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Introduction
Code generation is a significant field that can predict and generate suitable code as 
output from the natural language as the input source. The increasing of code genera-
tion tools with accuracy and optimization tools can help to increase the productiv-
ity of the programming tools [1]. Application Programming Interfaces or APIs make 
software development and innovation easier by allowing applications to share data 
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and functions in a simple and safe manner. An API is a set of computer instructions 
and procedures that may be used to get access to a website or web-based software 
application. Automatic code generation might help developers learn a new program-
ming language or deal with new APIs.

Nowadays, pre-trained language models witnessed tremendous success in the NLP 
field [2]. A pre-trained model is a model that has been trained on a big benchmark 
dataset to tackle some problem and then save this network with weights to be trained 
and reused for another task. Pre-trained models are commonly used to be the core 
of the transfer learning job. Through pre-training and fine-tuning, we can enhance 
model robustness and uncertainty. There are several approaches that enable pre-
trained language models to train massive models with billions of parameters from 
large-scale unlabeled corpora in a self-supervised manner. Recent researches [2–7] 
have shown using pre-trained models and also demonstrated the benefits of employ-
ing pre-trained language models for many tasks such as question answering, text clas-
sification and machine translation.

Transformers contain numerous pre-trained models that can be used for a variety 
of tasks and datasets [8]. Transformers have demonstrated that they can both be few-
shot [9] and unsupervised multitask [10] learners. Transformers prove that they can 
be applied to any pipeline tasks like machine translation, text-to-text generation, clas-
sification, and other tasks. Furthermore, researchers demonstrated that massive pre-
trained language models can be few-shot semantic parsers [11].

Contributors can use the Transformers library to publish language datasets and 
generate and distribute pre-trained models to get new models with high performance 
and huge results. In May 2020, the University of Helsinki’s Language Technology 
Research Group (Helsinki-NLP) developed and submitted a huge set of translation 
models to the Transformers library called MarianMT [12]. They constructed their 
models depending on Marian [13] neural machine translation (MarianNMT) frame-
work which is accessible at https://​www.​marian-​nmt.​github.​io, and it is published 
under the MIT license. The MarianNMT framework and the Open Parallel Corpus 
(OPUS) dataset were used to train the Helsinki-NLP machine translation models to 
get MarianMT model.

With limited computing resources, it is possible to train translation models that are 
competitive with state-of-the-art models. Adapting a pre-trained language model with 
the same architecture from one task to another is a crucial stage in generating a new 
trustworthy, reliable, and effective model.

We implemented MarianCG which is a Transformer language model that can work 
in the code generation task. This is accomplished by fine-tuning MarianMT which is a 
pre-trained language model with CoNaLa [14] and DJANGO [15] datasets. MarianCG 
model is shown in Fig.  1. We applied the BLEU score measure [16] and exact match 
accuracy to solve the code generation problem, which other researchers used to quantify 
the quality of the generated output.

The experimental findings on the CoNaLa and DJANGO datasets reveal that the Mari-
anCG transformer model outperforms other state-of-the-art models in respect of the 
relevant evaluation criteria.

Our main contributions are: 

https://www.marian-nmt.github.io
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1	 Introducing MarianCG transformer model, which is a code generation model capa-
ble of creating code from natural language

2	 Testing the effectiveness of using Marian machine translation model for solving the 
problem of code generation

3	 Demonstrate that a machine translation model may be used as a code generation 
model

4	 Setting the new code generation challenge contributors, with a BLEU score of 34.43 
and 10.2% exact match accuracy on the CoNaLa dataset. Also, we recorded the high-
est accurate results on the DJANGO challenge reaching 81.83% exact match accu-
racy, and a BLEU score of 90.41

The rest of the paper is organized as follows: Section 2 summarizes the relevant related 
work and discusses the previous techniques to solve the code generation task. Also, it 
sets this work apart from the relevant related work. Section 3 provides a description of 
the core model, Marian, and what inspired us to use MarianMT transformer machine 
translation model in the code generation problem. Section 4 provides an overview of the 
proposed model and its components. Section 5 contains a list of the datasets that we use 
in our experiments. Following that is a section covering implementation and experimen-
tal work, which includes the evaluation metrics and experimental setup. We gain results 
compared to other researchers through the studies after the implementation section 
then the discussion section that discusses our work. Finally, the section that concludes 
the paper to demonstrates how our technique adds value to the code generation task and 
the future work of our study.

Related work
The problem of transforming natural language (NL) descriptions to generate executable 
code is known as code generation, which is a sub-task of semantic parsing. There are 
some difficulties in this problem because the output has a well-defined structure and the 
domain, structure of the input, and output are not similar. Techniques that are used for 
solving this problem can be divided into tree-based techniques and deep learning based 
techniques.

Tree‑based techniques

Tree-based techniques are considered one of the task-driven forms of semantic pars-
ing that translate the natural language input to formal machine executable representa-
tion. These techniques can represent code as abstract syntax trees (ASTs) which can be 

Fig. 1  MarianCG model for code generation
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described as the syntactic tree representation of the target code or the cleaned-up ver-
sion of the parse tree that captures the structure of expressions, the program’s control 
components.

The goal of the ASTs is simply to describe the semantic structure of sentences in a 
computer language as trees. Semantics can be stated with attribute grammar, but most 
semantic approaches are significantly more intelligible when based on a clearer repre-
sentation of a language’s phrases. There are standard templates for the various compo-
nents of a programming language definition when simulating the code as AST. Also, 
keep in mind to define the code as AST you need to know the collection of syntactic 
categories or domains and a set of rules to describe how to connect these categories with 
each other.

Code generation and semantic parsing need to convert unstructured (or partially 
structured) inputs to well-formed, executable outputs. So, researchers have used 
sequence-to-tree models for code generation, with the tree representing the AST of the 
target source code [11, 17–25], because they wanted to improve the process of creating 
code snippets by the ASTs.

Advantages and disadvantages of tree‑based techniques

There are several benefits to implementing tree-based approaches in this task, such as 
handling the code generation problem by converting the natural language input to the 
matching AST, which can assist improve accuracy by requiring the output code to be 
represented with a well-formed structure. Furthermore, tree-based techniques may 
be used to any type of data and can also manage data that is not generally distributed. 
Furthermore, tree-based techniques are easy to visualize, making a complex predictive 
model much easier to understand. Finally, because variable transformations are unnec-
essary, tree-based techniques need the minimum amount of data preprocessing.

On the other hand, there are some lacks for using these techniques because describing 
code as AST is difficult way because the number of nodes in the tree frequently surpasses 
the length of the natural language description. For this reason, tree-based techniques 
are not frequently able to produce correct code for the related natural language descrip-
tion which is uncommon in the training data. Also, generating AST is synchronous (the 
output structure diverges from the input structure). The use of ASTs has achieved less 
accurate results compared to deep learning-based models. There has been relatively less 
work on utilizing the parse trees of the natural language input. Because of these reasons, 
researchers turned their direction to deep learning based techniques, where there is no 
need to construct a tree to generate code.

Deep learning‑based techniques

Source code generation is considered as text-to-text or sequence-to-sequence, which 
can be developed and maintained by deep learning models. Machine intelligence that 
understands and creates the complex structures of software has a lot of applications in 
software engineering. There are some sequence-to-sequence models, and these models 
can convert the target code into other sequence domains.

Using deep learning to solve and deal with many problems has become an impor-
tant technology in various domains; therefore, numerous research projects are focused 
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on deep learning technology and pre-training models. Additionally, transfer learning 
proved great results to generate new models depending on another pre-trained model. 
Transfer learning is the process of fine-tuning a model that has been trained to execute 
one job to perform on another task. A pre-trained model can be defined as a stored net-
work that has already been trained on a large dataset, typically on a large-scale task.

As a result, recent researchers [24, 26–31] in the code generation problem focused on 
fine-tuning and training the pre-trained model in order to create a new task-oriented 
model. The amazing potential for using transfer learning to adapt the pre-trained model 
to a specific job further provide consistent outcomes and findings for the seq2seq code 
generation task.

Previous contributors’ work

In 2016, Dong and Lapata proposed a methodology for learning from natural language 
descriptions and meaning representations [17]. They used recurrent neural networks 
(RNNs) with long short-term memory (LSTM) units to encode phrases and decode log-
ical structures for considering the task of semantic parsing. They created a technique 
that is based on an attention enhanced encoder-decoder model, and this technique can 
convert input utterances into vector representations and produce their logical forms. 
This is done by conditioning output sequences or trees on the vector representations. 
These encoded and decoded input utterances and their logical structures, and the atten-
tion layer is used to directly control the program synthesis process. Their testing results 
revealed that adding a hierarchical tree decoder and the attention mechanism to the 
model enhanced performance across the board.

In 2017, Yin and Neubig proposed a syntax-driven neural code generation technique 
[18] that constructs an abstract syntax tree by progressively applying actions from a 
grammar model. They designed a probabilistic grammar model for AST generation. The 
Python abstract grammar has a set of production rules, and an AST was created by com-
bining numerous production rules, each of which consists of a head node and multiple 
child nodes.

In 2018, Yin and Neubig proposed TRANX [20] which parses the utterance into a for-
mal meaning representation. TRANX was built through a transition system, and it uses 
this transition system to convert a natural language utterance into an abstract syntax 
tree (AST) through a series of tree construction actions given an input natural language 
utterance. The parser is then used to turn the intermediate AST into a domain-specific 
meaning representation, bringing the parsing process to a close. TRANX scores each 
hypothesis AST using a probabilistic model specified by a neural network. But the neu-
ral semantic parser, TRANX indicated an obvious issue of incoherence in generation and 
got results with the CoNaLa dataset as 24.30 for the BLEU score metric. Also, TRANX 
got accuracy of 73.7% for the DJANGO dataset.

In 2019, Yin and Neubig proposed the Reranking model [21]. They used the previ-
ous TRANX semantic parser to get the meaning representation of the input natural 
language as an abstract syntax tree. They added a reranking method to output the 
most suitable meaning representation. The reranking model is presented as a fast-
iterating method to enhance the accuracy of parsing and rerank the n-best list of the 
representation of meaning. This can be done by using characteristics designed to 
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address problems in baseline models. This model is used and get results with four 
datasets GEO, ATIS, DJANGO, and CoNaLa. The result obtained is 30.11 of BLEU 
score with the developing and testing with the CoNaLa dataset. Also, the results on 
the DJANGO dataset were recorded with 80.2% accuracy.

In 2019, Shin et al. introduced PATOIS [22] which is a program synthesizer and also 
a neural program synthesizer that trains a tree-based neural synthesizer to use the 
code idioms while coding generation. The PATOIS system was built on top of struc-
tural generative models like graph neural networks and sequence-to-tree models.

In 2020, Xu et al. proposed a deep learning model by data re-sampling, fine-tuning 
the pre-trained model, and using incorporating external knowledge [24] to predict 
executable python code. To include external knowledge in code generation models, 
they suggested a model-agnostic strategy based on data augmentation, retrieval, and 
data re-sampling, which obtained new results on the CoNaLa open-domain code gen-
eration task. They used the CoNaLa-Mined [14] dataset, which was automatically 
mined from StackOverflow and contained 600,000 NL-code pairs in Python. They 
sorted all pairings by confidence scores and discovered that the top 100K examples 
have a good level of code accuracy and NL-code correlation. As a result, the top 100K 
couples are chosen for the tests. They generated roughly 13K different NL-code pair-
ings (without resampling) from Python API documentation after pre-processing. 
They also sampled the same number of pairings for the re-sampling setting to provide 
a fair comparison. They used the NL-to-code generation model TRANX [20] as the 
basic model, with hypothesis reranking [21]. They also used length normalization [32] 
to make sure that beam search didn’t favor shorter results over longer ones. They got 
30.69 BLEU score with external knowledge with the API model, and when they added 
reranking to external knowledge with API they got 32.26 BLEU score metric.

In 2021, Dahal et  al. proposed a paper [25] which describes the analysis of Tree-
structured architecture and their effect on the code generation problem. They ran 
and tested text-to-tree, structured tree-to-tree, and linearized tree-to-tree models 
on constituency-based parse trees where their goal was generating the corresponding 
ASTs of the code. They used CoNaLa and ATIS datasets. Constituency or depend-
ency trees are describing the syntactic structure of the input, and these trees can be 
used to accomplish subtree alignment with the destination code matching the AST 
and benefiting the downstream job. Their tree-to-tree model achieved good results.

In 2021, Orlanski and Gittens worked on expanding the original CoNaLa dataset 
to include the multimodal textual question bodies and thus the pertinent contextual 
information they contain such as inputs, outputs, and required libraries [27]. They 
developed a new transformer model trained in the BART [33] encoder-decoder 
model. For both the annotated and mined cases in the CoNaLa corpus, they obtained 
these textual bodies from Stackoverflow. Then, they used the question bodies and 
concatenated intents as inputs for a huge pre-trained language model and then used 
beam search to construct the answer code snippet. They used Python and Hugging-
Face’s transformer package to build their model. Finally, for text generation, they 
employed a BART model with a linear layer and a distinct bias. They got a 26.24 
BLEU score when using the BART base model and when they used the BART model 
with mined data, they got a 30.55 BLEU score.
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In 2021, Norouzi et al. showed that transformer-based seq2seq models can compete 
with or outperform models created expressly for code generation [26]. They created a 
seq2seq transformer model, and they built this model by fine-tuning the pre-trained 
transformer BERT model as an encoder the decoder was the original transformer 
decoder with 4-layers transformer decoder. The key is to create a new model and com-
bine the relatively large monolingual corpora of the meaning representation with tradi-
tional large-scale pre-trained encoders. They got the highest BLEU score with CoNaLa 
dataset that reached 33.41. Also, the accuracy scored on the DJANGO dataset was 
81.03%. A Seq2Seq model transformer with a little specialized prior could potentially 
achieve results superior to or competitive with models specially developed for code gen-
eration and semantic parsing by leveraging a sufficiently large monolingual corpus of the 
programming language.

In 2022, Beau and Crabbé developed a new code generation model which has the 
encoder-decoder architecture [28]. They used BERT as an encoder and decoder as a 
grammar-based. This is some change in TranX [20] seq2seq architecture for generating 
code from the natural language description. Their proposed architecture can obtain an 
abstract syntax tree (AST) is constrained by the programming language grammar. They 
trained and tested their model on the CoNaLa and DJANGO datasets. This transition 
system is open to guarantee the generation of syntactically correct code. Their research 
emphasizes the significance of grammatical limitations as well as particular techniques 
for managing variables, list naming, and typing. They scored a 34.2 BLEU score on the 
CoNaLa dataset, and an accuracy of 81.03% on the DJANGO benchmark.

Marian and inspiration for code generation
Marian NMT and MarianMT

Marian is the core engine for the Microsoft Translator Neural Machine Translation ser-
vices. Marian is a self-contained, free open source, and efficient neural machine transla-
tion framework which is a built-in automated differentiation engine based on dynamic 
computation graphs. This framework was entirely developed in C++, and it demon-
strated a research-friendly toolkit with high training and translation speeds. Training 
Marian was performed on raw texts, with data processing employing the Sentence-
Piece. It is being employed in several projects and is the primary translation and training 
engine as well as it is used by a wide range of enterprises, organizations, and research 
groups.

Marian holds its own position in the developing ecosystem of open-source NMT tool-
kits, and it has powerful translation features, best defined by these features: 

1	 It is self-contained, having its own back end that does reverse-mode automated dif-
ferentiation using dynamic graphs.

2	 It supports working on single GPU/CPU and multi GPUs/CPUs. It provides GPU/
CPU translation style as well as quick multi-GPU training. Also, this model contains 
the feature of batch translation.

3	 Marian has the feature of creating word alignments and attention output with the 
ability to rescore the n-best lists and parallel files.
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Marian was used by the University of Helsinki’s Natural Language Processing lab to train 
hundreds of translation models using parallel data acquired from Opus, and those mod-
els were later open-sourced and called MarianMT. Researchers in this lab subsequently 
adapted the trained model into Huggingface Transformers and made them accessible 
through the Huggingface Hub. Each MarianMT model is a transformer encoder-decoder 
with six layers. MarianCG was inspired by Marian machine translation, which served as 
the base for our code generation challenge.

Inspired by Marian transformer models for machine translation

Marian was chosen as the backbone for our code generation approach for many rea-
sons. To begin, we can talk about the importance of pre-training transformer models 
and the added value of this methodology in solving many problems. Pre-training trans-
former models are extensively employed nowadays for a variety of tasks [34], and it has 
been applied in code generation in recent years with great impacts. Pre-training is also 
beneficial for machine translation and code generation activities. For example, the Face-
book BART model is a machine translation transformer model, and it was employed 
and fine-tuned for the code generation problem using CoNaLa, yielding a BLEU score of 
26.24. Also, the pre-trained BERT model was merged with the Transformer decoder and 
scored 32.57 BLEU for the code generation challenge. This motivated our new effort to 
use the pre-trained model and fine-tune this model to get a significant improvement for 
the code generation challenge. In addition, it is a simple technique to fine-tune the pre-
trained model and start training the model from its final weight rather than the original 
weights. Furthermore, we found that there are many machine translation models with 
huge architecture, such as T5. To be considered these huge models to deploy, powerful 
resources are needed with a strong GPU and plenty of memory with high processing 
capability.

Marian was chosen since it is a quick neural machine translation service with accurate 
machine translation outputs for several languages. MarianMT’s creators, Helsinki-NLP, 
have over 1000 pre-trained language models for MarianMT translation models. We have 
a vision of using a pre-trained model from one language to work in another area. This 
includes setting up and building AraT5 from T5 to work in another language or domain. 
Marian models are smaller than many other translation models in the machine transla-
tion model collection, making them perfect for fine-tuning experimentation and integra-
tion testing. Marian NMT, the core of Microsoft translator, serves as the primary fully 
basic model for our training to execute the MarianCG model. As a result of these obser-
vations and insights, we developed MarianCG, a code generation model influenced by 
the Machine Translation Transformer approach.

Proposed code generation model
MarianCG model is built and developed using Marian neural machine translation (Mar-
ianNMT). We fine-tuned MarianMT transformer which is a pre-trained model from 
Helsinki-NLP and got our model, MarianCG. It is a multi-head attention transformer 
with zero-shot learning which observes samples that were not shown during training 
and predicts the sentences that are the right outputs. MarianCG model got high and 
accurate results for the code generation problem with fast performance.



Page 9 of 23Soliman et al. Journal of Engineering and Applied Science          (2022) 69:104 	

MarianCG model architecture

MarianCG is trained and fine-tuned on MarianMT model that was built using Marian-
NMT. MarianNMT allows rapid training and translation. The architecture of the code 
generation model, MarianCG is shown in Fig. 2. It starts by loading the dataset, then the 
preprocessing phase of the input and the output as shown in Fig. 3. Preprocessing con-
tains tokenization of the sentence, then get embeddings of each token and do positional 
embedding for each token to learn each position of all tokens concerning to the specific 

Fig. 2  MarianCG model architecture

Fig. 3  Preprocessing phase for the data
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token. In addition, padding and truncation are part of the preprocessing phase. Finally, 
the input and the output sentences are directly inserted into the encoder-decoder model. 
MarianCG model consists of a stack of 6 layers in the encoder and a stack of 6 layers in 
the decoder.

MarianCG model is similar to BartForConditionalGeneration with a few minor 
modifications:

•	 Static (sinusoidal) positional embeddings.
•	 No layer normalization embedding.
•	 The first token in the generation task is the pad token which has 0 as a token embed-

ding.

After the attention softmax, the encoder’s attention weights are used to compute the 
weighted average in the self-attention heads. MarianCG is a PyTorch model with coding 
and implementation of the Marian neural machine translation transformer.

Figure 4 shows the two representations of the same example of code generation. The 
first representation in Fig. 4a is how to find a good solution for code generation using 
the representation of manual abstract syntax tree (AST). The second representation in 
Fig.  4b shows the same example with MarianCG encoder decoder transformer model 
that successfully gets highly accurate results compared to AST.

MarianCG tokenization

Marian tokenizer is developed and mainly depends on SentencePiece [35]. Sentence-
Piece is a text generation neural network with a text tokenizer and detokenizer which 
has the predetermined prior vocabulary size to the training of the neural model. Sen-
tencePiece extends direct training from raw sentences to implement subword units like 
unigram language model [36] and byte-pair-encoding (BPE) [37]. Marian tokenizer 
is derived from PreTrainedTokenizer in the huggingface transformer library, which 
includes the majority of the essential methods.

MarianCG embedding and sinusoidal positional embedding

MarianCG model does not contain convolution or recurrent neural networks, so the 
role of the embedding and positional embedding now is important and clear. So, by 
determining data about the relative or absolute location of the tokens in the sequence to 
have the order of the sequence. The positional and word embeddings are shared between 
the encoder and decoder. MarianCG model contains sinusoidal positional embeddings 
to the input embeddings at the encoder and decoder. The job of positional embedding is 
to provide information about the location of each token. This enables the attention layer 
to compute context-dependent responses, such that two tokens with the same value in 
the input phrase receive distinct representations.

Transformers employ sinusoidal positional encoding to represent the position of the 
input. Sinusoidal positional embedding calculates the position encoding as a mix of sine 
and cosine functions with geometrically increasing wavelengths. The sinusoidal repre-
sentation works as well as a learned representation and better generalizes sequences that 
are longer than the training sequences.



Page 11 of 23Soliman et al. Journal of Engineering and Applied Science          (2022) 69:104 	

Positional encoding is defined and formulized in paper [38] where the sum of posi-
tional encoding and token embedding is given to the encoder and decoder input lay-
ers of the transformer.

Let dmodel be the embedding dimension of words, and pos ∈ [0, L− 1] be the posi-
tion of a w word in the w = (w0, . . . ,wL−1) input sequence. Mathematically, the posi-
tional encoding of w is defined in Eq. 1.

Fig. 4  Example of code generation
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where the positional encoding follows a specific, learned pattern to identify word posi-
tion or the distance between words in the sequence [39].

MarianCG has no layer normalization embedding. So, positional embedding gets the 
order of position identifier added to vectors for the transformer to know the order of the 
sequence.

Marian encoder and decoder architecture

After tokenization and embedding with positional embedding, the next step is to input 
these embeddings to Marian Encoder and Marian Decoder. Marian Encoder as shown in 
Fig. 5 is the multi-head self-attention encoder layers connected with layer normalization 
and after that there are two fully connected layers and final layer normalization.

As the encoder architecture is constructed, we can show and make the decoder in 
a clear construction. The first steps are tokenization and embedding with positional 
embedding, and the next step is to input these embeddings to Marian encoder and Mar-
ian decoder. Marian decoder as shown in Fig. 6 has the same architecture as the encoder 
but with adding the encoder attention followed by encoder attention layer normaliza-
tion. These layers can be added before the two fully connected layers.

The attention component in this Transformer model performs its computations 
numerous times in parallel. Each of these is referred to as an Attention Head. The Atten-
tion module divides its Query, Key, and Value arguments N times and routes each split 
through a separate Head. The results of all these comparable Attention calculations are 
then added together to produce a final Attention score. This is known as multi-head 
attention, and it allows the Transformer to encode many associations and nuances for 
each word [38].

The following are the main features of the MarianCG construction: 

(1)PE(pos, i) =
sin

pos

100002i/dmodel
, i = 2k

cos
pos

100002i/dmodel
, i = 2k + 1

Fig. 5  Marian encoder architecture
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1	 Marian tokenizer depends on SentencePiece
2	 MarianCG contains sinusoidal positional embedding to represent the position of 

each token
3	 No layer normalization embedding for this approach

Datasets
In our research, we used two widely available and well-known data sets, CoNaLa and 
Django. These datasets were created with the intention of generating code from the cor-
responding natural language descriptions.

CoNaLa dataset

One of the most common datasets in the code generation task is called CoNaLa [14], 
and it is created by Carnegie Mellon University NeuLab and STRUDEL Lab. It is called 
CoNaLa for the name Code/Natural Language Challenge. It has the input as natural lan-
guage description, with the output as the corresponding python code for this specific 
input. Table 1 shows some examples of CoNaLa NL-code pairs where the input is the 
intent which describes the natural language, and the output is the snippet which is the 
corresponding code for the natural language description.

This dataset has 2,879 annotated NL-code pairings with about 600K mined pairs from 
over 40,000 distinct stackoverflow questions in the dataset.

Fig. 6  Marian decoder architecture
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DJANGO dataset

The DJANGO dataset [15] is one of the most commonly used datasets in the code gener-
ation task. It has about 19K examples. Each data example is made up of a line of Python 
code and an annotated natural language description. These examples are divided into 
16000 training, 1000 development, and 1805 test annotations in the Django dataset.

Table  2 provides various DJANGO NL-code pair instances. The input is the natural 
language text, and the output is the corresponding code for this input.

Implementation and experimental work
Evaluation metrics

BLEU score evaluation metric

The BLEU [16] (bilingual evaluation understudy) method evaluates the quality of 
machine-translated text from one natural language to another. The BLEU statistic counts 
how many words overlap in a given translation when compared to a reference transla-
tion, with successive words scoring better. The connection between a machine’s output 
and that of a person is believed to be quality: “the closer a machine translation is to a 
professional human translation, the better it is.” This is the core notion underlying BLEU.

The BLEU indicator assigns a translation score from 0 to 1; however, it is commonly 
reported as a percentage number as shown in Table 3. The closer the translation is near 
1, the more it resembles a human translation.

Exact match accuracy

This measure is quite simple to compute. This metric is used to compare the similarities 
and differences between two texts. Equation 2 shows how to calculate and measure this 
metric for the two sentences y(i) and ŷ(i) . The first sentence y(i) is the reference sentence, 
which contains 100% of the genuine needed sentence. The second sentence ŷ(i) , is the 
predicted sentence created by the model. Exact match accuracy = 1 if the characters 
of the model’s prediction completely match all the characters of the genuine reference 

Table 1  Intent and snippet examples from CoNaLa dataset

Examples Intent (natural language) Snippet (code)

Example 1 Convert a list to a dictionary in python b = dict(zip(a[0::2], a[1::2]))

Example 2 Sort a list of nested lists l.sort(key=sumnested)

Example 3 How to get the size of a string in python? print(len(’string’))

Table 2  Code generation examples in the DJANGO dataset

Examples Natural language Code

Example 1 Define the function do_filter with 2 arguments: parser and 
token

def do_filter ( parser , token ) :

Example 2 Convert priority into a floating point integer, substitute it for 
priority

priority = float ( priority )

Example 3 Define the method as_bytes with arguments self and unix-
from set to boolean False

def as_bytes ( self , unixfrom = False ):
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response; else, exact match accuracy is determined using comparable characters and is 
in the range between 0 and 1. Exact match accuracy is zero if all characters in the mod-
el’s prediction do not match all characters in the genuine reference text.

where n is the number of examples, y(i) is the true labels for the ith examples in the refer-
ence text, and ŷ(i) is the predicted labels for the ith examples.

Implementation

We obtained MarianCG, a novel transformer model based on the pre-trained trans-
former, by fine-tuning the MarianMT transformer model using the CoNaLa and 
DJANGO datasets.

For the CoNaLa dataset, we followed [24, 27] and chose the top mined samples based 
on the likelihood that the NL-Code combination is accurate. The produced CoNaLa 
dataset had around 13K distinct NL-Code. This is to ensure a fair comparison that if we 
want to participate in the CoNaLa challenge, so training the model is done by using the 
conala-train and/or conala-mined datasets, then taking the rewritten intent field from 
the conala-test dataset as input and generate output from it.

The dataset as mentioned contains about 13K different NL-Code. This dataset con-
tains the conala-train and examples from conala-mined and the 500 examples in conala-
test to compare by the same benchmarks as other state-of-the-art contributors. Also, 
we implement MarianCG to adapt DJANGO dataset which has about 19K pairs of 
NL-Code.

We noticed high and accurate results on the DJANGO training and testing. So, we 
decided to do another training process on the CoNaLa dataset with more data and a lit-
tle batch size. Table 4 displays the datasets employed in each experiment, as well as the 
dataset size and the number of records in the training, validation, and test sets of data.

Experimental setup

The proposed model was implemented and trained with the dataset using Google Colab 
Pro service. This allowed us to use 512 input tokens with a batch size of 8. We used 
Python programming and PyTorch framework to build our model with the HuggingFace 
transformer module.

(2)ExactMatchAccuracy =
1

n

n
∑

i=1

[

I
(

y(i) == ŷ(i)
)]

Table 3  BLEU score

BLEU score Interpretation

Less than 10 Almost useless

10–19 Hard to get the gist

20–29 The gist is clear, but has significant grammatical errors

30–40 Understandable to good translations

40–50 High quality translations

50–60 Very high quality, adequate, and fluent translations

Greater than 60 Quality often better than human
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For training, we depend on the HuggingFace trainer and their implementation of the 
learning rate scheduler. As well as MarianCG model accepts natural language input and 
generates Python code in the output. Table 5 lists the configuration parameters that were 
employed throughout the training phase. For text generation, we adopted the MarianCG 
model with a linear layer and a distinct bias. Also, beam search and early stopping were 
employed in the generation phase.

Results
Experiment 1

We began our work by fine-tuning and generating MarianCG transformer model using 
the CoNaLa dataset. This experiment yields a dataset of around 13K pairings of natural 
language and code.

Table 6 shows the results of the first experiment, where MarianCG model predictions 
propelled this model to be one of the top accurate code generation models in terms of 
accuracy and BLEU score.

Our model got the highest exact match accuracy through all models. This experiment 
obtained a BLEU score of 30.92, and achieved 6.2 % in the exact match accuracy with 
the advantage of multi-head attention, and ease to use through the huggingface hub 
at https://​huggi​ngface.​co/​Ahmed​SSoli​man/​Maria​nCG-​CoNaLa.

Experiment 2

In our second attempt, we trained the MarianCG model using another dataset from the 
code generation challenge, which has more examples. DJANGO is the name of this data-
set, which contains 19K natural language and code pairing entries. This dataset is one of 

Table 4  Datasets in each experiment and distribution of the data

Experiment Dataset Dataset size Dataset split

Train Validation Test

Experiment 1 CoNaLa 13K 11125 1237 500

Experiment 2 DJANGO 19K 16000 1000 1805

Experiment 3 CoNaLa 26K 24687 1237 500

Table 5  Configuration parameters on the training MarianCG model

Parameter Value

optimizer Adam optimizer

Learning rate 5e
−5

Weight decay 0.01

Maximum position embeddings 512

Number of hidden layers 6

scale embedding TRUE

Activation function swish

Learning rate scheduler Linear

Warmup ratio 0.05

Length penalty 0.9

https://huggingface.co/AhmedSSoliman/MarianCG-CoNaLa
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the most commonly used for this job, and our implementation and training MarianCG 
model produced highly accurate predictions.

Table 7 displays the results of the code generation models on the DJANGO dataset. 
MarianCG is regarded to be the greatest model in the DJANGO challenge. MarianCG 
has a BLEU score of 90.41 and records an exact match accuracy of 81.83%. A compar-
ison of all values is shown in Fig.  7. Our DJANGO-trained model is available via the 
huggingface hub, which can be found at https://​huggi​ngface.​co/​Ahmed​SSoli​man/​Maria​
nCG-​DJANGO.

Experiment 3

We discovered that obtaining additional data resulted in more accurate results. So, for 
our third experiment, we trained the MarianCG model with an increased amount of 
training samples. In this experiment, we used the CoNaLa dataset again, but this time 
with 26K records. This reached our expectations and placed MarianCG model at the top 
of the CoNaLa challenge. The new testing data results are more dissimilar to our initial 
trial. This experiment yielded a 34.43 BLEU score and a 10.2% exact match accuracy. 
Comparing our model to the CoNaLa benchmark models after this experiment revealed 
that the MarianCG model has the most accurate predictions when compared to other 
state-of-the-art models. This is displayed in Table 8 which compares the results of this 
experiment to other models in the CoNaLa code generation challenge, showing the 
BLEU Score and exact match accuracy of each model.

Table 6  Results of the first experiment on CoNaLa

Model BLEU score Exact match 
accuracy

Year

TranX + BERT w/ mined [28] 34.2 5.8 2022

BERT + TAE [26] 33.41 - 2021

External Knowledge With API + Reranking [24] 32.26 - 2020

MarianCG (Ours) 30.92 6.2 2022

External Knowledge With API [24] 30.69 - 2020

BART W/ Mined [27] 30.55 - 2021

Reranker [21] 30.11 2.8 2019

BART Base [27] 26.24 - 2021

TranX [20] 24.3 - 2018

Table 7  Results of MarianCG model on DJANGO dataset

Rank Model BLEU score Exact match 
accuracy

Year

1 MarianCG (Ours) 90.41 81.83 2022

2 TranX + BERT w/ mined [28] 79.86 81.03 2022

3 BERT + TAE [26] - 81.77 2021

4 Reranker [21] - 80.2 2019

5 TranX [20] - 73.7 2018

6 ipn [40] 77.6 62.3 2016

7 Phrasal Statistical MT [40] 47.6 31.5 2016

https://huggingface.co/AhmedSSoliman/MarianCG-DJANGO
https://huggingface.co/AhmedSSoliman/MarianCG-DJANGO
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Also, Fig.  8 depicts all the CoNaLa dataset results. In addition, MarianCG model is 
available through the huggingface hub at https://​huggi​ngface.​co/​Ahmed​SSoli​man/​Maria​
nCG-​CoNaLa-​Large.

Discussion
MarianCG model is ranked as the first model for its accurate predictions in terms of 
BLEU score and exact match accuracy. This model has a fewer size architecture. It has 
six layers in the encoder and six in the decoder, whereas other models have larger model 
sizes. Table  9 shows the deep learning models employed in the code generation chal-
lenge and the number of layers obtained in each encoder and decoder. TranX + BERT 
trained their model on 100K CoNaLa samples. On the CoNaLa dataset, we trained our 
model on 13K and 26K records, respectively; hence, the trained data was little compared 
to others.

This demonstrates that we trained our model with less data than previous SOTA mod-
els, and our model is also smaller. As a result of the deep learning architectures and the 
quantity of the dataset, our model is both fast and accurate.

Fig. 7  Results on DJANGO

Table 8  Results of MarianCG model on the CoNaLa dataset

Rank Model BLEU score Exact match 
accuracy

Year

1 MarianCG (Ours) 34.43 10.2 2022

2 TranX + BERT w/ mined [28] 34.2 5.8 2022

3 BERT + TAE [26] 33.41 - 2021

4 External Knowledge With API + Reranking [24] 32.26 - 2020

5 External Knowledge With API [24] 30.69 - 2020

6 BART W/ Mined [27] 30.55 - 2021

7 Reranker [21] 30.11 2.8 2019

8 BART Base [27] 26.24 - 2021

9 TranX [20] 24.3 - 2018

https://huggingface.co/AhmedSSoliman/MarianCG-CoNaLa-Large
https://huggingface.co/AhmedSSoliman/MarianCG-CoNaLa-Large
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Conclusions
For the code generation challenge, we proposed MarianCG, a Transformer language 
model to predict and generate code from the natural language description. We car-
ried out three experiments in which we developed the MarianCG model on numerous 
examples in the CoNaLa and DJANGO datasets. This research demonstrated that we are 
able to employ a machine translation model as a solution model for the code generation 
problem. Transfer learning enabled us to obtain a precise model for the code generation 
challenge, where implementation is dependent on fine-tuning a pre-trained language 
model.

MarianCG was fine-tuned using MarianMT, a machine translation language model 
that was created with a dependency on the Microsoft Marian toolkit. Our model has the 
benefit of zero-shot learning, as well as a sinusoidal positional embedding architecture, 
multi-head attention, and Marian tokenizer depending on SentencePiece. MarianCG 
received a BLEU score of 30.92 and an exact match accuracy of 6.2% in our first attempt 
with the CoNaLa dataset. The second experiment was performed on the DJANGO data-
set and yielded a BLEU score of 90.41 with an exact match accuracy of 81.83%.

Finally, the third effort used the CoNaLa dataset, but with double the number of exam-
ples compared to the first attempt. The final experiment yields excellent predictions, 
and the MarianCG model rises to the top of the demanding models. MarianCG model 
achieved a 34.43 BLEU score with a 10.2% exact match accuracy. This model has the 
advantage of its small size, and it is fast and accurate.

Our long-term goal is to develop a code generation model so that it can predict opti-
mized code with high accuracy and consider code theory topics like SOLID principles 
and OOP concepts. In addition, we will continue in demonstrating that employing 
machine translation language models may work well in the code generation task. Fur-
thermore, we will strive toward writing numerous lines of code and demonstrate to 
show how to generate source code for a certain programming language from another 
computer programming language. This is known as a code translation task because the 

Fig. 8  Results on CoNaLa
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input is a programming language such as java and the output is another programming 
language such as python.

Abbreviations
MarianNMT	�Marian neural machine translation
MarianMT	� Marian machine translation
MarianCG	� Marian code generation
API	� Application Programming Interface
BLEU	� Bilingual evaluation understudy
OPUS	� Open Parallel Corpus
NL	� Natural language
CoNaLa	� Code/natural language dataset
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