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Introduction
The jet impingement cooling process is a heat removal process that enables the removal 
of heat from a hot surface faster. Over the years, with the continual enhancement of steel 
material functions, the growing demand for cost cutting by reducing the use of alloying 
elements, and streamlining processes: the thermomechanical control process (TMCP), 
has become increasingly important [1, 2]. At one point of the designer’s desired need, 
steel materials are subject to either of the following: bending and at the other to twist-
ing, rotations, etc. Attending operations under these conditions requires certain spe-
cific properties to be able to successfully withstand the various conditions the designers 
subject them to [3]. Heat treatment, heating, and soaking at cooling temperature cycles 
steel are reduced, help before now to handle as much as possible, yet in recent times 

Abstract 

Impingement jet heat transfer was studied using liquid and gas fluids to determine 
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could not do more [4, 5]. Opined that by restructuring its microstructure and physical 
structure with proper monitoring and controlling of its temperature during heating and 
cooling processes. Its usage with the evolving engineering and technology advancement 
is due to the designer’s quest for newer applications, which causes the manipulation of 
steel’s mechanical and metallurgical properties to the designer’s desired design applica-
tion. Therefore, there is a need for improving steel properties, which demand cost reduc-
tion in alloying elements, modeling, and streamlining processes, hence need for a better 
process [1]. In particular, the hot-rolling process, which is a well-known manufacturing 
method of steel strips, requires great management since it has a crucial influence on the 
properties of the final product [2].

Meanwhile, the modes of cooling by quenching process using different fluids opened it 
up for improvement. The era of controlled cooling opens up, an important part of ther-
momechanical controlled process (TMCP) technology, which significantly influences 
the microstructure and mechanical property of hot-rolled steel plates [6, 7]. As one of 
the important elements of this technology, the technique that allows the precise control 
of the fluid quenching temperature can be cited along with the metallurgical and con-
trolled rolling techniques [1]. Therefore, jet impingement cooling, a type of accelerated 
controlled cooling, is a process used to achieve high heat removal yield from a heated 
material using the desired coolant for easy cooling. Steel production having desired 
mechanical and metallurgical properties requires accurate temperature control during 
the cooling process as noted by [8]. This work looks for a solution to the Leidenfrost 
phenomenon in water from another fluid.

Steel as an engineering material

Agreeing to the Society of Automobile Engineers and the American Institute of Steel, 
iron and steel are alloys of iron and carbon that normally have less than 1.0wt% of car-
bon [9]. It may contain other alloying elements at different compositions and/or heat 
treatment [10–12]. In this present work, we recognized three main grades of steel: low, 
medium, and high carbon steel with carbon content ranges of 0.015–0.30%wt for low 
carbon steel, 0.031–0.58%wt for medium carbon steel, and 0.6–2%wt for high carbon 
steel [13].

Hydrodynamics of jet impingement

Jet from the ROT cooling stage first exits the circular nozzle and impinges over the dry 
heated plate surface (free-surface jet), followed next by arrays that collide with the lefto-
ver fluid on the surface (plunging jet). These two types are mostly treated as free-surface 
jets in comparison with the submerged jet. Accordingly, [14] showed some types of sin-
gle jet impingement cooling. This work uses a free-surface jet impingement cooling pro-
file as shown in Fig. 1 below.

The flow of the liquid in impingement process can be divided arbitrarily into two 
zones, the impingement zone characterized by a sharp increase in the streamwise veloc-
ity and a parallel flow zone with a more gradual change of streamwise. Figure 1 depicts 
the streamwise velocity (ui). In hydrodynamics, the streamwise at the stagnation point 
increase to the jet streamwise velocity Vji. The hydrodynamics of circular jets differ from 
others in the parallel flow region. This is because the water velocity in the parallel flow 
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zone of circular jets decreases, whereas the water velocity for the planar jet does not 
decrease [16].

Computational fluid dynamics

Numerical solution based on computational fluid dynamics (CFD) is the analysis of sys-
tems involving fluid flow, heat transfer, and associated phenomena such as chemical 
reactions using computer-based simulation; this technique is very powerful and spans 
a wide range of industrial and nonindustrial application areas [17]. CFD is an effective 
and powerful tool to numerically simulate fluid flow and heat transfer. The conventional 
methods which are the most popular in CFD are the finite element method (FEM), finite 
volume method (FVM), finite difference method (FDM), and spectral methods. These 
methods solve nonlinear Navier-Stokes equations which are governing equations for 
CFD describing popular conservation of mass, momentum, and energy equations [18]. 
The baseline results from CFD analysis are compared with experimental analysis, using 
ANSYS FLUENT and many other fluid flow software as studied by [2, 9, 19].

Many numerical models have been studied like SST k-w model while v2f turbulence 
model for turbulence analysis because of its minimal error at the stagnation point and 
wall regions. Numerically, revealing that the ratio of the nozzle diameter to cylinder 
diameter affects Reynolds number value also showed that the RNG k-e model is better in 
predicting heat transfer characteristics. We found also that inlet turbulent intensity and 
eddy viscosity ratio are vital for the accurate prediction of realistic results using various 
RANS turbulence models; all these models are for fluid flow characteristics onto the hot 

Fig. 1  Schematic of free-surface jet and liquid velocity profile parallel to surface circular jets [15]
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surface as studied by [20–23]. Nur et al. [24] studied hybrid nanofluid using single jet 
impingement cooling, and they showed that its heat transfer performance is highest and 
reduces the greatest amount of heat from the surface to the fluid. The models reviewed 
above are for the fluid and heated surface interaction. This work presents the knowledge 
in the behavior of the hot steel plate heat dissipation only. This has been uncertain in the 
literature for the single jet impingement cooling process. In the literature, it has been 
empirical analysis with minimal or no validation. Hence, this work assessed the behavior 
of controlled cooling of a hot-rolled steel plate using liquid and gas single jet impinge-
ment cooling by the transient thermal model of ANSYS fluent 2020R1.

Methods
The schematic of the modified run-out table system set-up plant is used and hoses the 
combined liquid and gas lines in the same headers. The location of these parts is shown 
on the schematic diagram in Fig. 2.

Experimental procedure

Based on impingement diameters, D = 10 mm and 40 mm with corresponding vary-
ing impingement gaps H, of 115 and 155 mm at two different controlled cooling tem-
peratures of 150 °C and 110 °C, respectively. The experiments carried out were with a 
modified test rig, in Fig. 2. The assessment and numerical simulations were done using 
lumped thermal mass analysis, used to generate various values of heat transfer coeffi-
cient (h), and ANSYS was employed for simulation and 3-D modeling of the transient 
thermal model of the steel plate — 230 mm length by 120 mm width by 12 mm thick-
ness, for temperature time and heat flux. The following test parameters based on Fig. 2 
were used as experimental indicators: flow rate, nozzle velocity, constant impingement 
diameters, varying impingement gaps, surface temperatures, and controlled tempera-
tures, cooling time, and rate.

The air jet impingement experiment was done using the same rig that has an air 
attachment nozzle at the flow valve close to the headers, with an air compressor 

Fig. 2  Schematics of the modified ROT set-up plant: 1, water tank; 2, electric pump; 3, heater; 4, 
thermocouple wires; 5, the workpiece and its carrier; 6, thermocouple control panel, workpiece bed; 7, 
bottom impingement nozzle; 8, motorized screw conveyor; 9, furnace; 10, electric motor; 11, flow valve/air 
attachment nozzle; 12, flow meter; 13, ladder; 14, furnace support; 15, PVC pipes; 16, pressure gauge, 17
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machine producing and supplying the air. Table 1 shows the properties of the sampled 
impingement fluids — liquid and gas (water and air).

Medium carbon steel plates with known varying chemical compositions and 
mechanical properties were obtained from the Ajaokuta Nigerian Steel Company 
with a steel grade of 0.56%C, the ultimate tensile strength of 957.1 Mpa, and Brinell 
hardness of 252.98 having an impact strength of 34.11 J.

Data analysis

This model of the impingement process is centered on the demonstration of tran-
sient-state heat conduction-convection across the sampled workpiece thickness of 12 
mm, length of 230 mm, and width of 120 mm dimensions (Fig. 3).

Integration from t = 0 to T = Ts:

(1)MC
d

dt
(TS − T∞) = −hA(TS − T∞)

(2)
∂(Ts − T∞)

(Ts − T∞)
=

−hAdt

mcp

(3)
T (t)− T∞

Ti − T∞

= e−αt

Table 1  Properties of sampled fluids

Properties of tiger nut

S/N Fluids Density (kg/m3) Viscosity (kg/M-S) Thermal 
conduct W/MK

Specific heat 
J/KGK

Temp. °C

1 W-JIC 1000 1.347 × 10−4 0.609 500 50–60

2 A-JIC 1.164 1.849 × 10−5 0.02551 1007 50–60

Fig. 3  Control volume of lumped thermal mass model analysis of impingement process



Page 6 of 21Nwankwo et al. Journal of Engineering and Applied Science           (2022) 69:88 

where α becomes the following:

The gradient is Eq. 4 given as in Eq. 5, as follows:

where h is heat transfer coefficient W/m2 k
for steel, density ρ =

7900hg

m3 , specific heat Cp =
500J
kgk

, sampled thickness w =

0.012m

  , 

and ∝ is a gradient from Eq. (5)
Thereafter, a spread Excel sheet was used to estimate h Eq. (6), where h =∝ρwc, for ∝ 

being the slope based on lumped numerical experimental temperature-time plots. These 
values of convective heat transfer coefficient h were calculated.

(4)α
hA

mCp

(5)The gradient is− ∝=

−hAt

mcp

(6)From which h =∝ ρwcp

Fig. 4  a 3-d transient thermal model. b Mesh structure of the simulation

Fig. 5  Grid independence test
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Table 2  150 °C at D = 10 mm variant T and H for W-JIC

T = 450 at D = 10 
mm (H = 115)

T = 440 at D = 10 
mm (H = 125)

T = 430 at D = 10 
mm (H = 135)

T = 420 at D = 10 
mm (H = 145)

T = 410 at D 
= 10 mm (H = 
155)

t(s) Ts t(s) Ts t(s) Ts t(s) Ts t(s) Ts

0 450 0 440 0 430 0 420 0 410

40 400 35.5 391.7 32.4 383.3 29.3 375 25.5 366.7

80 350 71 343.4 64.8 336.6 58.6 330 51 323.4

120 300 106.5 295.1 97.2 289.9 87.9 285 76.5 280.1

160 250 142 246.8 129.6 243.2 117.2 240 102 236.8

200 200 177.5 198.5 162 196.5 146.5 195 127.5 193.5

240 150 213 150 194.4 150 175.8 150 153 150

Table 3  150 °C at D = 10 mm variant T and H for A-JIC

T = 450 at D = 10 
mm (H = 115)

T = 440 at D = 10 
mm (H = 125)

T = 430 at D = 10 
mm (H = 135)

T = 420 at D = 10 
mm (H = 145)

T = 410 at D = 
10 mm (H = 155)

t(s) Ts t(s) Ts t(s) Ts t(s) Ts t(s) Ts

0 450 0 440 0 430 0 420 0 410

120.2 400 114.2 391.7 107.12 383.3 98.53 375 86.45 366.7

240.4 350 228.4 343.4 214.24 336.6 197.06 330 172.9 323.4

360.6 300 342.6 295.1 321.36 289.9 295.59 285 259.35 280.1

480.6 250 456.8 246.8 428.48 243.2 394.12 240 345.8 236.8

601.8 200 571 198.5 535.6 196.5 492.65 195 432.25 193.5

721.2 150 685.2 150 642.72 150 591.18 150 518.7 150

Fig. 6  Temperature time at 150 °C, D = 10 mm (top) for W-JIC and (bottom) for A-JIC
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Table 4  110 °C at D = 40 mm variant T and H for W-JIC

T = 450 at D = 40 mm 
(H = 115)

T = 440 at D = 40 
mm (H = 125)

T = 430 at D = 40 
mm (H = 135)

T = 420 at D = 40 
mm (H = 145)

T = 410 at D 
= 40 mm (H = 
155)

t(s) Ts t(s) Ts t(s) Ts t(s) Ts t (s) Ts

0 450 0 440 0 430 0 420 0 410

44.6 393.34 42.6 385 41 376.67 40 368.34 39.2 360

89.2 336.68 85.2 330 82 323.34 80 316.68 78.4 310

133.8 280.02 127.8 275 123 270.01 120 265.02 117.6 260

178.4 223.36 170.4 220 164 216.68 160 213.36 156.8 210

223 166.7 213 165 205 163.35 200 161.7 196 160

267.6 110 255.6 110 246 110 240 110 235.2 110

Table 5  110 °C at D = 40 mm variant T and H for A-JIC

T = 450 at D = 40 
mm (H = 115)

T = 440 at D =4 0 
mm (H = 125)

T = 430 at D = 40 
mm (H = 135)

T = 420 at D = 40 
mm (H = 145)

T = 410 at D 
= 40 mm (H = 
155)

t(s) Ts t(s) Ts t(s) Ts t(s) Ts t(s) Ts

0 450 0 440 0 430 0 420 0 410

120.2 393.34 110.12 385 105.12 376.67 98.53 368.34 91.32 360

240.4 336.68 220.24 330 210.24 323.34 197.06 316.68 182.64 310

360.6 280.02 330.36 275 315.36 270.01 295.59 265.02 273.96 260

480.6 223.36 440.48 220 420.48 216.68 394.12 213.36 356.28 210

601.8 166.7 550.6 165 525.6 163.35 492.65 161.7 456.6 160

721.2 110 660.72 110 630.72 110 591.18 110 547.92 110

Fig. 7  Temperature time at 110 °C, D = 40 mm (top) for W-JIC and (bottom) for A-JIC
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Numerical simulation model

The simulation model is as shown in Fig.  4a which represents the hot steel plate 230 
× 120 × 12 mm dimensions. The inlet nozzle diameters are 10 and 40 mm, while the 
impingement gaps are 115 and 155 mm. The mesh structure used in the study is in 
Fig. 4b. This study demonstrated a simple three-dimensional geometry simulation. The 
type of fluids used in the simulation is liquid and gas coolant with ANSYS transient ther-
mal model for simulation.

Grid independence

To determine the ideal number of grids used and the impact of the number of elements 
on heat transfer and the final temperature of the target surface, the mesh was analyzed. 

Table 6  Ln (theta) temperature time, D = 10 mm controlled at 115 °C W-JIC and A-JIC

Water impingement jet cooling (W-JIC) Air impingement jet cooling (A-JIC)

T = 450 °C at D = 10 mm (H = 115 mm) T = 450 °C at D = 10 mm (H = 115 mm)

Ts Tf Theta t (s) Ln (theta) Ts Tf Theta t (s) Ln (theta)

450 50 1 0 0 450 45 1 0 0

400 50 0.875 40 −0.13353 400 45 0.876543 120.2 −0.13177

350 50 0.75 80 −0.28768 350 45 0.753086 240.4 −0.28358

300 50 0.625 120 −0.47 300 45 0.62963 360.6 −0.46262

250 50 0.5 160 −0.69315 250 45 0.506173 480.6 −0.68088

200 50 0.375 200 −0.98083 200 45 0.382716 601.8 −0.96046

150 50 0.25 240 −1.38629 150 45 0.259259 721.2 −1.34993

Fig. 8  Ln(theta) temperature time at 150 °C D = 10 mm (top) for W-JIC and (bottom ) for A-JIC
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A coarse mesh with 552 number of elements and 0.02 m cell size employed in this study. 
Figure 5 shows the result of the grid independence test; additionally, patch conforming 
method and inflation method are applied to the geometry to ensure the flow of fluid 
near the target surface is well defined.

Table 7  Ln (theta) temperature time for D = 40 mm controlled at 110 °C A-JIC

Water impingement jet cooling Air impingement jet cooling (A-JIC)

T = 450 °C at D = 40 mm (H = 115 mm) T = 450 °C at D = 40 mm (H = 115 mm)

Ts Tf Theta t(s) Ln (theta) Ts Tf Theta t(s) Ln (theta)

450 59 1 0 0 450 41 1 0 0

393.34 59 0.85509 44.6 −0.15655 393.34 41 0.861467 120.2 −0.14912

336.68 59 0.710179 89.2 −0.34224 336.68 41 0.722934 240.4 −0.32444

280.02 59 0.565269 133.8 −0.57045 280.02 41 0.584401 360.6 −0.53717

223.36 59 0.420358 178.4 −0.86665 223.36 41 0.445868 480.6 −0.80773

166.7 59 0.275448 223 −1.28936 166.7 41 0.307335 601.8 −1.17982

110 59 0.130435 267.6 −2.03688 110 41 0.168704 721.2 −1.77961

Fig. 9  Ln(theta) temperature time at 110 °C for D = 40 mm, (top) for W-JIC and (bottom) for A-JIC

Table 8  h for D = 10 and 40 mm at 150 °C and 110 °C for W-JIC and A-JIC

Fluids D (mm) H (mm) Nozzle 
geo.

Vol. used 
qus. (m3)

Time T (s) Flow 
rate Q 
(m3/s)/T 
(s)

T. water 
Tw (°C)

T. initial 
Ti (°C)

CHTC h (w/
m2 k)

W-JIC 10 115 11.5 0.39 240 0.001625 59 450 265.44

A-JIC 10 115 11.5 2.65 721.2 0.003674 41 450 85.32

W-JIC 40 155 15.5 0.09 235 0.000383 50 410 364.98

A-JIC 40 155 15.5 0.27 547.92 0.0004928 45 410 137.46
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Boundary conditions

The boundary condition for the inlet velocity is determined based on the calculated 
Reynolds number. The inlet temperature and the surface temperature of the plate are 
set at 323 and in the range of 683 to 723 k for diameters of 10 mm and 40 mm, respec-
tively. The temperature is set according to the working temperature of a microchip 
cooling system, which utilizes the fluid jet impingement cooling method of Nur et al. 
[24].

The final subcooled temperature was predetermined by the design in the range of 150 
to 110 °C, and the heat transfer coefficient was calculated using LTMA and was inputted 
to ANSYS; thus, the wall heat flux was determined by the post-processing stage.

The Reynolds number used as the input parameter is in the range of 5000 to 
250,000. The pressure treatment adopted the first-order upwind scheme for the tur-
bulence numeric and the adventive scheme. While for the viscous model, a standard 
k-epsilon model was selected. The simulation was defined as converged at an RMS 
value lower than 1.0E−4. The results of the simulation are calculated throughout the 
computational domain during the simulation process.

Results and discussion
Experimental temperature‑time evaluation

For controlled cooled temperature of 150 °C, diameter D = 10 mm. Results are pre-
sented in Tables 2 and 3, used for generating Fig. 6 and Tables 4 and 5 for Fig. 7 at D 

Fig. 10  CFD temp. time controlled model and plot at 150 °C, D = 10 mm, for W-JIC
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= 40 mm and controlled cooling temperature of 110 °C that corresponds to W-JIC 
and A-JIC, respectively.

From all the graphs above, irrespective of the controlled cooled temperatures, the ini-
tial surface temperatures of hot-rolled steel plates showed the highest cooling time at 
a gap of 115 mm and lowest at a gap of 155 mm in each of the constant impingement 
diameters. This agrees with Onah, and Farial [25, 26] showing the same linear decrease.

Evaluated heat transfer coefficients (h) from LTMA

The results of the experiment for temperature time were then further analyzed by 
lumped thermal mass analysis which showed a linear decrease from various surface 
temperatures to various cooling times of the form y = −  ∝ x + a for R2 = b, where ∝ 
is the slope used for estimation of various convective heat transfer coefficient h from 
Eq. (5).

Ln (theta) for diameter D = 10 mm controlled at temperature of 150 °C is presented 
in Tables 6, for W-JIC and A-JIC used to generate Fig. 8, while Table 7 for W-JIC and 
A-JIC at diameter 40 mm is for Fig. 9 at different impingement gaps of 115 and 155 
mm, respectively.

However, in all the controlled temperatures, the values of the slope of lumped ther-
mal mass analysis∝, in ln(theta) temperature against time for determining convec-
tive heat transfer coefficient (h), indicated a linear increase in impingement diameter 
D and a corresponding increase in impingement gap H. This is suggestive that the 

Fig. 11  CFD heat flux model and time plot at 150 °C, D = 10 mm, for W-JIC
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various values of convective heat transfer coefficient (h) as obtained would be more 
at higher diameter D and higher impingement gap H, for proficient steel cooling, as 
studied by [27–29].

Heat transfer coefficient h from LTMA

Results of heat transfer coefficient (h) for D = 10 mm are presented in Table 8.
At constant diameter D = 10 mm, the convective heat transfer coefficient “h” showed 

an increase with increasing impingement gaps. Water has the highest values at both 
diameters and gaps. Flow rate decreased with increasing impingement gaps. The water 
decreased from 1.625 × 10−3 m3/s to 4.9 × 10−4 m3/s, and air decreased from 3.67 × 
10−3 m3/s to 4.43 × 10−4 m3/s. This inferred that the lower the impingement gap H, the 
higher the flow rate Q.

For constant diameter D = 40 mm, convective heat transfer coefficient “h” maintained 
the same pattern, with water still having the highest.

This infers that at any given constant pipe diameter (D), flow rate (Q) decreases with a 
corresponding increase in impingement gap (H), resulting in increased convective heat 
transfer coefficient (h). This will give a proficient higher heat extraction rate on hot-
rolled steel plates cooling in the steel mill industry and achieve designer desired micro-
structures of steel, as also studied by [27–29].

Fig. 12  CFD temp. controlled model and time plot at 150 °C, D = 10 mm, for A-JIC
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Study of numerical simulation results

Figures  10 and 11 describe the CFD temperature-time controlled cooling model — 
region 1, is blue and totally cooled layer; region 2, is yellow, the middle layer, and par-
tially cooled; and region 3, is red bottomed layer, gradually cooled, but still hotter than 
the two layers, Also, it indicates the temperature-time plot of the model, at each of the 
regions. The steeper curve region 1 showed where the convective heat transfer coeffi-
cient h was applied and slowly goes down to region 2 and to region 3, where heat flow 
was perfectly insulated that retained some hotness in the steel plate. Figures 12 and 13 
represent the CFD-controlled heat flux model, where the top region showed the high-
est heat flux down to the bottom the lowest. Again, it also showed a plot of the heat flux 
against time. The rate of heat flux dissipation was 2.2 × 10−6 W/m2/s and 1.74 × 10−7 
W/m2/s maximum for W-JIC and A-JIC, respectively.

Figures  14 and 15 describe the CFD temperature-time controlled cooling model, 
showing the same pattern as D = 10 mm, and CFD temperature-time plot, at each of the 
regions, having the same shape as the plot of D = 10 mm. Figures 16 and 17 represent 
the controlled heat flux model. It showed the same pattern of cooling as above, as well 
as showing a plot of the heat flux against time. The rate of heat flux dissipation was 1.10 
× 10−7W/m2/s and 1.33 × 10−7W/m2/s maximum for W-JIC and A-JIC, respectively, 
which suggested water as a better impingement fluid as opined by [8, 26]. This dissipa-
tion of heat flux showed that water removes heat per unit area per second better than air 
in both diameters.

Fig. 13  CFD heat flux model and time plot at 150 °C, D = 10 mm, for A-JIC
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Fig. 14  CFD temp. controlled model and time plot at 110 °C, D = 40 mm, for W-JIC

Table 9  Heat fluxes at 150 °C for D = 10 mm and D = 40 mm for H = 115 mm

At D = 10 mm At D = 40 mm

Layers W-JIC A-JIC Layers W-JIC A-JIC

(W/m2) (W/m2) (W/m2) (W/m2)

Top 22518 7570.2 Top 6742.8 4155.6

Middle 12528 4207.6 Middle 3758.1 2311.4

Bottom 38.936 4.2499 Bottom 27.134 6.045

Table 10  Experimental and simulated data at 150 °C and 110 °C for H = 115 mm and 155 mm

At D = 10 mm At D = 40 mm

W-JIC A-JIC W-JIC A-JIC

t(s) Ts °C t(s) Ts °C t(s) Ts °C t(s) Ts °C

0 450 0 450 0 410 0 410

40 400 120.2 400 39.2 360 91.32 360

80 350 240.2 350 78.4 310 182.64 310

120 300 360.6 300 117.6 260 273.96 260

160 250 480.6 250 156.8 210 356.28 210

200 200 601.8 200 196 160 456.6 160

240 150 721.2 150 235.2 110 547.92 110
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Table 9 showed the heat fluxes at D = 10 mm and 40 mm, highest at the top where the 
convective heat transfer coefficient value is more. Heat flux showed a 66.4% difference 
for D = 10 mm and 75.2 for D = 40 mm for W-JIC and A-JIC, respectively. Furthermore, 
heat fluxes decreased linearly from top to bottom, showing an increase in convective 
heat transfer coefficient with corresponding increasing impingement gap H.

Fig. 15  CFD heat flux model and time plot at 110 °C, D = 40 mm, H = 155 mm for W-JIC

Table 11  Experimental uncertainties

Concomitant uncertainties Parameters

Random uncertainty 1. Temperature uncertainty — randomly measuring the spread of temperature
2. Pressure uncertainty — randomly measuring the spread of pressure

Instrumental uncertainty 1. Flowmeter: instrumental uncertainty in measuring the rate of fluid flow of 
impingement fluid
2. Pressure gauge: this instrumental uncertainty is based on measuring the 
water pump pressure
3. Thermocouple: installation and testing instrumental uncertainty, based on 
the measuring hot rolled steel plate temperature
4. Volume flow rate measuring cylinder: instrumental uncertainty that hap-
pened as a result of measuring the used and unused water using a calibrated 
volumetric cylinder
5. Stopwatch: time uncertainty

Reduction uncertainty 1. Temperature reduction: the uncertainty is the percentage value of error and 
average temperature measured value
2. Pressure reduction: the percentage value of error and average pressure 
measured value
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Experimental and CFD numerical simulation temperature‑time profile validation

Experimental and simulated data of both diameters are presented in Table 10 at convec-
tive heat transfer coefficient of h for water and h for air.

Table 10 showed the controlled temperature of 150 °C and 110 °C and initial tem-
perature T = 450 °C and 410 °C for varied time t(s) for both experimental data and 
the ANSYS CFD simulation data plotted in Fig. 18 for both diameters. An acceptable 
error margin is of 4.5–6.6%. Confirming the affirmation, that water is a better fluid 
as specified by Md Lokman and Onah [25, 30].

Experimental uncertainties concomitant

The concomitant uncertainties in this work are the vital influences or limitations that are 
very expedient in the attainment of the set goal in this work, which is very grim to regu-
late. Thus, the plus or minus estimation uncertainties are ways of checkmating the errors 
in the measurement of these influences. These influences are underscored in Table 11.

Uncertainties for random measurement

Random uncertainties with absolute temperature values are as follows: for D = 10 mm, 
H = 115 mm at 150 °C, and for water T = (450 + 440 + 430 + 420 + 410)/5 = 430 °C. 
Meanwhile, the spread of temperature measurement ΔT is 0.9 °C; thus, T = 430 ± 0.9 
°C. Conversely, pressure random uncertainties were determined as follows: for D = 10 
mm, H = 115 mm at 150 °C is (2.5 × 105 + 2.5 × 105 +2.5 × 105 + 2.5 × 105 + 2.5 × 

Fig. 16  CFD temp. controlled model and time plot at 110 °C, D = 40 mm, for A-JIC
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105)/5 = 2.5 × 105 N/m2, and equally the spread of pressure measurement ΔP is 0.1 × 
105 N/m2; thus, P = 2.5 × 105 ± 0.1 × 105 N/m2.

Uncertainties for random measurement

The water flow meter used has a specification of an accuracy: ± 1% of reading uncer-
tainty tolerance; in addition, the water pump used has a current of 2.5 amp and a 
capacity of 0.5 hp. The pressure gauge calibrated was in the range of 0 to 10 bars with a 
measurement uncertainty tolerance of ± 0.1. In the testing and installation of the ther-
mocouple, it recorded 97 °C with an error of ± 0.26 °C. The volumetric measuring cyl-
inder calibrated was in the range of 50 to 500 mm3 with ± 0.1 mm3 uncertainty error. 
Similarly, the stopwatch calibrated was in the range of 0 to 60 s and at the top end with 
an accuracy uncertainty of ± 0.1.

Uncertainties for reduction measurement

For temperature, the uncertainty is for D = 10 mm, H = 115 mm at150 °C for water, 
and T = 430 °C, since the uncertainty in measure ΔT is 0.9 °C; thus, T = 430 ± 0.9 °C, 
and then, reduction temperature uncertainty is (0.9/430) × 100 = 21%. In the pressure 
reduction uncertainty, D = 10 mm, H = 115 mm at150 °C, and P = (2.5 × 105 N/m2). 
The associated uncertainty measurement ΔP is 0.1 × 105 N/m2; thus, P = (2.5 × 105 ± 

Fig. 17  CFD heat flux model and time plot at 110 °C, D = 40 mm, for A-JIC
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0.1 × 105 N/m2), and then, reduction pressure uncertainty is (0.1 × 105/2.5 × 105) × 
100 = 40%.

Conclusions
This study involved a comparative study of jet impingement fluids. Empirical results 
using lumped thermal mass analysis revealed convective heat transfer of 265–365 W/
m2 K and 85–138 W/m2 K for W-JIC and A-JIC, respectively at diameters of 10 mm and 
40 mm. CFD numerical simulation revealed maximum heat fluxes of 22518 W/m2 and 
6742.8 W/m2 for water and 7570.2 W/m2 and 4155.6 W/m2 for air at 10 mm and 40 mm, 
respectively. This confirmed water as the best impingement cooling fluid with a 6.2% dif-
ference at a diameter of 10 mm and a 0.1% difference at a diameter of 40 mm. validation 
of empirical results with numerical simulation results showed an acceptable error mar-
gin of 4 to 18% for diameters 10 mm and 40 mm, respectively. Certainly, with Kandilkar 
[31] study, this further confirms results in the literature that water will give a proficient 
higher heat extraction rate on hot-rolled steel plates in the steel mill industry.
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Fig. 18  Experimental and simulation temp-time plot, top for D = 10 mm and (bottom) for D = 40 mm
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