
MarianCG: a code generation transformer
model inspired by machine translation
Ahmed S. Soliman1,2*   , Mayada M. Hadhoud1 and Samir I. Shaheen1 

Introduction
Code generation is a significant field that can predict and generate suitable code as
output from the natural language as the input source. The increasing of code genera-
tion tools with accuracy and optimization tools can help to increase the productiv-
ity of the programming tools [1]. Application Programming Interfaces or APIs make
software development and innovation easier by allowing applications to share data

Abstract 

The idea that computers can build their own programs is extremely significant, and
many researchers are working on this challenge. Code generation is described as
the process of generating executable code that can be run directly on the computer
and fulfills the natural language requirements. It is an intriguing topic that might
assist developers to learn a new software technology or programming language, or it
could be a simple technique to help in coding through the description of the natu-
ral language code developer. In this paper, we present MarianCG, a code generation
Transformer model used to tackle the code generation challenge of generating python
code from natural language descriptions. Marian neural machine translation (NMT),
which is the core model of the Microsoft Translator, is the basis for our NL-to-Code
translation engine and is the heart of the teaching model. MarianMT is the teacher
language model in our study, and it is one of the most successful machine translation
transformers. In our approach, we use a sinusoidal positional embedding technique
to represent the position of each token in the text, as well as no layer normalization
embedding. Our code generation approach, MarianCG, is based on fine-tuning a
machine translation pre-trained language model. This allows us to demonstrate that
the pre-trained translation model can also operate and work as a code generation
model. The proposed model outperforms recent state-of-the-art models in the prob-
lem of code generation when trained on the CoNaLa and DJANGO datasets. MarianCG
model scores a BLEU score of 34.43 and an exact match accuracy of 10.2% on the
CoNaLa dataset. Also, this model records a BLEU score of 90.41 and an exact match
accuracy of 81.83% on the DJANGO dataset. The implementation of MarianCG model
and relevant resources are available at https://​www.​github.​com/​Ahmed​SSoli​man/​
Maria​nCG-​NL-​to-​Code.

Keywords:  Code generation, Natural language programming, MarianCG, CoNaLa,
MarianMT, Marian NMT, Neural machine translation

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Soliman et al.
Journal of Engineering and Applied Science (2022) 69:104
https://doi.org/10.1186/s44147-022-00159-4

Journal of Engineering
and Applied Science

*Correspondence:
ahmed.shokry@eng1.cu.edu.eg

1 Department of Computer
Engineering, Cairo University,
Giza, Egypt
2 Department of Computer
Engineering, Al-Azhar University,
Nasr City, Egypt

http://orcid.org/0000-0003-4752-3557
https://www.github.com/AhmedSSoliman/MarianCG-NL-to-Code
https://www.github.com/AhmedSSoliman/MarianCG-NL-to-Code
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-022-00159-4&domain=pdf

Page 2 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104

and functions in a simple and safe manner. An API is a set of computer instructions
and procedures that may be used to get access to a website or web-based software
application. Automatic code generation might help developers learn a new program-
ming language or deal with new APIs.

Nowadays, pre-trained language models witnessed tremendous success in the NLP
field [2]. A pre-trained model is a model that has been trained on a big benchmark
dataset to tackle some problem and then save this network with weights to be trained
and reused for another task. Pre-trained models are commonly used to be the core
of the transfer learning job. Through pre-training and fine-tuning, we can enhance
model robustness and uncertainty. There are several approaches that enable pre-
trained language models to train massive models with billions of parameters from
large-scale unlabeled corpora in a self-supervised manner. Recent researches [2–7]
have shown using pre-trained models and also demonstrated the benefits of employ-
ing pre-trained language models for many tasks such as question answering, text clas-
sification and machine translation.

Transformers contain numerous pre-trained models that can be used for a variety
of tasks and datasets [8]. Transformers have demonstrated that they can both be few-
shot [9] and unsupervised multitask [10] learners. Transformers prove that they can
be applied to any pipeline tasks like machine translation, text-to-text generation, clas-
sification, and other tasks. Furthermore, researchers demonstrated that massive pre-
trained language models can be few-shot semantic parsers [11].

Contributors can use the Transformers library to publish language datasets and
generate and distribute pre-trained models to get new models with high performance
and huge results. In May 2020, the University of Helsinki’s Language Technology
Research Group (Helsinki-NLP) developed and submitted a huge set of translation
models to the Transformers library called MarianMT [12]. They constructed their
models depending on Marian [13] neural machine translation (MarianNMT) frame-
work which is accessible at https://​www.​marian-​nmt.​github.​io, and it is published
under the MIT license. The MarianNMT framework and the Open Parallel Corpus
(OPUS) dataset were used to train the Helsinki-NLP machine translation models to
get MarianMT model.

With limited computing resources, it is possible to train translation models that are
competitive with state-of-the-art models. Adapting a pre-trained language model with
the same architecture from one task to another is a crucial stage in generating a new
trustworthy, reliable, and effective model.

We implemented MarianCG which is a Transformer language model that can work
in the code generation task. This is accomplished by fine-tuning MarianMT which is a
pre-trained language model with CoNaLa [14] and DJANGO [15] datasets. MarianCG
model is shown in Fig. 1. We applied the BLEU score measure [16] and exact match
accuracy to solve the code generation problem, which other researchers used to quantify
the quality of the generated output.

The experimental findings on the CoNaLa and DJANGO datasets reveal that the Mari-
anCG transformer model outperforms other state-of-the-art models in respect of the
relevant evaluation criteria.

Our main contributions are:

https://www.marian-nmt.github.io

Page 3 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104 	

1	 Introducing MarianCG transformer model, which is a code generation model capa-
ble of creating code from natural language

2	 Testing the effectiveness of using Marian machine translation model for solving the
problem of code generation

3	 Demonstrate that a machine translation model may be used as a code generation
model

4	 Setting the new code generation challenge contributors, with a BLEU score of 34.43
and 10.2% exact match accuracy on the CoNaLa dataset. Also, we recorded the high-
est accurate results on the DJANGO challenge reaching 81.83% exact match accu-
racy, and a BLEU score of 90.41

The rest of the paper is organized as follows: Section 2 summarizes the relevant related
work and discusses the previous techniques to solve the code generation task. Also, it
sets this work apart from the relevant related work. Section 3 provides a description of
the core model, Marian, and what inspired us to use MarianMT transformer machine
translation model in the code generation problem. Section 4 provides an overview of the
proposed model and its components. Section 5 contains a list of the datasets that we use
in our experiments. Following that is a section covering implementation and experimen-
tal work, which includes the evaluation metrics and experimental setup. We gain results
compared to other researchers through the studies after the implementation section
then the discussion section that discusses our work. Finally, the section that concludes
the paper to demonstrates how our technique adds value to the code generation task and
the future work of our study.

Related work
The problem of transforming natural language (NL) descriptions to generate executable
code is known as code generation, which is a sub-task of semantic parsing. There are
some difficulties in this problem because the output has a well-defined structure and the
domain, structure of the input, and output are not similar. Techniques that are used for
solving this problem can be divided into tree-based techniques and deep learning based
techniques.

Tree‑based techniques

Tree-based techniques are considered one of the task-driven forms of semantic pars-
ing that translate the natural language input to formal machine executable representa-
tion. These techniques can represent code as abstract syntax trees (ASTs) which can be

Fig. 1  MarianCG model for code generation

Page 4 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104

described as the syntactic tree representation of the target code or the cleaned-up ver-
sion of the parse tree that captures the structure of expressions, the program’s control
components.

The goal of the ASTs is simply to describe the semantic structure of sentences in a
computer language as trees. Semantics can be stated with attribute grammar, but most
semantic approaches are significantly more intelligible when based on a clearer repre-
sentation of a language’s phrases. There are standard templates for the various compo-
nents of a programming language definition when simulating the code as AST. Also,
keep in mind to define the code as AST you need to know the collection of syntactic
categories or domains and a set of rules to describe how to connect these categories with
each other.

Code generation and semantic parsing need to convert unstructured (or partially
structured) inputs to well-formed, executable outputs. So, researchers have used
sequence-to-tree models for code generation, with the tree representing the AST of the
target source code [11, 17–25], because they wanted to improve the process of creating
code snippets by the ASTs.

Advantages and disadvantages of tree‑based techniques

There are several benefits to implementing tree-based approaches in this task, such as
handling the code generation problem by converting the natural language input to the
matching AST, which can assist improve accuracy by requiring the output code to be
represented with a well-formed structure. Furthermore, tree-based techniques may
be used to any type of data and can also manage data that is not generally distributed.
Furthermore, tree-based techniques are easy to visualize, making a complex predictive
model much easier to understand. Finally, because variable transformations are unnec-
essary, tree-based techniques need the minimum amount of data preprocessing.

On the other hand, there are some lacks for using these techniques because describing
code as AST is difficult way because the number of nodes in the tree frequently surpasses
the length of the natural language description. For this reason, tree-based techniques
are not frequently able to produce correct code for the related natural language descrip-
tion which is uncommon in the training data. Also, generating AST is synchronous (the
output structure diverges from the input structure). The use of ASTs has achieved less
accurate results compared to deep learning-based models. There has been relatively less
work on utilizing the parse trees of the natural language input. Because of these reasons,
researchers turned their direction to deep learning based techniques, where there is no
need to construct a tree to generate code.

Deep learning‑based techniques

Source code generation is considered as text-to-text or sequence-to-sequence, which
can be developed and maintained by deep learning models. Machine intelligence that
understands and creates the complex structures of software has a lot of applications in
software engineering. There are some sequence-to-sequence models, and these models
can convert the target code into other sequence domains.

Using deep learning to solve and deal with many problems has become an impor-
tant technology in various domains; therefore, numerous research projects are focused

Page 5 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104 	

on deep learning technology and pre-training models. Additionally, transfer learning
proved great results to generate new models depending on another pre-trained model.
Transfer learning is the process of fine-tuning a model that has been trained to execute
one job to perform on another task. A pre-trained model can be defined as a stored net-
work that has already been trained on a large dataset, typically on a large-scale task.

As a result, recent researchers [24, 26–31] in the code generation problem focused on
fine-tuning and training the pre-trained model in order to create a new task-oriented
model. The amazing potential for using transfer learning to adapt the pre-trained model
to a specific job further provide consistent outcomes and findings for the seq2seq code
generation task.

Previous contributors’ work

In 2016, Dong and Lapata proposed a methodology for learning from natural language
descriptions and meaning representations [17]. They used recurrent neural networks
(RNNs) with long short-term memory (LSTM) units to encode phrases and decode log-
ical structures for considering the task of semantic parsing. They created a technique
that is based on an attention enhanced encoder-decoder model, and this technique can
convert input utterances into vector representations and produce their logical forms.
This is done by conditioning output sequences or trees on the vector representations.
These encoded and decoded input utterances and their logical structures, and the atten-
tion layer is used to directly control the program synthesis process. Their testing results
revealed that adding a hierarchical tree decoder and the attention mechanism to the
model enhanced performance across the board.

In 2017, Yin and Neubig proposed a syntax-driven neural code generation technique
[18] that constructs an abstract syntax tree by progressively applying actions from a
grammar model. They designed a probabilistic grammar model for AST generation. The
Python abstract grammar has a set of production rules, and an AST was created by com-
bining numerous production rules, each of which consists of a head node and multiple
child nodes.

In 2018, Yin and Neubig proposed TRANX [20] which parses the utterance into a for-
mal meaning representation. TRANX was built through a transition system, and it uses
this transition system to convert a natural language utterance into an abstract syntax
tree (AST) through a series of tree construction actions given an input natural language
utterance. The parser is then used to turn the intermediate AST into a domain-specific
meaning representation, bringing the parsing process to a close. TRANX scores each
hypothesis AST using a probabilistic model specified by a neural network. But the neu-
ral semantic parser, TRANX indicated an obvious issue of incoherence in generation and
got results with the CoNaLa dataset as 24.30 for the BLEU score metric. Also, TRANX
got accuracy of 73.7% for the DJANGO dataset.

In 2019, Yin and Neubig proposed the Reranking model [21]. They used the previ-
ous TRANX semantic parser to get the meaning representation of the input natural
language as an abstract syntax tree. They added a reranking method to output the
most suitable meaning representation. The reranking model is presented as a fast-
iterating method to enhance the accuracy of parsing and rerank the n-best list of the
representation of meaning. This can be done by using characteristics designed to

Page 6 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104

address problems in baseline models. This model is used and get results with four
datasets GEO, ATIS, DJANGO, and CoNaLa. The result obtained is 30.11 of BLEU
score with the developing and testing with the CoNaLa dataset. Also, the results on
the DJANGO dataset were recorded with 80.2% accuracy.

In 2019, Shin et al. introduced PATOIS [22] which is a program synthesizer and also
a neural program synthesizer that trains a tree-based neural synthesizer to use the
code idioms while coding generation. The PATOIS system was built on top of struc-
tural generative models like graph neural networks and sequence-to-tree models.

In 2020, Xu et al. proposed a deep learning model by data re-sampling, fine-tuning
the pre-trained model, and using incorporating external knowledge [24] to predict
executable python code. To include external knowledge in code generation models,
they suggested a model-agnostic strategy based on data augmentation, retrieval, and
data re-sampling, which obtained new results on the CoNaLa open-domain code gen-
eration task. They used the CoNaLa-Mined [14] dataset, which was automatically
mined from StackOverflow and contained 600,000 NL-code pairs in Python. They
sorted all pairings by confidence scores and discovered that the top 100K examples
have a good level of code accuracy and NL-code correlation. As a result, the top 100K
couples are chosen for the tests. They generated roughly 13K different NL-code pair-
ings (without resampling) from Python API documentation after pre-processing.
They also sampled the same number of pairings for the re-sampling setting to provide
a fair comparison. They used the NL-to-code generation model TRANX [20] as the
basic model, with hypothesis reranking [21]. They also used length normalization [32]
to make sure that beam search didn’t favor shorter results over longer ones. They got
30.69 BLEU score with external knowledge with the API model, and when they added
reranking to external knowledge with API they got 32.26 BLEU score metric.

In 2021, Dahal et al. proposed a paper [25] which describes the analysis of Tree-
structured architecture and their effect on the code generation problem. They ran
and tested text-to-tree, structured tree-to-tree, and linearized tree-to-tree models
on constituency-based parse trees where their goal was generating the corresponding
ASTs of the code. They used CoNaLa and ATIS datasets. Constituency or depend-
ency trees are describing the syntactic structure of the input, and these trees can be
used to accomplish subtree alignment with the destination code matching the AST
and benefiting the downstream job. Their tree-to-tree model achieved good results.

In 2021, Orlanski and Gittens worked on expanding the original CoNaLa dataset
to include the multimodal textual question bodies and thus the pertinent contextual
information they contain such as inputs, outputs, and required libraries [27]. They
developed a new transformer model trained in the BART [33] encoder-decoder
model. For both the annotated and mined cases in the CoNaLa corpus, they obtained
these textual bodies from Stackoverflow. Then, they used the question bodies and
concatenated intents as inputs for a huge pre-trained language model and then used
beam search to construct the answer code snippet. They used Python and Hugging-
Face’s transformer package to build their model. Finally, for text generation, they
employed a BART model with a linear layer and a distinct bias. They got a 26.24
BLEU score when using the BART base model and when they used the BART model
with mined data, they got a 30.55 BLEU score.

Page 7 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104 	

In 2021, Norouzi et al. showed that transformer-based seq2seq models can compete
with or outperform models created expressly for code generation [26]. They created a
seq2seq transformer model, and they built this model by fine-tuning the pre-trained
transformer BERT model as an encoder the decoder was the original transformer
decoder with 4-layers transformer decoder. The key is to create a new model and com-
bine the relatively large monolingual corpora of the meaning representation with tradi-
tional large-scale pre-trained encoders. They got the highest BLEU score with CoNaLa
dataset that reached 33.41. Also, the accuracy scored on the DJANGO dataset was
81.03%. A Seq2Seq model transformer with a little specialized prior could potentially
achieve results superior to or competitive with models specially developed for code gen-
eration and semantic parsing by leveraging a sufficiently large monolingual corpus of the
programming language.

In 2022, Beau and Crabbé developed a new code generation model which has the
encoder-decoder architecture [28]. They used BERT as an encoder and decoder as a
grammar-based. This is some change in TranX [20] seq2seq architecture for generating
code from the natural language description. Their proposed architecture can obtain an
abstract syntax tree (AST) is constrained by the programming language grammar. They
trained and tested their model on the CoNaLa and DJANGO datasets. This transition
system is open to guarantee the generation of syntactically correct code. Their research
emphasizes the significance of grammatical limitations as well as particular techniques
for managing variables, list naming, and typing. They scored a 34.2 BLEU score on the
CoNaLa dataset, and an accuracy of 81.03% on the DJANGO benchmark.

Marian and inspiration for code generation
Marian NMT and MarianMT

Marian is the core engine for the Microsoft Translator Neural Machine Translation ser-
vices. Marian is a self-contained, free open source, and efficient neural machine transla-
tion framework which is a built-in automated differentiation engine based on dynamic
computation graphs. This framework was entirely developed in C++, and it demon-
strated a research-friendly toolkit with high training and translation speeds. Training
Marian was performed on raw texts, with data processing employing the Sentence-
Piece. It is being employed in several projects and is the primary translation and training
engine as well as it is used by a wide range of enterprises, organizations, and research
groups.

Marian holds its own position in the developing ecosystem of open-source NMT tool-
kits, and it has powerful translation features, best defined by these features:

1	 It is self-contained, having its own back end that does reverse-mode automated dif-
ferentiation using dynamic graphs.

2	 It supports working on single GPU/CPU and multi GPUs/CPUs. It provides GPU/
CPU translation style as well as quick multi-GPU training. Also, this model contains
the feature of batch translation.

3	 Marian has the feature of creating word alignments and attention output with the
ability to rescore the n-best lists and parallel files.

Page 8 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104

Marian was used by the University of Helsinki’s Natural Language Processing lab to train
hundreds of translation models using parallel data acquired from Opus, and those mod-
els were later open-sourced and called MarianMT. Researchers in this lab subsequently
adapted the trained model into Huggingface Transformers and made them accessible
through the Huggingface Hub. Each MarianMT model is a transformer encoder-decoder
with six layers. MarianCG was inspired by Marian machine translation, which served as
the base for our code generation challenge.

Inspired by Marian transformer models for machine translation

Marian was chosen as the backbone for our code generation approach for many rea-
sons. To begin, we can talk about the importance of pre-training transformer models
and the added value of this methodology in solving many problems. Pre-training trans-
former models are extensively employed nowadays for a variety of tasks [34], and it has
been applied in code generation in recent years with great impacts. Pre-training is also
beneficial for machine translation and code generation activities. For example, the Face-
book BART model is a machine translation transformer model, and it was employed
and fine-tuned for the code generation problem using CoNaLa, yielding a BLEU score of
26.24. Also, the pre-trained BERT model was merged with the Transformer decoder and
scored 32.57 BLEU for the code generation challenge. This motivated our new effort to
use the pre-trained model and fine-tune this model to get a significant improvement for
the code generation challenge. In addition, it is a simple technique to fine-tune the pre-
trained model and start training the model from its final weight rather than the original
weights. Furthermore, we found that there are many machine translation models with
huge architecture, such as T5. To be considered these huge models to deploy, powerful
resources are needed with a strong GPU and plenty of memory with high processing
capability.

Marian was chosen since it is a quick neural machine translation service with accurate
machine translation outputs for several languages. MarianMT’s creators, Helsinki-NLP,
have over 1000 pre-trained language models for MarianMT translation models. We have
a vision of using a pre-trained model from one language to work in another area. This
includes setting up and building AraT5 from T5 to work in another language or domain.
Marian models are smaller than many other translation models in the machine transla-
tion model collection, making them perfect for fine-tuning experimentation and integra-
tion testing. Marian NMT, the core of Microsoft translator, serves as the primary fully
basic model for our training to execute the MarianCG model. As a result of these obser-
vations and insights, we developed MarianCG, a code generation model influenced by
the Machine Translation Transformer approach.

Proposed code generation model
MarianCG model is built and developed using Marian neural machine translation (Mar-
ianNMT). We fine-tuned MarianMT transformer which is a pre-trained model from
Helsinki-NLP and got our model, MarianCG. It is a multi-head attention transformer
with zero-shot learning which observes samples that were not shown during training
and predicts the sentences that are the right outputs. MarianCG model got high and
accurate results for the code generation problem with fast performance.

Page 9 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104 	

MarianCG model architecture

MarianCG is trained and fine-tuned on MarianMT model that was built using Marian-
NMT. MarianNMT allows rapid training and translation. The architecture of the code
generation model, MarianCG is shown in Fig. 2. It starts by loading the dataset, then the
preprocessing phase of the input and the output as shown in Fig. 3. Preprocessing con-
tains tokenization of the sentence, then get embeddings of each token and do positional
embedding for each token to learn each position of all tokens concerning to the specific

Fig. 2  MarianCG model architecture

Fig. 3  Preprocessing phase for the data

Page 10 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104

token. In addition, padding and truncation are part of the preprocessing phase. Finally,
the input and the output sentences are directly inserted into the encoder-decoder model.
MarianCG model consists of a stack of 6 layers in the encoder and a stack of 6 layers in
the decoder.

MarianCG model is similar to BartForConditionalGeneration with a few minor
modifications:

•	 Static (sinusoidal) positional embeddings.
•	 No layer normalization embedding.
•	 The first token in the generation task is the pad token which has 0 as a token embed-

ding.

After the attention softmax, the encoder’s attention weights are used to compute the
weighted average in the self-attention heads. MarianCG is a PyTorch model with coding
and implementation of the Marian neural machine translation transformer.

Figure 4 shows the two representations of the same example of code generation. The
first representation in Fig. 4a is how to find a good solution for code generation using
the representation of manual abstract syntax tree (AST). The second representation in
Fig. 4b shows the same example with MarianCG encoder decoder transformer model
that successfully gets highly accurate results compared to AST.

MarianCG tokenization

Marian tokenizer is developed and mainly depends on SentencePiece [35]. Sentence-
Piece is a text generation neural network with a text tokenizer and detokenizer which
has the predetermined prior vocabulary size to the training of the neural model. Sen-
tencePiece extends direct training from raw sentences to implement subword units like
unigram language model [36] and byte-pair-encoding (BPE) [37]. Marian tokenizer
is derived from PreTrainedTokenizer in the huggingface transformer library, which
includes the majority of the essential methods.

MarianCG embedding and sinusoidal positional embedding

MarianCG model does not contain convolution or recurrent neural networks, so the
role of the embedding and positional embedding now is important and clear. So, by
determining data about the relative or absolute location of the tokens in the sequence to
have the order of the sequence. The positional and word embeddings are shared between
the encoder and decoder. MarianCG model contains sinusoidal positional embeddings
to the input embeddings at the encoder and decoder. The job of positional embedding is
to provide information about the location of each token. This enables the attention layer
to compute context-dependent responses, such that two tokens with the same value in
the input phrase receive distinct representations.

Transformers employ sinusoidal positional encoding to represent the position of the
input. Sinusoidal positional embedding calculates the position encoding as a mix of sine
and cosine functions with geometrically increasing wavelengths. The sinusoidal repre-
sentation works as well as a learned representation and better generalizes sequences that
are longer than the training sequences.

Page 11 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104 	

Positional encoding is defined and formulized in paper [38] where the sum of posi-
tional encoding and token embedding is given to the encoder and decoder input lay-
ers of the transformer.

Let dmodel be the embedding dimension of words, and pos ∈ [0, L− 1] be the posi-
tion of a w word in the w = (w0, . . . ,wL−1) input sequence. Mathematically, the posi-
tional encoding of w is defined in Eq. 1.

Fig. 4  Example of code generation

Page 12 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104

where the positional encoding follows a specific, learned pattern to identify word posi-
tion or the distance between words in the sequence [39].

MarianCG has no layer normalization embedding. So, positional embedding gets the
order of position identifier added to vectors for the transformer to know the order of the
sequence.

Marian encoder and decoder architecture

After tokenization and embedding with positional embedding, the next step is to input
these embeddings to Marian Encoder and Marian Decoder. Marian Encoder as shown in
Fig. 5 is the multi-head self-attention encoder layers connected with layer normalization
and after that there are two fully connected layers and final layer normalization.

As the encoder architecture is constructed, we can show and make the decoder in
a clear construction. The first steps are tokenization and embedding with positional
embedding, and the next step is to input these embeddings to Marian encoder and Mar-
ian decoder. Marian decoder as shown in Fig. 6 has the same architecture as the encoder
but with adding the encoder attention followed by encoder attention layer normaliza-
tion. These layers can be added before the two fully connected layers.

The attention component in this Transformer model performs its computations
numerous times in parallel. Each of these is referred to as an Attention Head. The Atten-
tion module divides its Query, Key, and Value arguments N times and routes each split
through a separate Head. The results of all these comparable Attention calculations are
then added together to produce a final Attention score. This is known as multi-head
attention, and it allows the Transformer to encode many associations and nuances for
each word [38].

The following are the main features of the MarianCG construction:

(1)PE(pos, i) =
sin

pos

100002i/dmodel
, i = 2k

cos
pos

100002i/dmodel
, i = 2k + 1

Fig. 5  Marian encoder architecture

Page 13 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104 	

1	 Marian tokenizer depends on SentencePiece
2	 MarianCG contains sinusoidal positional embedding to represent the position of

each token
3	 No layer normalization embedding for this approach

Datasets
In our research, we used two widely available and well-known data sets, CoNaLa and
Django. These datasets were created with the intention of generating code from the cor-
responding natural language descriptions.

CoNaLa dataset

One of the most common datasets in the code generation task is called CoNaLa [14],
and it is created by Carnegie Mellon University NeuLab and STRUDEL Lab. It is called
CoNaLa for the name Code/Natural Language Challenge. It has the input as natural lan-
guage description, with the output as the corresponding python code for this specific
input. Table 1 shows some examples of CoNaLa NL-code pairs where the input is the
intent which describes the natural language, and the output is the snippet which is the
corresponding code for the natural language description.

This dataset has 2,879 annotated NL-code pairings with about 600K mined pairs from
over 40,000 distinct stackoverflow questions in the dataset.

Fig. 6  Marian decoder architecture

Page 14 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104

DJANGO dataset

The DJANGO dataset [15] is one of the most commonly used datasets in the code gener-
ation task. It has about 19K examples. Each data example is made up of a line of Python
code and an annotated natural language description. These examples are divided into
16000 training, 1000 development, and 1805 test annotations in the Django dataset.

Table 2 provides various DJANGO NL-code pair instances. The input is the natural
language text, and the output is the corresponding code for this input.

Implementation and experimental work
Evaluation metrics

BLEU score evaluation metric

The BLEU [16] (bilingual evaluation understudy) method evaluates the quality of
machine-translated text from one natural language to another. The BLEU statistic counts
how many words overlap in a given translation when compared to a reference transla-
tion, with successive words scoring better. The connection between a machine’s output
and that of a person is believed to be quality: “the closer a machine translation is to a
professional human translation, the better it is.” This is the core notion underlying BLEU.

The BLEU indicator assigns a translation score from 0 to 1; however, it is commonly
reported as a percentage number as shown in Table 3. The closer the translation is near
1, the more it resembles a human translation.

Exact match accuracy

This measure is quite simple to compute. This metric is used to compare the similarities
and differences between two texts. Equation 2 shows how to calculate and measure this
metric for the two sentences y(i) and ŷ(i) . The first sentence y(i) is the reference sentence,
which contains 100% of the genuine needed sentence. The second sentence ŷ(i) , is the
predicted sentence created by the model. Exact match accuracy = 1 if the characters
of the model’s prediction completely match all the characters of the genuine reference

Table 1  Intent and snippet examples from CoNaLa dataset

Examples Intent (natural language) Snippet (code)

Example 1 Convert a list to a dictionary in python b = dict(zip(a[0::2], a[1::2]))

Example 2 Sort a list of nested lists l.sort(key=sumnested)

Example 3 How to get the size of a string in python? print(len(’string’))

Table 2  Code generation examples in the DJANGO dataset

Examples Natural language Code

Example 1 Define the function do_filter with 2 arguments: parser and
token

def do_filter (parser , token) :

Example 2 Convert priority into a floating point integer, substitute it for
priority

priority = float (priority)

Example 3 Define the method as_bytes with arguments self and unix-
from set to boolean False

def as_bytes (self , unixfrom = False):

Page 15 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104 	

response; else, exact match accuracy is determined using comparable characters and is
in the range between 0 and 1. Exact match accuracy is zero if all characters in the mod-
el’s prediction do not match all characters in the genuine reference text.

where n is the number of examples, y(i) is the true labels for the ith examples in the refer-
ence text, and ŷ(i) is the predicted labels for the ith examples.

Implementation

We obtained MarianCG, a novel transformer model based on the pre-trained trans-
former, by fine-tuning the MarianMT transformer model using the CoNaLa and
DJANGO datasets.

For the CoNaLa dataset, we followed [24, 27] and chose the top mined samples based
on the likelihood that the NL-Code combination is accurate. The produced CoNaLa
dataset had around 13K distinct NL-Code. This is to ensure a fair comparison that if we
want to participate in the CoNaLa challenge, so training the model is done by using the
conala-train and/or conala-mined datasets, then taking the rewritten intent field from
the conala-test dataset as input and generate output from it.

The dataset as mentioned contains about 13K different NL-Code. This dataset con-
tains the conala-train and examples from conala-mined and the 500 examples in conala-
test to compare by the same benchmarks as other state-of-the-art contributors. Also,
we implement MarianCG to adapt DJANGO dataset which has about 19K pairs of
NL-Code.

We noticed high and accurate results on the DJANGO training and testing. So, we
decided to do another training process on the CoNaLa dataset with more data and a lit-
tle batch size. Table 4 displays the datasets employed in each experiment, as well as the
dataset size and the number of records in the training, validation, and test sets of data.

Experimental setup

The proposed model was implemented and trained with the dataset using Google Colab
Pro service. This allowed us to use 512 input tokens with a batch size of 8. We used
Python programming and PyTorch framework to build our model with the HuggingFace
transformer module.

(2)ExactMatchAccuracy =
1

n

n
∑

i=1

[

I
(

y(i) == ŷ(i)
)]

Table 3  BLEU score

BLEU score Interpretation

Less than 10 Almost useless

10–19 Hard to get the gist

20–29 The gist is clear, but has significant grammatical errors

30–40 Understandable to good translations

40–50 High quality translations

50–60 Very high quality, adequate, and fluent translations

Greater than 60 Quality often better than human

Page 16 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104

For training, we depend on the HuggingFace trainer and their implementation of the
learning rate scheduler. As well as MarianCG model accepts natural language input and
generates Python code in the output. Table 5 lists the configuration parameters that were
employed throughout the training phase. For text generation, we adopted the MarianCG
model with a linear layer and a distinct bias. Also, beam search and early stopping were
employed in the generation phase.

Results
Experiment 1

We began our work by fine-tuning and generating MarianCG transformer model using
the CoNaLa dataset. This experiment yields a dataset of around 13K pairings of natural
language and code.

Table 6 shows the results of the first experiment, where MarianCG model predictions
propelled this model to be one of the top accurate code generation models in terms of
accuracy and BLEU score.

Our model got the highest exact match accuracy through all models. This experiment
obtained a BLEU score of 30.92, and achieved 6.2 % in the exact match accuracy with
the advantage of multi-head attention, and ease to use through the huggingface hub
at https://​huggi​ngface.​co/​Ahmed​SSoli​man/​Maria​nCG-​CoNaLa.

Experiment 2

In our second attempt, we trained the MarianCG model using another dataset from the
code generation challenge, which has more examples. DJANGO is the name of this data-
set, which contains 19K natural language and code pairing entries. This dataset is one of

Table 4  Datasets in each experiment and distribution of the data

Experiment Dataset Dataset size Dataset split

Train Validation Test

Experiment 1 CoNaLa 13K 11125 1237 500

Experiment 2 DJANGO 19K 16000 1000 1805

Experiment 3 CoNaLa 26K 24687 1237 500

Table 5  Configuration parameters on the training MarianCG model

Parameter Value

optimizer Adam optimizer

Learning rate 5e
−5

Weight decay 0.01

Maximum position embeddings 512

Number of hidden layers 6

scale embedding TRUE

Activation function swish

Learning rate scheduler Linear

Warmup ratio 0.05

Length penalty 0.9

https://huggingface.co/AhmedSSoliman/MarianCG-CoNaLa

Page 17 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104 	

the most commonly used for this job, and our implementation and training MarianCG
model produced highly accurate predictions.

Table 7 displays the results of the code generation models on the DJANGO dataset.
MarianCG is regarded to be the greatest model in the DJANGO challenge. MarianCG
has a BLEU score of 90.41 and records an exact match accuracy of 81.83%. A compar-
ison of all values is shown in Fig. 7. Our DJANGO-trained model is available via the
huggingface hub, which can be found at https://​huggi​ngface.​co/​Ahmed​SSoli​man/​Maria​
nCG-​DJANGO.

Experiment 3

We discovered that obtaining additional data resulted in more accurate results. So, for
our third experiment, we trained the MarianCG model with an increased amount of
training samples. In this experiment, we used the CoNaLa dataset again, but this time
with 26K records. This reached our expectations and placed MarianCG model at the top
of the CoNaLa challenge. The new testing data results are more dissimilar to our initial
trial. This experiment yielded a 34.43 BLEU score and a 10.2% exact match accuracy.
Comparing our model to the CoNaLa benchmark models after this experiment revealed
that the MarianCG model has the most accurate predictions when compared to other
state-of-the-art models. This is displayed in Table 8 which compares the results of this
experiment to other models in the CoNaLa code generation challenge, showing the
BLEU Score and exact match accuracy of each model.

Table 6  Results of the first experiment on CoNaLa

Model BLEU score Exact match
accuracy

Year

TranX + BERT w/ mined [28] 34.2 5.8 2022

BERT + TAE [26] 33.41 - 2021

External Knowledge With API + Reranking [24] 32.26 - 2020

MarianCG (Ours) 30.92 6.2 2022

External Knowledge With API [24] 30.69 - 2020

BART W/ Mined [27] 30.55 - 2021

Reranker [21] 30.11 2.8 2019

BART Base [27] 26.24 - 2021

TranX [20] 24.3 - 2018

Table 7  Results of MarianCG model on DJANGO dataset

Rank Model BLEU score Exact match
accuracy

Year

1 MarianCG (Ours) 90.41 81.83 2022

2 TranX + BERT w/ mined [28] 79.86 81.03 2022

3 BERT + TAE [26] - 81.77 2021

4 Reranker [21] - 80.2 2019

5 TranX [20] - 73.7 2018

6 ipn [40] 77.6 62.3 2016

7 Phrasal Statistical MT [40] 47.6 31.5 2016

https://huggingface.co/AhmedSSoliman/MarianCG-DJANGO
https://huggingface.co/AhmedSSoliman/MarianCG-DJANGO

Page 18 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104

Also, Fig. 8 depicts all the CoNaLa dataset results. In addition, MarianCG model is
available through the huggingface hub at https://​huggi​ngface.​co/​Ahmed​SSoli​man/​Maria​
nCG-​CoNaLa-​Large.

Discussion
MarianCG model is ranked as the first model for its accurate predictions in terms of
BLEU score and exact match accuracy. This model has a fewer size architecture. It has
six layers in the encoder and six in the decoder, whereas other models have larger model
sizes. Table 9 shows the deep learning models employed in the code generation chal-
lenge and the number of layers obtained in each encoder and decoder. TranX + BERT
trained their model on 100K CoNaLa samples. On the CoNaLa dataset, we trained our
model on 13K and 26K records, respectively; hence, the trained data was little compared
to others.

This demonstrates that we trained our model with less data than previous SOTA mod-
els, and our model is also smaller. As a result of the deep learning architectures and the
quantity of the dataset, our model is both fast and accurate.

Fig. 7  Results on DJANGO

Table 8  Results of MarianCG model on the CoNaLa dataset

Rank Model BLEU score Exact match
accuracy

Year

1 MarianCG (Ours) 34.43 10.2 2022

2 TranX + BERT w/ mined [28] 34.2 5.8 2022

3 BERT + TAE [26] 33.41 - 2021

4 External Knowledge With API + Reranking [24] 32.26 - 2020

5 External Knowledge With API [24] 30.69 - 2020

6 BART W/ Mined [27] 30.55 - 2021

7 Reranker [21] 30.11 2.8 2019

8 BART Base [27] 26.24 - 2021

9 TranX [20] 24.3 - 2018

https://huggingface.co/AhmedSSoliman/MarianCG-CoNaLa-Large
https://huggingface.co/AhmedSSoliman/MarianCG-CoNaLa-Large

Page 19 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104 	

Conclusions
For the code generation challenge, we proposed MarianCG, a Transformer language
model to predict and generate code from the natural language description. We car-
ried out three experiments in which we developed the MarianCG model on numerous
examples in the CoNaLa and DJANGO datasets. This research demonstrated that we are
able to employ a machine translation model as a solution model for the code generation
problem. Transfer learning enabled us to obtain a precise model for the code generation
challenge, where implementation is dependent on fine-tuning a pre-trained language
model.

MarianCG was fine-tuned using MarianMT, a machine translation language model
that was created with a dependency on the Microsoft Marian toolkit. Our model has the
benefit of zero-shot learning, as well as a sinusoidal positional embedding architecture,
multi-head attention, and Marian tokenizer depending on SentencePiece. MarianCG
received a BLEU score of 30.92 and an exact match accuracy of 6.2% in our first attempt
with the CoNaLa dataset. The second experiment was performed on the DJANGO data-
set and yielded a BLEU score of 90.41 with an exact match accuracy of 81.83%.

Finally, the third effort used the CoNaLa dataset, but with double the number of exam-
ples compared to the first attempt. The final experiment yields excellent predictions,
and the MarianCG model rises to the top of the demanding models. MarianCG model
achieved a 34.43 BLEU score with a 10.2% exact match accuracy. This model has the
advantage of its small size, and it is fast and accurate.

Our long-term goal is to develop a code generation model so that it can predict opti-
mized code with high accuracy and consider code theory topics like SOLID principles
and OOP concepts. In addition, we will continue in demonstrating that employing
machine translation language models may work well in the code generation task. Fur-
thermore, we will strive toward writing numerous lines of code and demonstrate to
show how to generate source code for a certain programming language from another
computer programming language. This is known as a code translation task because the

Fig. 8  Results on CoNaLa

Page 20 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104

Ta
bl

e 
9 

Co
m

pa
rin

g
th

e
de

ep
 le

ar
ni

ng
 m

od
el

s
co

nt
rib

ut
ed

 to
 th

e
co

de
 g

en
er

at
io

n
ta

sk

M
od

el
En

co
de

r
D

ec
od

er
Co

N
aL

a
da

ta
se

t
D

JA
N

G
O

 d
at

as
et

N
am

e
En

co
de

r s
iz

e
N

am
e

D
ec

od
er

 s
iz

e
D

at
as

et
 s

iz
e

BL
EU

 s
co

re
Ex

ac
t

m
at

ch

sc
or

e

D
at

as
et

 s
iz

e
BL

EU
 s

co
re

Ex
ac

t
m

at
ch

sc

or
e

M
ar

ia
nC

G
 (O

ur
s)

M
ar

ia
nE

nc
od

er
6

la
ye

rs
M

ar
ia

nD
ec

od
er

6
la

ye
rs

26
K

34
.4

3
10

.2
19

K
90

.4
1

81
.8

3

Tr
an

X
+

 B
ER

T
w

/
m

in
ed

 [2
8]

be
rt

-b
as

e-
un

ca
se

d
12

 la
ye

rs
G

ra
m

m
ar

 b
as

ed
-

10
0K

34
.2

5.
8

19
K

79
.8

6
81

.0
3

BE
RT

 +
 TA

E
[2

6]
be

rt
-b

as
e-

un
ca

se
d

12
 la

ye
rs

Tr
an

sf
or

m
er

 D
ec

od
er

4
la

ye
rs

10
0K

33
.4

1
-

19
K

-
81

.7
7

M
ar

ia
nC

G
 (O

ur
s)

M
ar

ia
nE

nc
od

er
6

la
ye

rs
M

ar
ia

nD
ec

od
er

6
la

ye
rs

13
K

30
.9

6.
2

BA
RT

 W
/

M
in

ed
 [2

7]
fa

ce
bo

ok
/b

ar
t-

ba
se

6
la

ye
rs

fa
ce

bo
ok

/b
ar

t-
ba

se
6

la
ye

rs
13

K
+

 Q
ue

st
io

n
bo

di
es

30
.5

5
-

BA
RT

 B
as

e
[2

7]
fa

ce
bo

ok
/b

ar
t-

ba
se

6
la

ye
rs

fa
ce

bo
ok

/b
ar

t-
ba

se
6

la
ye

rs
13

K
26

.2
4

-

Page 21 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104 	

input is a programming language such as java and the output is another programming
language such as python.

Abbreviations
MarianNMT	�Marian neural machine translation
MarianMT	� Marian machine translation
MarianCG	� Marian code generation
API	� Application Programming Interface
BLEU	� Bilingual evaluation understudy
OPUS	� Open Parallel Corpus
NL	� Natural language
CoNaLa	� Code/natural language dataset
AST	� Abstract syntax tree
BPE	� Byte-pair-encoding

Acknowledgements
Many thanks to my family: my wife, father, mother, and brothers for their support. I would like to express my gratitude to
my supervisors in this work Prof. Samir Shaheen and Dr. Mayada Hadhoud, and many thanks to Prof. Mohamed Zaki, who
guided me a lot throughout my Masters work. I would also like to thank my friends who supported me and offered deep
insight into the study.

Authors’ contributions
We are aiming to address the code generation problem and create a transformer model that can provide very accurate
results. We presented the MarianCG transformer model, which is a code generation model capable of generating code
from natural language. This paper discusses the significance of adopting the Marian machine translation model to solve
the problem of code generation. In our implementation, we demonstrated that a machine translation model may be
used as a code generation model.
 We become new contributors and state-of-the-art in tackling this challenge using the CoNaLa and DJANGO datasets
based on the model’s greatest output predictions, achieving a BLEU score of 34.43 and an exact match accuracy of
10.2% with CoNaLa. In addition, DJANGO has a BLEU score of 90.41 and an exact match accuracy of 81.83%. The struc-
ture of MarianCG model includes sinusoidal positional embedding but no layer normalization embedding; the tokenizer
depends on SentencePiece.
The authors read and approved the final manuscript.

Funding
No specific funding has to be declared for this work.

Availability of data and materials
All the data used and/or analyzed during the current study are available from the corresponding author upon reason-
able request.
• Datasets
 We used CoNaLa and DJANGO datasets in our experiments.
1 CoNaLa
 The CoNaLa dataset is the code generation corpus from Carnegie Mellon University NeuLab and STRUDEL Lab. It is avail-
able at: https://​conala-​corpus.​github.​io/.
 CoNaLa dataset contains an automatically mined dataset with 600K examples, and each example contains a pair of
intent and the corresponding snippet. Additionally, each example obtains more information about the number of ques-
tions, how accurate this answer is, and other information. For the test dataset, the creators of this dataset put a bench-
mark to test on another 500 records for your experiment. We followed other researchers in their work to extract the most
accurate examples from the 600K records, with only intent and snippet to work on the code generation problem. This is
very helpful to do the number of experiments, and get the results for each experiment. Also, this can be a good thing to
let anyone work on this task where he/she doesn’t have a powerful GPU.
 We have two subsets from the CoNaLa mined dataset:
 The first dataset contains 13K records of intent and snippet pairs. It is available at: https://​huggi​ngface.​co/​datas​ets/​
Ahmed​SSoli​man/​CoNaLa.
 2 CoNaLa-Large
 This version of CoNaLa has 26K records of intent and snippet pairs. It is available at: https://​huggi​ngface.​co/​datas​ets/​
Ahmed​SSoli​man/​CoNaLa-​Large.
 3 DJANGO dataset
 It has 19K examples for the code generation task. It is one of the most common datasets in this task, and it is available at:
https://​github.​com/​odashi/​ase15-​django-​datas​et.
 Also, we uploaded DJANGO dataset on the huggingface hub to be available at: https://​huggi​ngface.​co/​datas​ets/​Ahmed​
SSoli​man/​DJANGO.
• Implementation
 Implementation and everything about how implementation was done, datasets, evaluation metrics, notebooks of Mari-
anCG model on the CoNaLa and DJANGO datasets are available in this GitHub repository at: https://​github.​com/​Ahmed​
SSoli​man/​Maria​nCG-​NL-​to-​Code.
• MarianCG model
 MarianCG models are available now at the huggingface hub, and can be used or tested and integrated with any project.
You can find this model and easily deal with various datasets through the following links:

https://conala-corpus.github.io/
https://huggingface.co/datasets/AhmedSSoliman/CoNaLa
https://huggingface.co/datasets/AhmedSSoliman/CoNaLa
https://huggingface.co/datasets/AhmedSSoliman/CoNaLa-Large
https://huggingface.co/datasets/AhmedSSoliman/CoNaLa-Large
https://github.com/odashi/ase15-django-dataset
https://huggingface.co/datasets/AhmedSSoliman/DJANGO
https://huggingface.co/datasets/AhmedSSoliman/DJANGO
https://github.com/AhmedSSoliman/MarianCG-NL-to-Code
https://github.com/AhmedSSoliman/MarianCG-NL-to-Code

Page 22 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104

 1 MarianCG-CoNaLa https://​huggi​ngface.​co/​Ahmed​SSoli​man/​Maria​nCG-​CoNaLa
 2 MarianCG-DJANGO https://​huggi​ngface.​co/​Ahmed​SSoli​man/​Maria​nCG-​DJANGO
 3 MarianCG-CoNaLa-Large https://​huggi​ngface.​co/​Ahmed​SSoli​man/​Maria​nCG-​CoNaLa-​Large

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 10 January 2022 Accepted: 31 October 2022

References
	1.	 Le TH, Chen H, Babar MA (2020) Deep learning for source code modeling and generation: models, applications, and

challenges. ACM Comput Surv (CSUR) 53(3):1–38
	2.	 Han X, Zhang Z, Ding N, Gu Y, Liu X, Huo Y, Qiu J, Yao Y, Zhang A, Zhang L, Han W, Huang M, Jin Q, Lan Y, Liu Y, Liu Z,

Lu Z, Qiu X, Song R, Tang J, Wen JR, Yuan J, Zhao WX, Zhu J (2021) Pre-trained models: past, present and future. AI
Open 2:225–250. https://​doi.​org/​10.​1016/j.​aiopen.​2021.​08.​002

	3.	 Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L (2018) Deep contextualized word
representations. Proceedings of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational
Linguistics, New Orleans, pp 2227–2237. https://​doi.​org/​10.​18653/​v1/​N18-​1202

	4.	 Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:​1810.​04805

	5.	 Gu Y, Han X, Liu Z, Huang M (2022) PPT: Pre-trained prompt tuning for few-shot learning. In: Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics, vol 1: Long Papers. Association for Computational
Linguistics, Dublin, p 8410–8423. https://​doi.​org/​10.​18653/​v1/​2022.​acl-​long.​576

	6.	 Ding N, Qin Y, Yang G, Wei F, Yang Z, Su Y, Hu S, Chen Y, Chan CM, Chen W, Yi J, Zhao W, Wang X, Liu Z, Zheng H,
Chen J, Liu Y, Tang J, Li J, Sun M (2022) Delta tuning: a comprehensive study of parameter efficient methods for pre-
trained language models. ArXiv arxiv:​2203.​06904

	7.	 Qin Y, Zhang J, Lin Y, Liu Z, Li P, Sun M, Zhou J (2022) ELLE: Efficient lifelong pre-training for emerging data. In: Find-
ings of the Association for Computational Linguistics: ACL 2022. Association for Computational Linguistics, Dublin, p
2789–2810. https://​doi.​org/​10.​18653/​v1/​2022.​findi​ngs-​acl.​220

	8.	 Phuong M, Hutter M (2022) Formal algorithms for transformers. ArXiv arxiv:​2207.​09238
	9.	 Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, et al (2020)

Language models are few-shot learners. arXiv preprint arXiv:​2005.​14165
	10.	 Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I et al (2019) Language models are unsupervised multitask

learners. OpenAI blog 1(8):9
	11.	 Shin R, Lin CH, Thomson S, Chen C, Roy S, Platanios EA, Pauls A, Klein D, Eisner J, Van Durme B (2021) Constrained

language models yield few-shot semantic parsers. arXiv preprint arXiv:​2104.​08768
	12.	 Marianmt model. https://​www.​huggi​ngface.​co/​docs/​trans​forme​rs/​model_​doc/​marian. Accessed Oct 2021
	13.	 Junczys-Dowmunt M, Grundkiewicz R, Dwojak T, Hoang H, Heafield K, Neckermann T, Seide F, Germann U, Aji AF,

Bogoychev N, et al (2018) Marian: fast neural machine translation in c++. arXiv preprint arXiv:​1804.​00344
	14.	 Yin P, Deng B, Chen E, Vasilescu B, Neubig G (2018) Learning to mine aligned code and natural language pairs from

stack overflow. In: 2018 ieee/acm 15th international conference on mining software repositories (msr). IEEE
	15.	 Oda Y, Fudaba H, Neubig G, Hata H, Sakti S, Toda T, Nakamura S (2015) Learning to generate pseudo-code from

source code using statistical machine translation. In: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). pp 574–584. https://​doi.​org/​10.​1109/​ASE.​2015.​36

	16.	 Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic evaluation of machine translation. In:
Proceedings of the 40th annual meeting of the Association for Computational Linguistics. Association for Computa-
tional Linguistics, Philadelphia, p 311–318. https://​doi.​org/​10.​3115/​10730​83.​10731​35

	17.	 Dong L, Lapata M (2016) Language to logical form with neural attention. arXiv preprint arXiv:​1601.​01280
	18.	 Yin P, Neubig G (2017) A syntactic neural model for general-purpose code generation. arXiv preprint arXiv:​1704.​

01696
	19.	 Rabinovich M, Stern M, Klein D (2017) Abstract syntax networks for code generation and semantic parsing. arXiv

preprint arXiv:​1704.​07535
	20.	 Yin P, Neubig G (2018) Tranx: A transition-based neural abstract syntax parser for semantic parsing and code genera-

tion. arXiv preprint arXiv:​1810.​02720
	21.	 Yin P, Neubig G (2019) Reranking for neural semantic parsing. In: Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics. Association for Computational Linguistics, Florence, p 4553–4559.
https://​doi.​org/​10.​18653/​v1/​P19-​1447

https://huggingface.co/AhmedSSoliman/MarianCG-CoNaLa
https://huggingface.co/AhmedSSoliman/MarianCG-DJANGO
https://huggingface.co/AhmedSSoliman/MarianCG-CoNaLa-Large
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.18653/v1/N18-1202
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2022.acl-long.576
http://arxiv.org/abs/2203.06904
https://doi.org/10.18653/v1/2022.findings-acl.220
http://arxiv.org/abs/2207.09238
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2104.08768
https://www.huggingface.co/docs/transformers/model_doc/marian
http://arxiv.org/abs/1804.00344
https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1601.01280
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.07535
http://arxiv.org/abs/1810.02720
https://doi.org/10.18653/v1/P19-1447

Page 23 of 23Soliman et al. Journal of Engineering and Applied Science (2022) 69:104 	

	22.	 Shin EC, Allamanis M, Brockschmidt M, Polozov A (2019) Program synthesis and semantic parsing with learned code
idioms. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems (NeurIPS
2019). Advances in Neural InformationProcessing Systems, Vancouver, p 10825–10835. https://​dl.​acm.​org/​doi/​10.​
5555/​34542​87.​34552​58

	23.	 Sun Z, Zhu Q, Xiong Y, Sun Y, Mou L, Zhang L (2020) Treegen: a tree-based transformer architecture for code genera-
tion. Proceedings of the AAAI Conference on Artificial Intelligence, vol 34 No. 05. AAAI-20 Technical Tracks 5, Palo
Alto, p 8984-8991. https://​doi.​org/​10.​1609/​aaai.​v34i05.​6430

	24.	 Xu FF, Jiang Z, Yin P, Vasilescu B, Neubig G (2020) Incorporating external knowledge through pre-training for natural
language to code generation. arXiv preprint arXiv:​2004.​09015

	25.	 Dahal S, Maharana A, Bansal M (2021) Analysis of tree-structured architectures for code generation. In: Findings of
the Association for Computational Linguistics: ACL-IJCNLP 2021. Association for Computational Linguistics, Bangkok,
p 4382–4391. https://​doi.​org/​10.​18653/​v1/​2021.​findi​ngs-​acl.​384

	26.	 Norouzi S, Tang K, Cao Y (2021) Code generation from natural language with less prior knowledge and more mono-
lingual data. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, vol 2: Short Papers. Association for Computa-
tional Linguistics, Bangkok, p 776–785. https://​doi.​org/​10.​18653/​v1/​2021.​acl-​short.​98

	27.	 Orlanski G, Gittens A (2021) Reading stackoverflow encourages cheating: adding question text improves extractive
code generation. arXiv preprint arXiv:​2106.​04447

	28.	 Beau N, Crabbé B (2022) The impact of lexical and grammatical processing on generating code from natural lan-
guage. arXiv preprint arXiv:​2202.​13972

	29.	 Wang Z, Cuenca G, Zhou S, Xu FF, Neubig G (2022) Mconala: a benchmark for code generation from multiple natural
languages. arXiv preprint arXiv:​2203.​08388

	30.	 Kusupati U, Ailavarapu VRT (2022) Natural language to code using transformers. ArXiv arxiv:​2202.​00367
	31.	 Al-Hossami E, Shaikh S (2022) A survey on artificial intelligence for source code: a dialogue systems perspective.

ArXiv arxiv:​2202.​04847
	32.	 Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase repre-

sentations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:​1406.​1078
	33.	 Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Stoyanov V, Zettlemoyer L (2019) Bart: denoising

sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:​1910.​13461

	34.	 Subramanyam Kalyan K, Rajasekharan A, Sangeetha S (2021) Ammus: a survey of transformer-based pretrained
models in natural language processing. arXiv e-prints arXiv​–2108

	35.	 Kudo T, Richardson J (2018) Sentencepiece: a simple and language independent subword tokenizer and deto-
kenizer for neural text processing. arXiv preprint arXiv:​1808.​06226

	36.	 Kudo T (2018) Subword regularization: improving neural network translation models with multiple subword candi-
dates. arXiv preprint arXiv:​1804.​10959

	37.	 Sennrich R, Haddow B, Birch A (2015) Neural machine translation of rare words with subword units. arXiv preprint
arXiv:​1508.​07909

	38.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you
need. In: Advances in neural information processing systems 30 (NIPS 2017), Annual Conference on Neural Informa-
tion Processing Systems 2017, Long Beach, CA, USA. Curran Associates, Inc., p 5998–6008. https://​papers.​nips.​cc/​
paper/​7181-​atten​tion-​is-​all-​you-​need

	39.	 Alammar J (2018) The illustrated transformer. http://​jalam​mar.​github.​io/​illus​trated-​trans​former/. Accessed May 2021
	40.	 Ling W, Blunsom P, Grefenstette E, Hermann KM, Kočiský T, Wang F, Senior A (2016) Latent predictor networks for

code generation. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics, Berlin, pp 599–609. https://​doi.​org/​10.​18653/​
v1/​P16-​1057

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://dl.acm.org/doi/10.5555/3454287.3455258
https://dl.acm.org/doi/10.5555/3454287.3455258
https://doi.org/10.1609/aaai.v34i05.6430
http://arxiv.org/abs/2004.09015
https://doi.org/10.18653/v1/2021.findings-acl.384
https://doi.org/10.18653/v1/2021.acl-short.98
http://arxiv.org/abs/2106.04447
http://arxiv.org/abs/2202.13972
http://arxiv.org/abs/2203.08388
http://arxiv.org/abs/2202.00367
http://arxiv.org/abs/2202.04847
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/arXiv–2108
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1804.10959
http://arxiv.org/abs/1508.07909
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need
http://jalammar.github.io/illustrated-transformer/
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057

	MarianCG: a code generation transformer model inspired by machine translation
	Abstract
	Introduction
	Related work
	Tree-based techniques
	Advantages and disadvantages of tree-based techniques

	Deep learning-based techniques
	Previous contributors’ work

	Marian and inspiration for code generation
	Marian NMT and MarianMT
	Inspired by Marian transformer models for machine translation

	Proposed code generation model
	MarianCG model architecture
	MarianCG tokenization
	MarianCG embedding and sinusoidal positional embedding
	Marian encoder and decoder architecture

	Datasets
	CoNaLa dataset
	DJANGO dataset

	Implementation and experimental work
	Evaluation metrics
	BLEU score evaluation metric
	Exact match accuracy

	Implementation
	Experimental setup

	Results
	Experiment 1
	Experiment 2
	Experiment 3

	Discussion
	Conclusions
	Acknowledgements
	References

