 26# before and after corrosion
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in the rusted area. In the uncorroded area, it still decreases monotonically but increases 
monotonically at the rusted area. The slope of the curve increases with the lift-off height. 
The range between the new peaks and troughs can be used as the basis for judging the 
location of rust. The Bx curves of each lift-off height form a new trough in the rusted 
area, and also the range between the intersection points of each Bx curve can be used as 
the basis for determining the location of corrosion.

Under the premise of the same lift-off height, as the corrosion degree α increases, the 
Bz curve of the corroded area forms new peaks and troughs. The curve between the new 
crest and trough becomes more inclined with the increase of corrosion degree α. The 
higher the slope between the crest and trough, the higher the degree of corrosion, and 
the greater the change rate of the magnetic signal. As shown in Fig. 8 that the Bx curve 
of the rusted area forms a new wave trough, and the new wave trough decreases as the 
corrosion degree α increases. The uncorroded area basically maintains a similar trend, 
as shown in Figs. 8 and 9. With the increase of lift-off height, the change range of Bx and 
Bz curves gradually becomes gentle and gradually tends to a straight line. When the lift-
off height of the acquisition device is 300mm, the influence of the corrosion degree of 
the specimen on the spontaneous flux leakage signal is small and can be approximately 
ignored. Although the initial magnetic field has been deducted, the magnetic signal of Bz 
is still close to 400mG due to the influence of the environmental magnetic field. In con-
trast, the magnetic signal of Bx is better, basically approaching 0mG.

Correlation analysis of corrosion and magnetic characteristic index

In order to realize the quantitative detection of reinforced concrete structures with dif-
ferent corrosion degrees, it is necessary to extract the characteristic magnetic index, 
which can reflect the corrosion degree α. Since the value of lift-off height (LFH) has a 
certain impact on the magnetic induction intensity Bx and Bz, therefore, when extract-
ing the magnetic feature index, the LFH is uniformly taken as 5mm.

As shown in Fig. 10a, corrosion will change the gradient of the Bz curve from neg-
ative to positive. The slope β is defined to reflect the corrosion degree of the rein-
forced concrete structural specimen, and the slope β can be calculated from Eq. 
(9). As shown in Fig. 10b, the trough value Bxmax can reflect the corrosion degree of 
the reinforced concrete structural specimen, but the reinforced concrete structural 

Fig. 10  Definition of magnetic characteristic index a β and b γ 
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specimens of different sizes have different initial magnetic fields. Therefore, the index 
γ is set and obtained by the definition of Eq. (10), where ΔBxmax represents the mag-
netic field increment at the trough in the rusted area, Bxmax is the magnetic induc-
tion intensity at the trough after rusting, Bx0 is the magnetic induction intensity at 
this position before rusting, and B0 is the magnetic induction intensity of the ambient 
magnetic field, which is usually a constant and is set to 0mG.

Defining the magnetic characteristic metrics:

Correlation analysis between rust degree α and magnetic characteristic index β

Taking reinforced concrete structure size “100-3-12-10” as an example, the magnetic 
characteristic index β at different lift-off heights is calculated, as shown in Fig. 11a. It 
can be seen from the figure that with the increase of lift-off height, the magnetic char-
acteristic index β curve shows a decreasing trend, and the absolute value of the slope 
of the curve gradually decreases. When the lift-off height is small, the magnetic char-
acteristic index β gradually increases with the increase of the rust degree. When the 
lift-off height reaches 300 mm, the magnetic characteristic index value β under each 
rust degree is close to a point. This is mainly because the influence of lift-off height on 
the magnetic characteristic index β is not considered.

Therefore, the index β of different lift-off heights is revised, as shown in Eqs. (11) 
and (12):

(9)β = max {(Bz1 − Bz2)/(Y1 − Y2)}

(10)γ =
∣

∣�βxmax

∣

∣

|�Bx0|
=

|Bxmax − Bx0|
|Bx0 − B0|

(11)�(z) =
z + (r + c)

z0 + (r0 + c0)

Fig. 11  The magnetic characteristic index β of the specimen under different lift-off heights. a β (not consider 
LFH). b β (consider LFH)
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where β|z=z1 means that when the lift-off height is z1, the magnetic characteristic index 
value is obtained at this time, z0 means the initial lift-off height, r means the radius of the 
steel bar, r0 means the radius of the initial steel bar, c means the thickness of the protec-
tive layer of concrete, and c0 represents the thickness of the initial concrete cover.

It can be seen from Fig. 11b that after considering the influence of lift-off height z and 
calculating the magnetic characteristic index β, the β curve changes. When the lifting 
height z is 0mm, the value of β after each corrosion degree correction is unchanged from 
before the correction in Fig. 11a. With the increase of lift-off height, the β curve of the 
steel bar with a low corrosion degree is basically horizontal, and the β curve of the steel 
bar with a high corrosion degree gradually increases first, and when the lift-off height z 
is higher than 200mm, the β curve gradually decreases. At the same lift-off height, the 
difference of rebar β with different corrosion degrees is almost proportional to the differ-
ence in corrosion degree α. It shows that the correction of magnetic characteristic index 
β is feasible and effective.

The corrosion degree α will be collected from the SMFL signal of a random number 
of reinforced concrete structural specimens at the lift-off height (LFH=5mm). The β 
value of the magnetic characteristic index is used to construct a magnetic characteris-
tic matrix reflecting the corrosion degree α, and the α is characterized in two dimen-
sions to improve the accuracy of quantitative identification. As shown in Fig. 12, with 
the increase of the corrosion degree α, the magnetic characteristic index β generally 
increases. However, it has some discreteness, but the discreteness is small, and the whole 
is relatively compact.

(12)β = β|z=z1
• �(z1)

Fig. 12  Distribution of magnetic characteristic index value β 
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Correlation analysis between rust degree α and magnetic characteristic index γ

The data of different lift-off heights of reinforced concrete structures are analyzed. The 
size of the reinforced concrete structure is also taken as an example of “100-3-12-10”. 
The magnetic characteristic index γ under different lift-off heights is calculated, and its 
variation law is analyzed, as shown in Fig. 13a. It can be seen from the figure that with 
the increase of lift-off height, the γ curve of the magnetic characteristic index is similar 
to the previous β curve and also shows a decreasing trend, and the absolute value of the 
slope of the curve gradually decreases. Under the condition of the same lift-off height, 
the larger the value of corrosion degree α, the larger the value of magnetic characteristic 
index γ. When the lift-off height z is larger, the value of the magnetic characteristic index 
γ tends to 0 under each rust degree. Therefore, it is necessary to modify the magnetic 
characteristic index considering the lift-off height z.

Modify the index γ of different lift-off heights, as shown in Formulas (11) and (13):

where γ|z=z1 means that when the lift-off height is z1, the magnetic characteristic index 
γ value is obtained at this time.

Considering the influence of the lift-off height z and calculating the magnetic character-
istic index γ, Fig. 13b is obtained. From the figure, it can be obtained that when the lift-off 
height z is 0 mm, the specific value of γ under each rust degree is still the same as before. 
With the increase of the lift-off height, the γ curve of the less corroded steel bar is basi-
cally horizontal, while the β curve of the more corroded steel bar has a gradually increas-
ing trend when the lift-off height z is 0–100mm. It remains relatively flat in the 300-mm 
area. Under the same lift-off height z, the difference between steel bars β with different 
corrosion degrees is still proportional to the difference between the corrosion degrees α. 
The figure shows that the correction of the magnetic characteristic index γ is feasible.

Still control LFH=5mm, according to the method of obtaining β to extract, calculate 
and modify the magnetic signal to obtain the magnetic characteristic index γ value. The 
characteristic index γ value is used to construct a magnetic characteristic matrix reflect-
ing the corrosion degree α, and the two-dimensional representation of α is carried out 

(13)γ = γ |z=z1
• �(z1)

Fig. 13  The magnetic characteristic index γ of the specimen under different lift-off heights. a γ (not consider 
LFH). b γ (consider LFH)
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to improve the accuracy of quantitative identification. As shown in Fig.  14, with the 
increase of the rust degree α, the magnetic characteristic index γ generally shows an 
upward trend, but there are different degrees of dispersion. Compared with the mag-
netic characteristic index β, the overall discrete type is larger.

Reliability of correlating the magnetic flux model with corrosion degree
Simulation analysis based on three‑dimensional magnetic dipole model

In order to analyze the influence of the magnetic dipole model in the corrosion assess-
ment and detection, according to the Formula (14) of Faraday’s first law of electrolysis, it 
can be obtained:

where ∆W represents the corrosion amount of the metal within ∆t, ∆t represents the 
corrosion time, M represents the molar mass of Fe, M=56g/mol, n represents the num-
ber of electrons lost by Fe during the oxidation process, where n=2, F represents the 
constant Faraday, 1F=96485C, I represents the current flowing out of the anode, W rep-
resents the mass of the corroded area before corrosion, d represents the diameter of the 

(14)∆W =
M

nF
I∆t

(15)W =
πd2lρ

4

(16)α =
∆W

W

Fig. 14  Distribution of magnetic characteristic index value γ
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steel bar, l represents the width of the corroded area, ρ=7800g/mm3. α represents the 
corrosion degree of steel bars, which is expressed by the loss rate of cross-sectional area.

According to Eqs. (14), (15), and (16), it can be known that the model stable current 
I is set to 1A, the time interval for each corrosion is 12h, and the diameter of the steel 
bar is divided into 12mm and 16mm. The area loss rate was used to obtain the corro-
sion degree of the steel bar. The finite element software MATLAB is used to simulate 
and calculate the changes of the tangential component Bx and the normal component 
Bz of the strength of the SMFL signal of the steel bar along the Y-axis direction under 
different corrosion degrees. The angle between the side surface and the bottom sur-
face of the trapezoidal groove section is set to be 145°, and the parameter settings of 
the model are shown in Tables 5 and 6 in Appendix 1.

The tangential component of SMFL signal intensity was obtained by substituting 
the set experimental parameters into Eq. (3). Then, through MATLAB simulation cal-
culation, the change of the tangential component of SMFL signal strength Bx along 
the Y-axis of the steel bar with two diameters under each degree of rust is drawn, 
as shown in Fig.  15a and b. It can be seen that the magnetic signal has a sudden 
change in the corrosion zone, and the magnetic signal’s intensity increases with the 
corrosion degree increase. Besides, the tangential component Bx curve of the SMFL 

Fig. 15  Simulation calculation of Bx component of flux leakage signal along Y-axis under different rust 
degrees. a 12-mm diameter steel bar model calculation. b 16-mm diameter steel bar model calculation

Fig. 16  Distribution of Bx extreme values of each model under different rust degrees
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signal under different corrosion degrees intersects at the left and right two points, 
and the distance between the two intersection points is consistent with the set cor-
rosion width. The results of the simulation analysis are in agreement with the test 
results obtained in the “Results” section. As shown in Fig. 16, under the two diameter 
models, the goodness of fit R2 reaches 0.9976. The maximum value of tangential com-
ponent Bx increases linearly with the increase of corrosion degree. It indicates that 
the three-dimensional magnetic dipole model can be used to detect and analyze the 
SMFL signal of reinforcement corrosion in concrete structures.

Rust grading evaluation based on naive Bayesian model

The current SMFL detection technology has no exact standard for the classification of 
the corrosion degree of steel bars. By drawing on the classification standard of the elec-
trochemical method [26], and referring to the research results of previous researchers 
on the evaluation of the corrosion level of steel strands [27]. According to the corrosion 
degree α, the steel corrosion degree is classified into four grades, as shown in Table 3.

By analyzing and sorting out the relationship between the corrosion degree α and the mag-
netic characteristic indexes β and γ, the evaluation indexes describing the corrosion degree 
of the structure are summarized, and the steel corrosion evaluation system is put forward.

The Bayesian classification is used to achieve the classification of the corrosion degree 
of the bare bars. The magnetic characteristics β and γ are single indicators correspond-
ing to the models NBC-I and NBC-II respectively, and the comprehensive indicators of 
the magnetic characteristics β and γ are corresponding to the model NBC-III. The accu-
racy of each model is shown in Tables 7, 8, and 9 in Appendix 2, and the comparison of 
the accuracy of the three models is shown in Table 4.

From Tables 7 and 8 in the Appendix 2, it can be seen that the accuracy of the magnetic 
characteristic index β and γ single index discrimination is close to 80%, and the overall 
evaluation system has a certain degree of reliability. But the single index has the lowest 
accuracy rate for judging the degree of moderate corrosion. Table 9 in Appendix 2 shows 
that the comprehensive discrimination accuracy rate of the magnetic characteristic 

Table 3  Classification of corrosion degree α of steel bars

Rebar No corrosion Slight corrosion Moderate corrosion Severe corrosion

Corrosion grade 1 2 3 4

Corrosion rate α 0≤α<0.02 0.02≤α<0.1 0.1≤α<0.2 0.2≤α≤1

Table 4  Model accuracy comparison

Rebar condition Corrosion grade NBC-I NBC-II NBC-III

No corrosion 1 100.00% 100.00% 100.00%

Slight corrosion 2 83.30% 91.60% 91.70%

Moderate corrosion 3 77.80% 56.60% 83.30%

Severe corrosion 4 83.30% 91.70% 95.60%

Overall accuracy 81.50% 79.60% 90.70%
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indicators β and γ exceeds 90%, which is 10% higher than that of a single indicator, espe-
cially the discrimination accuracy rate of moderate corrosion degree is increased by up 
to 50%. The evaluation system has high reliability.

Through the comparative analysis of the overall or individual accuracy, it is found that 
the three models can effectively evaluate the reinforcement without corrosion. The over-
all accuracy of model NBC-III is the highest, reaching 90.7%, which also verifies the reli-
ability of grading evaluation of SMFL detection of reinforcement corrosion in concrete 
structures. Combining with Table 4, it can be seen that the model NBC-I has the highest 
accuracy rate in a single evaluation index, and the overall accuracy rate is higher than 
80%. The model NBC-III has the highest accuracy rate among all models, and the overall 
accuracy rate exceeds 90%. The reliability of the model NBC-III is a graded assessment of 
the optimal model for the SMFL detection of steel bar corrosion in concrete structures.

Conclusions
Based on the SMFL detection technology and classification evaluation method, this 
paper carried out the SMFL detection test of steel bar corrosion in concrete structures. 
It also analyzed the variation law of the SMFL signal at the corrosion damage of the 
steel bar under different corrosion degrees α. Corrosion degree is related to the mag-
netic characteristic index, and a classification evaluation method of steel corrosion is 
proposed and its SMFL signal is analyzed. The naive Bayesian model is introduced to 
classify and evaluate the corrosion results of steel reinforcement in concrete structures, 
and the following conclusions are obtained:

	(1).	 After studying the law of the SMFL signal on the surface of the specimen after 
corrosion, it can be obtained that when the value of α is larger than 0, the mono-
tonicity of the Bz curve of each lift-off height changes in the corrosion area. There 
will be a monotonically increasing phenomenon in the corrosion area, and new 
crests and troughs are formed near the corrosion area. The range between the 
new crests and troughs can be used as the basis for determining the location of 
corrosion. The Bx curves of each lift-off height form a new trough in the corro-
sion area, and the intersection of each curve. The range can be used as the basis 
for judging the location of corrosion.

	 (2).	 Through the exploration of the magnetic induction intensity Bx and Bz before 
and after the corrosion of the component, the magnetic characteristic index val-
ues β and γ are defined. When the lift-off height is constant, β, γ, and the corro-
sion degree α of the steel bar have a strong correlation, as the two-dimensional 
magnetic eigenvalues that characterize α. With the increase of α, the magnetic 
eigenvalues β and γ show an overall increasing trend, but they also have a certain 
degree of discreteness.

	(3).	 A naive Bayesian model was used to establish an evaluation system between 
magnetic characteristic indexes β, γ, and steel corrosion grade. The accuracy 
of β and γ composite indexes to identify the corresponding model NBC-III was 
higher than that of β and γ single index to identify the corresponding model 
NBC-I and NBC-II, and the overall accuracy of model NBC-III was up to 90.7%. 
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Compared with NBC-I and NBC-II, the discriminant accuracy increased by 
11.1%, and the discriminant accuracy of moderate rust degree increased by 50%. 
The evaluation system has high reliability.

To sum up, the conclusions of this paper confirm the reliability of the naive Bayesian 
model for the detection and evaluation of the corrosion degree of reinforced concrete. 
However, there are few influencing factors in the process of obtaining the above data, 
and the conclusions obtained will have many limitations when applied in practical engi-
neering. More influencing factors need to be considered, such as temperature, humid-
ity, bearing capacity, and other combined effects. Therefore, in order to truly apply the 
efficient and fast SMFL detection technology to practical engineering, it is necessary to 
consider as many influencing factors as possible from the perspective of experiments 
and improve the related mechanism and theoretical research.

Appendix 1
Tables 5 and 6.

Table 5  12-mm steel bar diameter model parameter settings (mm)

Rust length
l/mm

Concrete cover
Thickness 
(mm)

Rust time T/h Rust rate α Rust depth
h/mm

Rust width
2a+2b/mm

100 6 12 0.09 1.70 13.40

100 6 24 0.18 3.40 16.80

100 6 36 0.27 5.10 20.21

100 6 48 0.36 6.81 23.61

100 6 60 0.45 8.51 27.01

100 6 72 0.54 10.21 30.42

100 6 84 0.63 11.91 33.82

100 6 96 0.72 13.61 37.22

100 6 108 0.81 15.31 40.63

100 6 120 0.90 17.01 44.03

Table 6  16-mm steel bar diameter model parameter settings (mm)

Rust length
l/mm

Concrete cover
Thickness 
(mm)

Rust time T/h Rust rate α Rust depth
h/mm

Rust width
2a+2b/mm

100 8 12 0.06 1.70 13.40

100 8 24 0.12 3.40 16.80

100 8 36 0.18 5.10 20.21

100 8 48 0.24 6.81 23.61

100 8 60 0.30 8.51 27.01

100 8 72 0.36 10.21 30.42

100 8 84 0.42 11.91 33.82

100 8 96 0.48 13.61 37.22

100 8 108 0.54 15.31 40.63

100 8 120 0.60 17.01 44.03
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Appendix 2

Tables 7, 8, 9

Abbreviations
SMFL	� Spontaneous magnetic flux leakage
NBC	� Naive Bayesian models
NDT	� Nondestructive Testing
L-C-R-W	� Length-concrete thickness-diameter-rust width
PLC	� Programmable logic controllers
LFH	� Lift-off height
Bx	� Magnetic induction intensity along x direction
By	� Magnetic induction intensity along y direction
Bz	� Magnetic induction intensity along z direction
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Table 7  Accuracy of model NBC-I

Rebar condition Rust grade Rust rate α β range Correct 
number

Accuracy

No rust 1 0≤α<0.02 0≤β<0.02 0 100.0%

Slight rust 2 0.02≤α<0.1 0.02≥β<1 10 83.3%

Moderate rust 3 0.1≤α<0.2 1≥β<3 14 77.8%

Severe rust 4 0.2≤α≤1 β≥3 20 83.3%

Total 44 81.5%

Table 8  Accuracy of model NBC-II

Rebar condition Rust grade Rust rate α γ range Correct 
number

Accuracy

No rust 1 0≤α<0.02 0≤γ<0.2 0 100.0%

Slight rust 2 0.02≤α<0.1 0.2≤γ<0.4 11 91.6%

Moderate rust 3 0.1≤α<0.2 0.4≤γ<0.9 10 56.6%

Severe rust 4 0.2≤α≤1 γ≥0.9 22 91.7%

Total 43 79.6%

Table 9  Accuracy of model NBC-III

Rebar condition Rust grade Rust rate α β and γ range Correct 
number

Accuracy

No rust 1 0≤α<0.02 0≤β<0.02 or 0≤γ<0.2 0 100.0%

Slight rust 2 0.02≤α<0.1 0.02≤β<1 or 0.2≤γ<0.4 11 91.7%

Moderate rust 3 0.1≤α<0.2 1≤β<3 or 0.4≤γ<0.9 15 83.3%

Severe rust 4 0.2≤α≤1 β≥3 or γ≥0.9 23 95.6%

Total 49 90.7%
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