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Abstract 

Ground detection is an essential part of the perception system in self-driving cars. The 
ground can be imagined as a fairly smooth, drivable area that is even textured and 
easily distinguished from the surrounding area. It can have some common imperfec-
tions, like shadows and differing light intensities. In this paper, a comparative study of 
several deep neural network architectures has been reported that can deduce surface 
normal information on the classic KITTI road dataset in various challenging scenarios. 
Our goal is to simplify the task of how the recent methods perceive the ground-related 
information and propose a solution by testing it on three state-of-the-art deep learning 
models, which are “Resnet-50,” “Xception,” and “MobileNet-V2” to understand and exploit 
the capabilities of these models. The main significance of this comparative study has 
been to evaluate the performance of these networks for edge deployment. So, the tiny 
DNN model of MobileNet-V2 has been considered, which has approximately 80% fewer 
tunable parameters as compared to the others. The obtained results show that the 
proposed networks are able to achieve a segmentation accuracy of more than ~ 96% 
and that too in various challenging scenarios.

Keywords:  Autonomous driving, Driver assistance system, Semantic segmentation, 
Deep learning

Introduction
Over the course of the last few decades, significant progress has been made in the field 
of autonomous vehicles, and DARPA has played a significant role in these developments 
[1]. The self-driving cars have been developed to use various onboard sensors like cam-
eras, LiDARs, and GPS to collectively sense the dynamic environmental landscape and 
make the necessary decisions for safe navigation, and such systems are called advanced 
driver assistance systems (ADAS). Now, recent developments in the field of deep learn-
ing and multi-sensor fusion techniques have fostered the development of consumer-
ready, safe, and efficient autonomous driving systems [2]. Technologies like multi-modal 
sensor fusion techniques and artificial intelligence are usually used collectively for the 
development of perception systems to sense the driving environment, predict the course 
of the traffic, plan the trajectory or lane assistance, and execute these decisions in the 
real world. It is desired that these intelligent perception systems be accurate, robust, 
and real-time. All of these will aid in the development of autonomous intelligent vehicle 
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systems and thus reduce road accidents, decongest the roads, and make commuting 
much more efficient and economical too.

The present work explores the development of a deep neural network architecture 
for detecting the drivable road regions in a driving scene. The proposed RoadSegNet 
uses Google’s DeepLavV3+ at its core for the semantic segmentation of the road sur-
faces. The RoadSegNet typically uses weights from three different pretrained networks, 
namely the two high-accuracy models of ResNet50 and XceptionNet and one tiny DNN 
of MobileNet-V2. To train the RoadSegNet, the Vision Benchmark Suite Data Set has 
been used in the present study.

The study presents a comparative study between the three state-of-the-art DNNs, of 
ResNet50, XceptionNet, and MobileNet-V2, and uses the DeepMind-V3+ encoder-
decoder architecture for the segmentation. Apart from using these pretrained networks 
for weight initialization, another important aspect is their architecture. All these DNNs 
have a characteristic architecture and number of training parameters: the ResNet50 has 
23 million trainable parameters, the XceptionNet has 22.8 million, and the MobileNet-
V2 has only 4.2 million trainable parameters.

The main significance of this comparative study has been to evaluate the performance 
of these networks for edge deployment. So, the tiny DNN model of MobileNet-V2 has 
been considered, which has approximately 80% fewer tunable parameters as compared 
to the others, which makes it perfect for edge deployment. The execution time has also 
been compared in Table 5, and it can be observed that MobileNet-V2 offers a justifiable 
time for the segmentation and classification of the roads.

The performance of these trained models has been evaluated using the metrics of 
global accuracy, weighted IOU, and mean BF score. The trained models offer a global 
accuracy of between 96 and 97%. It has also been observed that the performance offered 
by MobileNet-V2, despite being a tiny deep neural network architecture, is comparable 
with that of XceptionNet and, in some cases, offers better performance than ResNet50.

Related work

The self-driving cars are autonomous decision-making systems, and this self-driving 
autonomy is divided into five SAE levels. The lower SAE levels offer basic driver assis-
tance features like automatic braking, lane departure warnings, and adaptive cruise con-
trol, while the higher SAE levels are aimed at offering driverless navigation in all road 
conditions [12]. In the 1980s, Ernest Dickmanns developed the first autonomous car 
[13]. This was followed by various research efforts, like the development of Prometheus 
[14], VaMP [15], and CMU NAVLAB [16]. These advancements laid the groundwork 
for self-driving cars. In the early 2000s, DARPA’s grand challenges [17] were one of the 
major turning points in the development of self-driving cars, where machine learning 
was used for the first time for navigation [18].

As these self-driving cars are autonomous decision-making systems and are being 
designed to assure road safety and efficient navigation, it is desired that the autonomous 
vehicle be able to not only perceive the current state of the driving environment, but also 
be able to foresee future behavior too. So, to estimate the current state and predict the 
future states of the driving environment, the self-driving vehicles use an amalgamation 
of onboard sensors like mono and stereo cameras, depth estimation sensors, LiDARs, 
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EMUs, GPS units, and ultrasonic sensors, and based on the sensed data, the autono-
mous vehicle will make navigational decisions. Broadly, the data from these sensors is 
primarily used for the following four tasks: (a) perception and localization, (b) high-level 
path planning, (c) behavior negotiation, and (d) intelligent motion control. These four 
high-level tasks also need to be monitored for safety. Figure 1 shows the representation 
of the broad architecture of a perception, planning, and control workflow in autono-
mous vehicles.

Perception and localization are two of the most important tasks to sense the dynamic 
traffic environment, and they leverage the use of various vehicle sensors. The various 
methodologies used in road detection are shown in Fig. 2. Some of the sensors used are 
discussed as follows:

•	 Mono cameras can be used for obstacle detection and classification; they offer a cost-
effective solution and are good for two-dimensional mapping and lane detection, but 
they suffer from drawbacks like the fact that they are very sensitive to light and in 
poor lighting scenarios, like fog and rain; they offer a very poor performance. Also, it 
is very difficult to perceive the estimation of distance using such cameras.

•	 Stereo-vision cameras provide the same functionality as mono cameras, but they also 
allow for three-dimensional mapping and depth estimation. However, these cameras 
are computationally expensive; additionally, velocity and distance estimation cannot 
be estimated, and, like mono cameras, these are light-sensitive and do not provide 
good results in challenging lighting.

•	 LiDAR is also used for obstacle detection, robust 3D mapping of the driving sce-
nario and environment using multi-layer LiDAR, direct estimation of the dis-
tances, efficacy in light weather conditions, etc., but the object classification is 

Fig. 1  Broad architecture of a perception, planning, and control workflow in autonomous vehicles

Fig. 2  Various approaches to road detection
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a challenge; some inaccuracies can occur due to reflective surfaces and typically 
severe weather conditions.

•	 RADAR can be used for obstacle detection; it also provides velocity information; 
long- and short-range options are available; it detects well in poor weather condi-
tions but performs poorly in terms of classification, static object detection, angu-
lar rotation, and interference due to multiple reflective surfaces.

•	 Other sensors, like IMUs, GPS, GIS, are also used for estimating the various iner-
tial measurements and real-time positioning of the vehicle on the road.

So, there is no one unique solution that offers good sensing and perception func-
tionality, so multiple such technologies are used in conjunction with each other to 
offer accurate perception. The sensed data from various sensors are fused together 
to accurately perceive the driving environment. To localize the vehicle indepen-
dently, methodologies like odometry, Kalman filters, particle filters, and simultaneous 
localization and mapping (SLAM) techniques are employed to estimate the state of 
the vehicle in a driving scenario. Figure 3 graphically illustrates the whole process of 
sensing, perception, localization, path planning, and vehicle motion control. Various 
road detection methodologies are given in Table 1.

After the successful completion of perception and localization, the next task is the 
trajectory or path planning to navigate the vehicle through the traffic. Path planning 
will influence the decision-making process and is the most important and challenging 
task. From the sensed data, the vehicle will try to understand the particular driving 
scenario, whether it is an intersection or a right turn, the states and behavior of the 
vehicles ahead, the various road signs, collision avoidance, etc. From this perceived 
information, the vehicle will learn and plan out all the possible trajectories, and using 
the machine learning models or state models, an inference will be made for navigating 
the vehicle through the road.

The last step in the process is the motion control of the vehicle. The vehicle motion 
control system influences the longitudinal and lateral movement of the vehicle, con-
sidering its dynamics. It engulfs the control of the steering, braking, and cruise con-
trol of the vehicle to assure that it sticks to the desired path on the road safely.

Fig. 3  Stages of the autonomous driving system

Table 1  Different road detection methodologies

Methodology Sensors Features

Road appearance Vision Colors, textures

Road limits Vision, LiDAR Markings, lanes

Geometrical modeling Maps, GPS, LiDAR, RADAR, vision Parametric and 
non-parametric 
models
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Literature review

One of the main tasks while sensing, perceiving, and localizing the current driving envi-
ronment is to detect the free (drivable) road, which has been of interest for the last few 
decades. This visual perception is done in order to detect collision-free space in the driv-
ing environment that will aid the advanced driving assistance systems in autonomous 
decision-making. Road scene segmentation is one of the important computer vision 
techniques used in autonomous driving. A typical driving scenario may consist of build-
ings, vehicles, roads, pedestrians, etc., so it is essential to obtain or segment the driv-
able area from the captured road scene for collision-free navigation [19]. Road detection 
includes the estimation of the extent of the road, the various lanes and their intersec-
tions, splits, and termination points in the diverse driving scenarios. A drivable region 
is a connected road surface that is not occupied by any obstacles like other vehicles, 
and people. The objective of road segmentation is to impose geometrical constraints on 
the various objects that are present in the driving scene [19]. Road segmentation basi-
cally allows the generation of an occupancy map of the perceived driving environment 
and uses this information in the automated driving workflow to navigate safely. Thus, 
it becomes essential to accurately and efficiently segment the drivable road region from 
the driving environment.

Traditionally, road segmentation is carried out using various computer vision algo-
rithms that employ methodologies such as edge detection and histograms [20]. The key 
markers that aid humans in perceiving information about the road are color, texture, 
boundaries, and lane markings, and similar information can be used by driving assis-
tance systems to safely navigate the driving environment. Vision-based perception has 
been prominent in the development of advanced driving assistance systems and is being 
coupled with various machine learning algorithms to develop the proof of concept for 
the SAE stage 2 to stage 3 level of autonomy in self-driving vehicles. But it is very dif-
ficult to do so, as road design and conditions vary throughout the globe and are not uni-
versally the same, so these computer vision algorithms will not offer universally uniform 
results.

Over the last few years, the development of full convolutional neural networks (CNNs) 
for semantic segmentation [21] boosted their adoption in autonomous driving, and the 
recent advancements in the development of massive or deep convolutional neural net-
works, like SegNet [22], will aid the driving assistance system in handling several diverse 
driving scenarios. Several researchers have used deep CNNs for the semantic segmen-
tation of the driving scene. In [23], a DCNN has been reported for obstacle detection 
and road segmentation. The work proposes the use of a stereo-based approach to build 
a disparity map for obstacle detection in a driving environment. In [24], two networks, 
ENet and LaneNet, have been proposed to detect road features, and a weighted com-
bination of the various features has been used for road detection. One CNN works on 
the detection of the road surface, and the other one is used to detect the lanes, and the 
output from both is merged to get an accurate and precise representation of the drivable 
road. A deep recurrent convolutional neural network (U-Net) for road detection and 
centerline extraction is discussed in [25]. The work involves the development of a novel 
RCNN unit incorporated into the U-Net framework for road extraction, followed by the 
multi-task learning scheme that handles both the tasks of road detection and centerline 
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extraction simultaneously. In [26], ResNet-101 has been used for the detection of the 
road. In [27], a deep NN, road and road boundary network (RBNet), is developed for 
unified road and road boundary detection simultaneously and eliminates the possibil-
ity of a pixel being misclassified as a road or road boundary. In [28], a CNN with gated 
recurrent units has been proposed for the fast and accurate segmentation of the road 
and solves the problem of complex computation that is prominent in the conventionally 
used very deep encoder-decoder structure to fuse pixels for road segmentation. In [29], a 
DCNN with color lines has been proposed for the segmentation of unmarked roads. The 
work uses a score-based mechanism to create a conditional random field-based graphi-
cal model to segment the road from the background. In [30], CNN, along with distrib-
uted LSTM, has been used to segment the road. The network takes a multi-layer feature 
as input, solves the sequential regression problem, and generates an output of similar 
width as the input. The network comprises three sections: the first one is a CNN-based 
local feature encoder, followed by a LSTM-based feature processor, and finally the CNN-
based output decoder.

Also, recently, with the development of various sensor fusion technologies, deep learn-
ing-based multi-modal systems are being developed for autonomous vehicles [1, 31, 32]. 
The deep multi-modal detection and classification methodologies sense and fuse data 
from multiple sensing mechanisms, like mono and stereo vision, LiDAR, RADAR, GPS, 
and IMU to generate complex features. In [33], a 3D object detection system has been 
developed by fusing the data sensed from the RGB camera and LiDAR point cloud. By 
using the fused information, the work predicts 3D bounding boxes, and the network 
consists of two subnetworks, one meant for 3D object detection and another for multi-
view feature fusion. Similar work has been reported in [34–38] where the data from the 
cameras has been fused with LiDAR point clouds for 3D object detection. Some research 
has also been focused on using multi-spectral camera images [39, 40], where the RGB 
images along with the far-, middle-, and near-infrared images have been used to perceive 
the multilateral information about the driving scene and for the perception of the depth.

Background

Problem definition

Pavlidis [41] formally defined segmentation as a process of pixel classification in which 
the input picture is segmented into subsets by assigning the individual pixels to classes. 
For example, while segmenting a picture by thresholding its gray level, we are actu-
ally classifying the pixels into dark and light classes in an attempt to differentiate light 
objects from dark backgrounds or vice versa. In the literature, it has been reported that 
deep learning models are enriched with stacked layers (depth), and using these models, 
one can get high-quality results and that too with great accuracy. These models can uti-
lize the maximum amount of unstructured data.

Semantic segmentation has a promising potential in autonomous driving for develop-
ing visual perception systems. The images captured from the various cameras present 
can be used to develop various driving assistance systems, like road and lane detection 
systems. Figure 4 shows an example of the road segmentation process. Figure 4a shows 
the image of the driving environment captured by a camera mounted on the car, and 
Fig. 4b shows the segmented image containing three classes: (a) the environment, shown 
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in red color; (b) the drivable right road, shown in magenta color; and (c) the non-driv-
able left road, shown in black. Deep neural networks have proven to be beneficial for 
semantic segmentation in various diverse applications like medical imaging and autono-
mous driving. So, the usage of deep learning models for the segmentation of the drivable 
road has been explored in this current study.

Need for ground detection

In traditional automotive systems, there has been a tradeoff between distance sensitivity 
and object sensitivity as shown in Fig. 5. When the object is close, its sensitivity is high, 
allowing for better classification; as the distance increases, the object becomes farther 
away, potentially leading to poor results. To address good distance and object sensitivi-
ties, the current approaches would require too many computational resources. By know-
ing what and where the ground region in an image is, we can detect both objects and 
their distances. Also, for autonomous vehicles, it is essential to know about the drivable 
region in a driving scenario or environment. The proposed system in the present work 
aims at detecting and segmenting the road area using the KITTI road dataset [42], which 
will prove valuable in tasks like autonomous driving and navigation systems. For this 
purpose, “ground” has been defined as a relatively smooth, drivable, and easily distin-
guishable from the surrounding surface. It may consist of common irregularities or imper-
fections or differing light conditions.

The paper has been organized into the following sections: The “Results and discus-
sion” section sheds light on the state-of-the-art research in the field of the development 
of advanced driver assistance systems for self-driving cars and the various techniques 
that are being used for perception and localization tasks. The “Evaluation metrics” sec-
tion deals with establishing the background for various deep learning models used in the 

Fig. 4  Image of the driving environment captured by a camera in the KITTI dataset. a Original scene. b 
Segmented image
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present study and how these can be used for road segmentation purposes. The “Training 
performance” section deals with the various DNN architectures, methods, and datasets 
used in the present work. The “Segmentation results” section deals with the segmenta-
tion results and the evaluation of the various performance indices, followed by discus-
sions and the scope for future work in the “Discussion” section.

Methods
KITTI Vision Benchmark Suite Data Set

The KITTI Vision Benchmark Suite [42] is a dataset designed for object and road/lane 
detection. The road/lane dataset consists of 289 training and 290 testing images. Each 
image is 372 × 1242 pixels in size. All the images were acquired on five different days. 
The dataset is further divided into three categories of road scenes, as can be seen in 
Fig. 6:

–	 Urban marked (UM), single-lane road with markings
•	 Consisting of 95 training and 96 testing images

–	 Urban unmarked (UU), single-lane road without markings
•	 Consisting of 98 training and 100 testing images

–	 Urban multiple marked (UMM), multi-lane road with markings
•	 Consisting of 96 training and 94 testing images

The input images have two sets of label images; these images are color-coded with 
areas of interest. In one set, it identifies all the roads, and in the other set, it identifies 

Fig. 5  Plot between the object sensitivity and the distance sensitivity
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just the lane where the car is moving. In the current study, the set corresponding to all 
the road surfaces has been used. These labels are RGB images that color code the road 
as magenta, non-road areas as red, and left road surfaces as black. The dataset has been 
pre-processed and augmented according to the input layers of the network before being 
fed. For ResNet50 and MobileNet-V2, the data set has been resized to 224 × 224 pixels, 
and for Xception, it has been resized to 299 × 299 pixels.

Methods

The present work is based upon Google’s DeepLabV3+ semantic segmentation model, 
as shown in Fig. 7, and the architecture and weights have been initialized from three dif-
ferent pretrained networks, viz., two high accuracy models of ResNet50 and Xception-
Net and one tiny DNN of MobileNet-V2, typically for the edge deployment. All of these 
networks and models are discussed as follows:

Fig. 6  The three different road scene categories with three RGB color codes. a UM. b UMM. c UU

Fig. 7  Encoder-decoder of DeepLabV3+ architecture
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RoadSegNet architecture

The RoadSegNet is built around the cutting-edge DeepLabV3+. DeepLab [43] is an 
open-source semantic segmentation model designed by Google and works by adding 
a simple decoder module that helps in segmenting objects along boundaries and also 
refines the segmentation results. More rapid results are achieved by using depth-wise 
separable convolution for both Atrous Spatial Pyramid Pooling and the Decoder Module 
[43]. The weights were initialized using the transfer learning method. The three state-
of-the-art DNNs have been utilized. The work considers the use of two high-accuracy 
models, ResNet50 and XceptionNet, and one tiny DNN, MobileNet-V2. DeepLabV3+ 
uses an aligned Xception network as its key feature extractor, along with the following 
modifications:

a)	 The max pool layers are replaced by depth-wise separable convolution and striding.
b)	 Additional batch normalization and ReLU activation are added after each 3 × 3 

depth-wise convolution.
c)	 The depth of the model is increased without changing the entry flow network struc-

ture.

The encoder works on an output stride, i.e., the ratio of the original image size to 
the size of the final encoded features. Instead of using bilinear up-sampling with a fac-
tor of 16, the encoded features are first unsampled with a factor of 4 and concatenated 
with corresponding low-level features from the encoder module having the same spa-
tial dimensions. To reduce the number of channels, 1 × 1 convolution is applied before 
concatenating on the low-level features. After concatenation, a few 3 × 3 convolutions 
are applied, and the features are unsampled by a factor of 4. This gives the output the 
same size as the image. The semantics of the proposed RoadSegNet architecture based 
on DeepLabv3+ are shown in Fig. 8 as below.

Results and discussion
Evaluation metrics

To evaluate the efficacy of the obtained segmentation results, the metrics (a) global 
accuracy, (b) mean accuracy, (c) mean IoU, (d) weighted IoU, and (e) mean BF score have 
been used. For describing these evaluation metrics, the following terms are used:

•	 False positive (FP): pixels belonging to the background but misclassified as lesions
•	 False negative (FN): pixels belonging to lesions but misclassified as background
•	 True positive (TP): pixels belonging to lesions and correctly classified as lesions

Fig. 8  RoadSegNet architecture
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•	 True negative (TN): pixels that belong to the background and are correctly classified 
as such

Accuracy

It can be calculated for each class separately as well as globally for all classes. The accu-
racy gives the proportion of correctly classified pixels in each class and is given in Eq. 1

Global accuracy

The global accuracy is the ratio of pixels correctly classified to the total number of pixels 
and is given in Eq. 2

Mean accuracy

The mean accuracy is the ratio of the sum of the accuracy of each class to the number of 
classes.

Intersection over Union (IoU)

It calculates the incorrect classification of the pixels and is given in Eq. 3.

where

Weighted IoU

The weighted IoU is used when there is a disproportionate relationship between the 
class sizes in the images, minimizing the penalty of the wrong classification in smaller 
classes. It is given in the equation as follows:

where

(1)Accuracy =

(

TP
TP+FN

)

+

(

TN
TN+FP

)

2

(2)Global Accuracy =
TP + TN

TP + TN + FP + FN

(3)IoU =
Lesions + Background

2

Lesions =
TP

TP + FP + FN
and Background =

TN

TN + FP + FN

Weighted IoU = Lesion Weight ∗ Lesion + Background Weight ∗ background

Lesion Weight =
No.of Pixels belonging to Lesion

Total No.of Pixels



Page 12 of 21Pal et al. Journal of Engineering and Applied Science          (2022) 69:110 

BF score

It calculates the alignment between predicted borders to the gold standard one. It is 
given by the harmonic mean of recall and precision as shown in Eq. 4 as:

where

Training performance

In the proposed work, the KITTI Road/Lane Detection Evaluation Dataset 2013 [42] has 
been considered. To accommodate the dataset with the proposed architecture of RoadSeg-
Net, the dataset has been preprocessed to meet the requirements of each of the individual 
deep neural networks of ResNet50, Xception, and MobileNet-V2. The various class labels 
have been redefined as the environment, the left road, and the right road, and accordingly, 
the LabelIDs and ColorMaps for the KITTI Road dataset [42] have been modified. For 
training the various networks, the algorithm-specific learning option of stochastic gradient 
descent with momentum (sgdm) has been used for all three networks. The initial learning 
rate has been considered as 0.001, and the maximum number of epochs has been taken 
as 100 for all the networks. The mini-batch sizes are set according to the GPU specifica-
tions, and the rest of the parameters are kept the same. All the models have been trained in 
MATLAB 2020b environment running on a Windows 10 PC, with Ryzen 9, 12 Core CPU 
with 16 GB of RAM, and a Nvidia 2060 super 8 GB GPU. Figures 9, 10, and 11 show the 
plot for the training loss, training accuracy, and base learning rate for all the networks con-
sidered for the RoadSegNet, namely, ResNet50, XceptionNet, and MobileNet-V2, respec-
tively. From the plots, it can be observed that the training loss function minimizes as all of 
these networks achieve good training accuracy of approximately ~ 96 to 97%.

Segmentation results

After training the RoadSegNet, the network is fed with various driving scene images 
from the KITTI Road Eval Dataset. The segmented images for ResNet50, Xception-
Net, and MobileNet-V2 are shown in Table 2. The first six images in each table show 
the best obtained segmentation results, and the last three images (S. nos. 7 to 9) show 
the segmentation results for very harsh driving scenarios in heavily shadowed regions 
where the segmentation becomes quite challenging. The tables also show the plot for 
intersections over the union (IOU) between the segmented image and the ground 
truth image. The IOU plots in each table show that the RoadSegNet can detect the 
drivable road in each driving scenario with high precision, even in very shadowed 
areas. All the evaluation parameters have been tabulated in Tables 3 and 4. Table 3 

Background Weight =
No.of Pixels belonging to Background

Total No.of Pixels

(4)BF Score = 2 ∗
Recall ∗ Precision

Recall + Precision

Recall =
TP

TP+ FN
and Precesion =

TP

TP+ FP
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gives the comparison of the various performance metrics like global and mean accu-
racy, mean and weighted IOU and mean BF score for the entire training, and test-
ing and validation datasets for each designed network. Table 4 gives the information 
regarding the accuracy, IOU, and mean BF score for each class, i.e., with what preces-
sion a particular class has been detected for the entire training, testing, and validation 
datasets for each designed network. Figures  12, 13, and 14 show the radar plot for 

Fig. 9  Plot for training loss, accuracy, and base learning rate for ResNet50

Fig. 10  Plot for training loss, accuracy, and base learning rate for XceptionNet

Fig. 11  Plot for training loss, accuracy, and base learning rate for MobileNet-V2
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each network for all the performance metrics. From the obtained results in Tables 2, 
3, and 4, it can be observed that the developed networks offer very good accuracy, the 
global accuracy ranges between ~ 96 and 97%, the weighted IOU also spans between 
~ 92 and 97%, and the mean BF score too varies between ~ 0.75 and 0.83. It can also 
be observed from the obtained results that the MobileNet-V2, despite being a tiny 
deep neural network architecture, offers almost comparable performance with the 
XceptionNet and, in some cases, offers better performance than the ResNet50.

Discussion
Any autonomous driving system consists of four stages, viz., perception, localization, 
path planning, and control. The present work is focused on perception tasks. The scope 
of the work presented in this paper is to build a deep learning-based ground detection 

Table 2  The segmented road and environment regions and their respective IOUs obtained using 
ResNet50, XceptionNet, and MobileNet-V2
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system. The results as obtained in the “Segmentation results” section validate the robust-
ness of the system by detecting a significant part of the road, even in the improperly 
illuminated regions. The left road regions are not detected well due to a smaller num-
ber of images being labeled for the region, as can be seen in Tables 2, 3, and 4 (S. no. 
7–9). This can be improved by using a dataset with more of these images. The developed 
framework performs best on bright images, as can be seen in Tables  2, 3, and 4. The 
work explores the application of three different pretrained networks of ResNet50 and 
XceptionNet (high accuracy models) and MobileNet-V2 (tiny DNN) typically for edge 
deployment. It can be observed that the accuracy of MobileNet-V2 is on par with the 
accuracy of the high-accuracy models of ResNet50 and XceptionNet. With added capa-
bilities like lane detection, depth estimation, and intersection detection, the proposed 
model can be used for efficient road detection tasks. Although the model performs well 
in daylight conditions, the capability of the model in nighttime scenarios has not been 
tested, which still poses a challenge for autonomous vehicles.

In the paper, a comparison has been made between the various state-of-the-art DNNs 
of ResNet50, XceptionNet, and MobileNet-V2. Table 2 shows qualitatively that the IOU 
for the trained models provides excellent performance for brightly lit roads as well as in 
very complex shady conditions. This observation has been established quantitatively in 
Tables 3 and 4.

In Table 3, the metrics of global accuracy for the segmentation have been analyzed, 
and it is observed that the models offer an accuracy above 97% for the training dataset 
and above 96% for the test database. Also, the other metrics of mean accuracy, mean 
IOU, weighted IOU, and mean BF scores have been evaluated for all three DNN models, 
and these have been established for both the training and the testing datasets.

Table 3  Compared dataset performance metrics for each network

S. no. Metric Network

ResNet50 XceptionNet MobileNet-V2

Training dataset
  1 Global accuracy 97.52 97.34 97.80

  2 Mean accuracy 89.83 93.80 98.70

  3 Mean IoU 81.49 77.02 80.32

  4 Weighted IoU 95.34 95.45 96.26

  5 Mean BF score 0.8139 0.8008 0.8386

Testing dataset
  1 Global accuracy 95.79 96.39 96.35

  2 Mean accuracy 73.99 82.20 87.03

  3 Mean IoU 69.02 72.99 75.28

  4 Weighted IoU 92.15 93.63 93.59

  5 Mean BF score 0.7572 0.7669 0.7885

Validation dataset
  1 Global accuracy 96.62 97.14 97.13

  2 Mean accuracy 86.92 94.25 95.67

  3 Mean IoU 76.24 74.32 74.33

  4 Weighted IoU 93.67 94.92 94.99

  5 Mean BF score 0.7939 0.7979 0.8153
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Similarly, in Table  4, the comparison of the class-wise accuracy of the 3 DNNs has 
been made such that they are able to accurately segment and classify the various classes 
in the dataset, viz., left road, right road, and environment. The metrics of accuracy, IOU, 
and mean BF score have been used to evaluate the efficacy of the three DNNs, and the 
evaluation has been done on the training, testing, and validation datasets, and it can be 
observed from Table 4 that good results have been obtained. The drivable section in the 

Fig. 12  The radar plot for each network for all the performance metrics for the testing dataset

Fig. 13  The radar plot for each network for all the performance metrics for the validation dataset
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dataset is the “right road,” and it can be observed that an accuracy of ~ 99% has been 
obtained for MobileNet-V3, and other two networks also offer an accuracy of about 91% 
and 97%. Similarly, for the environment, an accuracy of 97% is obtained for MobileNet-
V3, and other networks too offer an accuracy of above 97%. Similarly, the performance 
has been evaluated for the testing as well as the validation dataset. Table 5 presents a 
comparison of the current work with the work already reported in the literature, and it 
can be observed that the current work offers one of the highest accuracies and that too 
in a minimum amount of runtime.

Fig. 14  The radar plot for each network for all the performance metrics for the training dataset

Table 5  Overall accuracy comparison

Methodology Accuracy Runtime Environment

DeepLabV3+ (current work) ResNet50 97.52% 0.14 s GPU @ 1.1 GHz (MATLAB)

XceptionNet 97.34% 0.11 s GPU @ 1.1 GHz (MATLAB)

MobileNet-V2 97.80% 0.07 s GPU @ 1.1 GHz (MATLAB)

PLARD [3] 97.27% 0.16 s GPU @ 2.5 GHz (Python)

SNE-RoadSeg+ [4] 96.95% 0.25 s GPU @ 2.5 GHz (Python)

USNet [5] 96.46% 0.02 s GPU @ 1.5 GHz (Python)

DFM-RTFNet [6] 96.46% 0.08 s GPU @ 2.5 GHz (Python)

SNE-RoadSeg [7] 96.42% 0.18 s GPU @ 2.5 GHz (Python)

RBANet [8] 95.78% 0.16 s GPU @ 1.5 GHz (Python + C/C++)

NIM-RTFNet [9] 95.71% 0.05 s GPU @ 2.5 GHz (Python)

CLCFNet [10] 95.65% 0.02 s GPU @ 1.5 GHz (Python)

LidCamNet [11] 95.62% 0.15 s GPU @ 2.5 GHz (Python)
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Conclusions
In this study, a deep learning-based autonomous road detection system has been pro-
posed. The proposed framework is built on the DeepLab-V3+ architecture, which is a 
state-of-the-art semantic segmentation network developed by Google. The weights of 
the network are initialized by three image classification networks, namely, ResNet-50, 
MobileNet-V2, and Xception. The results are evaluated on the benchmarked KITTI 
road dataset. The model is tested for adverse light conditions and general ground 
complexities, while also achieving significant results on the evaluation metrics. The 
proposed model also achieves good results on a small and yet powerful network, 
MobileNet-V2, that can be used in systems that require low power and can be used 
for edge deployment.
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