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Introduction
The mass public transport in the Indian subcontinent is commuted using railways. 
Indian Railways is the largest network covering 68 km with 13 K passenger trains run-
ning across this rain network. Indian Railways serve around 23 million passengers every 
day. Moreover, more than 50% of these trains run for more than 500 km at a time. Con-
sequently, operational research shows that the health of the train is directly propor-
tional to the safety of the train which in turn affects the ride quality of the passengers. To 
ensure enhanced safety of the 100-crore train and its passengers, the most widely prac-
ticed inspection mechanism during the train movement is called Train Rolling Stock 
Examination (TRSE).

Abstract 

Train rolling stock examination (TRSE) is a physical procedure for inspecting the bogie 
parts during transit at a little over 30 kmph. Currently, this process is manually per-
formed across many railway networks across the world. This work proposes to auto-
mate the process of TRSE using artificial intelligence techniques. The previous works 
have proposed active contour-based models for the segmentation of bogie parts. 
Though accurate, the models require manual intervention and are found to be iterative 
making them unsuitable for real-time operations. In this work, we propose a segmen-
tation model followed by a deep learning classifier that can accurately increase the 
deployability of such systems in real time. We apply the UNet model for the segmenta-
tion of bogie parts which are further classified using an attention-based convolutional 
neural network (CNN) classifier. In this work, we propose a shape deformable attention 
model to identify shape variations occurring in the video sequence due to viewpoint 
changes during the train movement. The TRSNet is trained and tested on the high-
speed train bogie videos captured across four different trains. The results of the experi-
mentation have been shown to improve the recognition accuracy of the proposed 
system by 6% over the state-of-the-art classifiers previously developed for TRSE.
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TRSE can be considered as an operational maintenance service to examine the bogie 
parts on which the train moves. This examination is performed when the train is moving 
at just over 30 kmph. The Indian Railways operational manual (https://​rdso.​india​nrail​
ways.​gov.​in/​works/​uploa​ds/​File/​Draft%​20Han​dbook%​20on%​20Int​egrat​ed%​20Rol​ling%​
20Sto​ck%​20Dep​ot.​pdf ) on TRSE provides details of the various checklists on the perfor-
mance of the bogie parts that are visually observable during the process. A few instances 
from the manual are as follows: axlE box leaks, suspension movements, hanging parts, 
brake shoe functionality, breakages in parts, missing screws, and flat tires. The entire 
operation is performed by a three-man crew, one on each side of the train and the other 
one recording the defects. The defects are then classified into immediate action-required 
maintenance jobs and pit-stop maintenance jobs.

The pit stop maintenance jobs can be executed during the overall maintenance of the 
train at the designated destination in a railway maintenance yard. Contrastingly, the 
immediate jobs are handled when the train halts in the following station. The entire 
TRSE is fully proven that it has been in practice for 100 years. However, the failure of 
this process has also caused accidents and loss of life bringing a great financial burden 
on the railway operations. The biggest reason for failure has been analyzed as manual 
monitoring and no mechanized support system. We are the first in the subcontinent to 
provide a visual support system for TRSE to assist the monitoring engineers [1–7].

Our previous models focused on bogie part shape extraction from the videos of train 
undercarriage. The works focused on developing active contour models with multiple 
shapes prior to knowledge-based inferences. These models did a great job of preserv-
ing the shape of the segmented bogie parts. Despite their success in bogie part segmen-
tation, active contours have an underlying computational complexity when it comes to 
high-resolution video data [8, 9]. The bottleneck in applying knowledge-based active 
contours is attributed to its iterative model. These are energy-based models that propa-
gate a differential contour by optimizing the contour regions with respect to the diver-
gence of the image. Hence, real-time implementation of these methods has been next to 
impossible.

Deep learning approaches have shown to have deployable capabilities and were being 
used for many video object recognition [10–13] and analytics [14–16] applications. Our 
previous model used a modified Yolo V2 architecture for the bogie part identification 
process on video data [17]. However, the challenge was to annotate the maximum pos-
sible part variations across different training video datasets. Moreover, the architecture 
Yolo V2 was modified to make the attention mechanism more stringent on the bogie 
parts to detect their presence across the entire video sequence. This process made the 
training loads heavy and the computation process cumbersome during training even 
though the testing was simpler. Despite its good performance, it lacked two major objec-
tives of TRSE: (1) the bogie part shape extraction or descriptor for determining the 
health of the parts during transit and (2) the deformation in the bogie parts in the con-
secutive video frames as the train moves horizontally with respect to the camera angle.

The above two objectives along with the core objective of segmenting bogie parts and 
recognizing them with high accuracy will be successfully resolved using the proposed 
deep learning framework. Our proposed deep network has two frameworks: (1) the seg-
mentation module and (2) the attention-based classifier. The traditional object detection 

https://rdso.indianrailways.gov.in/works/uploads/File/Draft%20Handbook%20on%20Integrated%20Rolling%20Stock%20Depot.pdf
https://rdso.indianrailways.gov.in/works/uploads/File/Draft%20Handbook%20on%20Integrated%20Rolling%20Stock%20Depot.pdf
https://rdso.indianrailways.gov.in/works/uploads/File/Draft%20Handbook%20on%20Integrated%20Rolling%20Stock%20Depot.pdf
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deep learning models apply annotations on all the bogie video frames to supervise the 
recognition process with good accuracies. Moreover, these methods do not detect the 
structure or shape similar to the bogie parts for maintaining structural durability dur-
ing transit. Consequently, the segmentation results at multiple stages were applied as 
attention to the classifier for achieving higher resolution rates. The attention mechanism 
followed is inception from transformers for speech recognition applications which has 
been incepted into our proposed model.

Specifically, this part of the section presents the past research on technological devel-
opments on the road to automate TRSE. The entire section has three main ingredients. 
The first one is related to methods developed in general towards the solution of rolling 
stock examination. Secondly, the computer vision-based models were applied to video 
data for the bogie shape segmentation process. Thirdly, the advancement of deep learn-
ing approaches and their applications in object detection.

TRSE technology‑based approaches

Indian Railways (IR) is the largest rail network on the planet which carries 10 mil-
lion passengers every day. The primary challenge is to keep the trains away from acci-
dents. Consequently, this is the job of railway maintenance engineers and researchers 
to develop new technologies to assist human resources. Currently, advanced technol-
ogies are being applied for efficient locomotive production [17], high reliability coach 
design [18], electronic signaling system [19], a Global Positioning System (GPS)-based 
train tracking [20], and ultrasound reflectors for track anomaly detection [21]. Apart 
from the above technologies for uninterrupted operations, the important aspect of train 
and passengers safety is rolling stock examination [22]. TRSE is performed manually 
across all rail companies using 3 humans and specifically using a rolling pit. The suc-
cess rate of Manual TRSE was found to be around 99% for an entire decade of opera-
tions in Indian Railways (https://​rdso.​india​nrail​ways.​gov.​in/​works/​uploa​ds/​File/​Draft%​
20Han​dbook%​20on%​20Int​egrat​ed%​20Rol​ling%​20Sto​ck%​20Dep​ot.​pdf ). However, that 
1% failure rate had damaged millions of dollars in the economy and thousands of lives. 
That is why automating this TRSE becomes an increasingly important problem to find a 
solution. The objective of this work is to transform the manual rolling stock examination 
into an automated or semi-automated system to assist railway engineers. Indian Rail-
ways are testing a prototype model named KRATES (Konkan Railways Automated Train 
Examination System) (https://​konka​nrail​way.​com/​uploa​ds/​editor_​images/​15510​89341_​
ATES%​20web%​20220​22019.​pdf ). The system has many sensors to measure temperature, 
pressure, acceleration, brake shoe functionality, and a camera. The purpose of the cam-
era in the KRATES module is about remote visual monitoring rather than real-time pre-
dictions on the bogie parts.

According to the Indian Railways rolling stock manual, the following primary checks 
are needed for a train to consider fit to reach the next destination without any accidents.

1.	 Hanging bogie parts
2.	 Broken bogie parts
3.	 Dragging bogie parts
4.	 External agent in the bogie parts

https://rdso.indianrailways.gov.in/works/uploads/File/Draft%20Handbook%20on%20Integrated%20Rolling%20Stock%20Depot.pdf
https://rdso.indianrailways.gov.in/works/uploads/File/Draft%20Handbook%20on%20Integrated%20Rolling%20Stock%20Depot.pdf
https://konkanrailway.com/uploads/editor_images/1551089341_ATES%20web%2022022019.pdf
https://konkanrailway.com/uploads/editor_images/1551089341_ATES%20web%2022022019.pdf
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5.	 Flat wheels
6.	 Missing bogie parts

The above parameters are all visually observable and are biologically compared with 
the training models for evaluation. This results in documentary evidence that provides 
an insight into the behavior of the bogie parts during transit. The objective of this work 
is to transform the above visually identifiable problems into computer vision-based 
models for automated TRSE. Currently, most rail network companies operate manually 
due to unavailability of technology or research resources for finding a commercially via-
ble solution. However, video-based bogie part retrieval models have been developed in 
the past with considerable research impact in the field of computer vision.

Computer vision algorithms for TRSE

Initially, the work in [23] has been a starter to unfold the deeper connection between 
transport automation technologies and their ability to prevent accidents. Inspired by 
this, some of our previous works have been built on the basis of computer vision. Most 
of the research works on train safety are different from ours as they are focused on rails 
and ballast monitoring using computer vision. The work in [23] shows the first use of 
a camera to record bogie parts and extract them using image mosaicking. 3D imaging 
models were designed and developed for inspecting train tires and the surrounding bal-
last using simple 3D correlations [24]. However, the dual cameras were not grounded 
but are mounted on the train. The movement of the train captures the rails and the bal-
last with predefined displacements. The parallel projection model along with the 3D 
digital image correlations will identify anomalies in tracks and ballast. However, the 
biggest drawback is the train movement at high speeds will make the video data blurry 
making faulty measurements. Another dual camera model with multi modal recordings 
in RGB and infrared frequencies has been applied for the bogie part identification pro-
cess [25]. The method developed uses a panoramic viewing model to compare RGB and 
infrared images to locate bogie parts. The infrared camera has been in place to identify 
heating bogie parts such as axlL box, brake shoes, joints, and high friction contacts. The 
two cameras were used to detect hot and cold parts simultaneously. However, motion 
blurring in RGB video data and high ambient temperatures make the detection pro-
cess ambiguous. The next work shifts to a pit hole camera system placed inside a trench 
dug under the tracks to capture brake shoes [26]. The keyframes with break panels are 
extracted, and curve fitting models were applied to segment the break portions and 
identify defects. Even though the results were prominent in the brake shoes functionality 
identification process, the actual implementation of the project poses a bottleneck both 
commercially and structurally. Currently, TGV of France and bullet trains of Japan use 
train-mounted cameras to monitor tracks and ballast. The monitoring is executed man-
ually, and no processing algorithms were reported in the published patent [27]. This is 
due to the fact that the video sequences captured from cameras mounted on high-speed 
trains are subjected to unpredictable vibrations which generate noisy video data for pro-
cessing. Interestingly, the camera sensor on the ground has shown to achieve maximally 
effective train bogie video data for monitoring than the system mounted on the train. 
One such system was developed with lights and antiglare techniques for capturing high 
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contrast video frames of rolling stock [28]. Actually, this work has been the basis for 
automating TRSE. However, this work does not highlight anything about the algorithms 
for bogie part identification. Another work that has drawn parallels with the above has 
demonstrated the use of focus lights on the undercarriage to video capture the bogies 
[29]. Additionally, this work applies basic image processing models to extract the edges 
of bogie parts in order to identify them. However, the techniques described were not 
able to represent the overlapping boundaries of bogie parts in the video frames. Moreo-
ver, the blurring induced by the moving train has made the edge detection process dif-
ficult for part identification. Recently, 3D modelling of contact bogie parts and wheel 
surfaces has been shown to achieve good results for the detection of defects [30, 31]. 
The biggest problem with 3D modelled image data is their powerful graphics process-
ing requirements. The powerful graphics make these techniques incompatible with real-
time processing.

The two biggest drawbacks of the above models were their inability to segment bogie 
parts effectively, and the video data was noisy due to recording of train movement at 
30 frames per second shutter speed. These two bottlenecks were efficiently handled by 
our previous models for TRSE [1]. To fight blurring, the recording is done by using a 
high-speed wide-angle sports action visual sensor at 240 fps, the effectively exceptionally 
high-quality bogie frames. Secondly, the segmentation problems were addressed using 
active contour (AC) models with shape prior knowledge of the bogie parts [2, 3]. These 
shape-based active contours with local information [5] have presented a 99% accuracy 
in preserving the extracted bogie part shapes from the output of the models. Moreo-
ver, the work in [4] shows an upgraded touching Boundary segmentation algorithm 
for collectively extracting bogie parts from the video frames. This model has generated 
interest due to the fact that the bogie parts are indeed overlapping as they support each 
other to tightly hold the entire structure as a single unit. The above AC-based models 
have performed well in segmenting the bogie parts effectively. Despite their success in 
bogie part segmentation, the AC models are iterative and are not suitable for real-time 
implementation of TRSE. Apart from the above, the TRSE automation algorithms lack 
adaptability, scalability, and reliability to transform the results into real-time production 
models. Consequently, these gaps in current research methodologies have motivated us 
to perceive the real-time implementable models for automating TRSE. Hence, the deep 
learning approaches were leveraged to build and deploy automated TRSE systems for 
generating actionable intelligence for assisting rail companies.

Deep learning approaches for automating TRSE

The implementable learning (DL) approaches have been in operation since 2012 with 
the creation of AlexNet in the ILSVRC ImageNet challenge [32]. The then AlexNet has 
been trained on 3 GB GPUs from Nvidia using parallel processing. After that, many 
highly accurate and reliable models have outperformed the AlexNet. They are inception 
V1 [33], VGG-16 [34], ResNet [35], SeNet [36], and PNASNET [37]. These models have 
been shown to achieve a very high rate of accuracy in image classification tasks over the 
years. These base models were updated to detect objects in images and video sequences, 
and one such model that has performed consistently on multiple test sets is the Yolo 
(You Only Look Once) architecture [38]. In our previous work [5], the second version 
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of Yolo is modified for the extraction of bogie parts on the video sequences. The model 
was able to detect most of the bogie objects except for the places where the part defor-
mation is more than 50% of the actual trained part. The biggest challenge in implemen-
tation is attributed to the annotations of bogie parts from video sequences along with 
the bounding box information on which the Yolo model is trained. Though the model 
has recorded an 84.98% accuracy in correctly identifying the bogie part on a moving 
train video sequence, it failed to identify bogie parts with high confidence scores for the 
slightest deformation in the objects occurring due to viewpoint variations. Moreover, 
to compensate for the object deformations, the model has been trained on a large set of 
frames in the video sequence. Hence, it becomes extremely important to learn the object 
deformations for the segmentation process. In deep learning, the segmentation process 
has been applied through an architecture broadly called as hourglass model [39]. Then, 
the upgrades with some minor modifications have reported betterment in segmenta-
tion results, though their basic structure matches the hourglass model. The most popu-
lar and powerful variants of the hourglass are UNet [40], VNet [41], SegNet [42], and 
Auto Encoders [43]. The backbone network architectures in these segmentation mod-
ules can be any of the state-of-the-art network architectures such as VGG-16, Resnet-34, 
and Inception Net. Once the segmentation processes are learned by the network using a 
very small dataset of bogie parts, the next step is classification. Generally, instances have 
shown that the segmented output is inputted along with the original video frame into the 
classifier for recognition. The RGB input is multiplied with the segmented bogie parts 
and passed to the classification module designed using the standard networks similar 
to that of the backbone segmentation network [44, 45]. Unfortunately, doing the mul-
tiplicative attention will instigate the user to segment all the bogie parts in all the video 
frames for maximally correct classification. Instead of performing the traditional mul-
tiplicative fusion between the RGB video frames and the segmented objects, this work 
offers a solution incepted from the model of natural language processing called multi-
head attention [46]. Similar methods were proposed in the automation of construction 
durability testing such as identifying payment cracks using capsule net segmentation 
[47] and PCGANs [48].

Finally, the proposed model brings a novel methodology for real-time implementable 
automated TRSE powered by computer vision, artificial intelligence, and video analytics. 
The next section focuses on developing a detailed elaboration of the methods applied for 
automating TRSE with deep learning.

Methods
The highly accurate and accepted attention model in speech processing is the multi-head 
attention model. The multi head attention model is capable of providing attention to a 
particular set of words during training. Similarly, the moving train induces motion arti-
facts such as bogie part shape deformation due to viewpoint variations on the fixed cam-
era positioning. Moreover, the camera outputs 240 fps video sequences with a lensed 
angle of 54°. The method proposed in this work has a segmentation network followed by 
multi head attention-based bogie parts classifier. The entire model is called deep bogie 
part inspector (DBPI) which has a segmentation module in the back end and an atten-
tion-based classifier model in the backend. The primary network in the DBPI model is 
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built on the UNET architecture backbone. Subsequently, the secondary network is a 
classifier model built multi-head-head attention network. In our proposed multi head 
attention network, we have three streams that are fed with three consecutive segmented 
bogie parts in keyframes. The proposed method has been shown to improve the recogni-
tion accuracies by 6% over the existing object detection deep networks.

The proposed work has three core objectives: (1) to segment the bogie parts from key 
video frames of train undercarriage by learning from deformations in shapes and spa-
tial locations, (2) to apply the segmented bogie parts to find an attention matrix that 
will contribute to the faster identification of bogie parts in continuous video sequences, 
and (3) to design a multi head attention-based architecture for the classification of bogie 
parts irrespective of their shape and spatial location in the entire video sequence.

Finally, the proposed model will also give a bogie part assert score (BPAS) that can 
help the human TRSE inspector to make decisions for timely maintenance and thereby 
increasing passenger safety. Figure  1 shows the video frames of the bogies on Indian 
Railway coaches.

Our proposed deep bogie part inspector (DBPI) for TRSE is different from the exist-
ing models in three different ways: (1) multi head attention network in the classifier will 
learn from a minimalistic dataset making the training process faster, (2) it offers higher 
bogie part classification accuracies across the entire range of video sequences, and (3) 
the model generates actionable intelligence for the maintenance engineers to predict the 
durability of the bogie parts during the train running cycle.

The deep bogie part inspector is an ensemble of two learning networks as stated in the 
introduction. The architecture of the proposed DBPI is shown in Fig. 2. The first network 
is based on UNet architecture to segment the bogie parts from the video sequences. Fol-
lowed by the UNet is the classification network that identifies a bogie part and checks its 
durability for the onward train journey towards the destination. Specifically, the classifier 
is built on multi head attention mechanism where the segmented output of each part is 
applied to determine the attention of the part in the video sequences. Furthermore, the 

Fig. 1  Video frames of train rolling stock of a moving train at 30 kmph

Fig. 2  Deep bogie part inspector architecture with two models: the first model is UNet used for 
segmentation of bogie parts, and the second is the multi-head attention-based classification network
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matching networks were designed to establish a semantic correspondence between the 
parts and the original video frames. This process allows the network to match the cor-
rect position of the bogie part from multiple frames resulting in the correct match from 
a few sampled segments. This has enabled the network to learn from a few frames of 
segmented bogie parts rather than the bogie parts in all the frames. Finally, the extracted 
features are concatenated locally first and then globally before being learned by the fully 
connected neural nets. The last layer is a Softmax that predicts the correct bogie part 
from the input video frames.

The bogie segmentation module — the B‑UNet

The bogie-U-shaped convolutional neural network (B-UNet) is a segmentation mod-
ule for separating the bogie parts individually from the video frames is shown in Fig. 2. 
Given a complete set of bogie video frames V(x, y, 3, t) ∀ (x, y, 3) ∈ R2, where t is the frame 
number, the objective of B-UNet is to segment the bogie parts Skb

(

x, y, k
)

 , where k is 
the pointer to the key frames. The key frames are important as the video is captured 
with 240 fps shutter speed; the number of frames within a second is equal to 240. The 
change across 240 frames is less than noticeable by the artificial visual sensor, and hence, 
key frames are extracted. Since all the bogie video frames have similar pixel densities 
the feature-based key frames extraction models using histogram of oriented gradients 
(HOG) features with K-means clustering had little impact on the outcome. However, the 
entropy-based method [49] has shown a good deal of variation in pixels across the video 
frames. The frame entropy is computed as follows:

The entropy Ε of frames f is a 2D space between Ε and f. The 2D entropy space 
could offer local maximum and minimum points from which local extreme points are 
extracted. These extracted points are the frames representing the key frames. The result-
ing key frames of bogies are given by V(x, y, 3, k) where k = 1, 2, …, K and (x, y, 3) is the 
pixel locations in 3 dimensions.

Now, we redefine the problem of segmentation as, given a set of key bogie frames 
V(x, y, 3, k) ∀ k = 1 to K, design a UNet model to learn the bogie parts binary models for 
segmentation Skb x, y, k  . The parameter b gives the number of bogie parts or bogie part 
index. The architecture of the UNet has been incepted from [47]. The model takes an 
input frame size equal to 240 × 424 × 3. The network in Fig. 3 has 8 convolution layers 
with 16,32,64,128 filters per two consecutive layers in both the compressive and expan-
sive paths as shown in the UNET part of Fig. 2. All layers have 3 × 3 unpadded convolu-
tions with ReLu activation functions followed by a maximum pooling of 2 × 2, which 
halves the frame resolution to the forward layers. Subsequent down-sampling steps will 
see a doubling of the number of filters in both arms of the UNet. There are no fully con-
nected layers in the end of the downsampler block. Subsequently, upsampler blocks add 
pixels in 2 × 2 up-convolutions that cut down the number of filter channels to half of the 
corresponding counterpart in the downsampling level. This results in the loss of feature 
channels during upsampling making it difficult to generate a segmentation mask with 
these small feature maps. This loss in feature maps is compensated with the help of skip 

(1)E(f ) = −
∑

j

pf (j)× log
(

pf (j)
)
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connections that apprehend the cropped feature maps from the corresponding compres-
sor blocks after the up convolutions in the expander blocks at the same level. The crop-
ping of the encoder or compressor block features is necessary to ensure that uniform 
dimensionality for concatenation with the expander feature maps. These concatenated 
feature maps are further learned using two 3 × 3 convolutional layers followed by a non-
linear ReLu. Finally, a 1 × 1 convolutional layer maps each of the 16-component feature 
vectors into the required classes. Our B-UNet has only 16 components against the 64 in 
the original UNet architecture. This is because the segmentation stroke of the bogie part 
in the entire video frame is small compared to the entire spatial resolution of the frame 
itself. After multiple experiments, the 16-channel filter is perfect for bogie part segmen-
tation and is computationally faster than the traditional UNet model.

The bogie segmentation has a large background region when compared to the spa-
tial occupancy of the part in the video frame. This has resulted in a dominating loss 
with respect to the background during the training process falling into the local mini-
mum frequently. Hence, we propose to apply the solution in [62], which addresses the 
foreground-background pixel imbalance in the rolling stock video frames. We applied 
the two traditional loss functions during the training process. They are a type of binary 
cross-entropy (BEC) called focal loss (FL) and dice loss (DL). The BEC is given by

where GT is the ground truth in the pixel range {0, 1}and p ∈ [0, 1] is the probabilities of 
foreground and background predicted by the model. {np0, np1} are classes that represent 
background class with 0th values and foreground with 1 value. The values of α ∈ (0, 1] 
and γ ∈ [0, 5] are adjustable hyperparameters. For B-UNet, we selected α = 0.5 and γ = 1 
across all datasets.

The second loss used was dice loss (DL) which is a regular in segmentation problems 
using deep learning models. Dice loss solves the problem of imbalance between fore-
ground and background pixels using the segmentation evaluation index between the 

(2)FL(GT , p) =















−
np0
�

i=1

α(1− α)γ log(p), if GT = 1

−
np1
�

i=1

α(1− α)γ pγ log (1− p), otherwise

Fig. 3  The proposed UNet bogie part segmentation module



Page 10 of 24Krishnamohan et al. Journal of Engineering and Applied Science           (2022) 69:69 

predicted segmentation mask and ground truth annotated masks. The DL is formulated 
as follows:

The parameter δ ∈ [0, 1] is a preventive measure to avoid a divide by 0 instances during 
training. The two losses were used simultaneously for backpropagating through the net-
work for weight modifications. However, the combination of the proposed loss is consid-
ered as an average over the entire pixel range defined as follows:

The B-UNet segmentation network is trained on K key frames to extract bp bogie parts 
from B ∈ [1, b] bogies and P ∈ [1, p] parts. Testing is initiated on the sequences of bogie 
parts that were not previously seen by the B-UNet of different trains. The obtained parts 
are now applied as inputs to the classifier to identify the bogie part correctly and provide 
the necessary analysis.

B‑UNet implementation

The original frame size from the high-speed camera sensor was 1280 × 1918 at 240 fps. 
The sensor records 240 frames per second, and in a 1-min video, we have around 240 × 
60 = 14,400 frames per minute. Our dataset consists of passenger trains from the Indian 
subcontinent which are having an average of 20 coaches per train. The camera sensor’s 
average recording of a train happened for around 1.05 to 1.42 min. All the above values 
are computed based on the video contents in our dataset. The average number of frames 
in each training class was found to be around 15,456 frames per train. Using the entropy-
based formulation, the key frame extractor will assemble only frames with maximally 
occupied bogie parts. The number of frames per bogie is around 0.2% of the total frames, 
which is 30 frames/bogie. There will be two bogies per coach per side, and for a 20-coach 
train, there will be 40 bogies. Finally, the training set for bogie part segmentation con-
sists of 30 × 40 = 1200 video frames. From these 1200 training bogie video frames, we 
train only for 8 bogies with 18 parts. This is because the bogie parts are fairly constant 
over the entire train; it is unnecessary to use all bogie frames for training. A number 
8 also guarantees good data augmentation for training apart from others such as rota-
tion, scaling, zooming, and flipping horizontally and vertically in our model. Finally, the 
training set has 320 frames in 100 different augmentations per frame. The total dataset 
for B–UNet will have 32 K video frames and 32 K ground truth labels with around 1778 
parts per label. The filter kernels are initialized using the zero mean Gaussian centered 
around unit variance. A batch normalization layer is added after each convolution layer 
to induce stability of the process. The hyperparameters in the loss function are selected 
as discussed in the previous section for all the bogie videos through experimentation. 
The optimizer is Adam with a learning rate of 0.00001 and a momentum factor of 0.02. 
There is no decay in the learning rate as the error reaches a minimum value. All these 

(3)DL(p,GT ) = 1−

2
np
∑

i=1

piGTi + δ

np
∑

i=1

p2i +
np
∑

i=1

G2
Ti
+ δ

(4)SL =
FL(p,GT )

np
+ DL(p,GT )
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methods are unchanged across all datasets and on other models used for comparisons. 
All the models were implemented on NVIDIA GTX1070i attached to 16GB memory. 
The epochs hyperparameter is set to 100 for all models.

The testing is performed on the full bogie video sequence without key frame extrac-
tion for segmenting the bogie parts. The segmented bogie parts are now arranged in 
chronological triplet order of current fc, previous frame fc − 1, and next frame fc + 1 for 
each bogie part. These three groups of segmented video frames form the input to the 
classifier which is built on the multi head attention model.

The bogie classification module: B‑MHAC

The B-MHAC (bogie–multi head attention classifier) is a combination of an attention 
grabber network and the dense network classifier with Softmax activation. The outputs 
of the 1 × 1 convolutions in the B-UNet are segmented bogie parts that are separated 
into multiple classes manually. Given the bogie classes Cbwith their segmented bogie 
parts from b = 1 to B at 30 time steps and the raw bogie RGB video frames V(x, y, 3, t) ∈ R2, 
the objective of B-MHAC is to learn the distinct bogie part features using the multi head 
attention framework as an object placeholder in the video frames. The right side of Fig. 2 
has 4 streams of convolutional layers with three of them forming the basis for attention 
on the raw video frames in the 4th stream. The convolutional layers in each stream will 
accept an input of size 240 × 424 × 3, which is interpolated to match the segmented 
outputs to 240 × 424, which will be operated upon by 32 filters of size 3 × 3 with stride 
1. These linear layers are nonlinearized with ReLu activations and passed through batch 
normalization to train the layers more independently.

Given the features from the four streams with sizes W ×H × F |il in the lth layer of ith 
the feature matrix, the first goal is to multiply the segments at different time scales with 
the incoming bogie RGB frame independently in the upper 3 streams of the multi head 
network. The output of the multiplication is Ml

s(i) ∈ R2 where s = 1, 2, 3 is the stream 
number. In order to obtain the relationship between the original masked object Ml

s(i) 
and the segmented bogie part features f ls (i) , we apply a feature matching block as shown 
in Fig. 4. Here l gives the layers, and i represented feature positions.

Let fM ⊂ Ml
s(i) and fB ⊂ f ls (i) be the features of query masked object and the support 

bogie parts of size W × H × C, respectively. Primarily, these two features are mapped to 
a spaces Θ and Φ to obtain Θ(fM) and Φ(fB), respectively. Subsequently, the 3D matrices 
are reshaped to WH × Cwhich transforms into a spatial attention maps using the formu-
lation below:

Meanwhile, the output h(fM, fB) is multiplied with the features in support spaces Φ(fB) 
into an intermediate space g(fM, fB)formulated as follows:

The wj(fB) are the features of the bogie parts at jth position in the network. This ensures 
that the features that are relevant to the query image are retained and that which are 
irrelevant are discarded.

(5)h
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Finally, the output of matching network g(fM, fB) is reshaped to that of the original 
query features and is concatenated with them by applying a δ weighing rule. The formu-
lation is computed as follows:

The δ value is a hyperparameter which will be decided based on the experimentation 
and the pixel density of each of the bogie objects. Finally, the integrated features FI from 
each of the bogie classes are applied to a two-stage dense network with Softmax activa-
tion for classification. Though the process is computationally expensive, it has shown to 
recognize deforming shapes of bogie objects during the movement of the train. Accord-
ingly, we test the performance of the proposed method through experimentation and 
validation on the train rolling stock dataset.

Experimentation

TRSE datasets

The datasets used in this work are shown in Fig. 5. A more detailed view of the captur-
ing mechanism and sensor used is given in our earlier works [33]. The train rolling stock 
examination (TRSE) bogie videos are captured at different time stamps during the day as 
shown in Fig. 5. Each of these videos were captured at 240 frames per second when the 
train was moving at a little over 30 kmph at 1080P resolution. Each of the video datasets 
has more than 21,000 frames.

Since it was difficult to find defective bogies within a short period in real time, we sim-
ulated the defects found regularly on bogie parts using photoshop and reinduced those 
frames back into the original video sequence. Figure 6 shows two such defects on spring 
suspension and binding rods.

The objective of the experimentation is to identify the following bogie parts in the 
video sequence as shown in Fig. 7. Altogether, there are 16 bogie parts that should be 
monitored during TRSE as per the Indian railway rolling stock examination manual. 
The numbering will be part of the class names as there are multiple parts with the same 

(7)FI = δ × g
(

fM , fB
)

+ (1− δ)M(i)

Fig. 4  The proposed cascaded feature matching module with multi head self-attentions for accurate 
tracking of bogie part position and identification



Page 13 of 24Krishnamohan et al. Journal of Engineering and Applied Science           (2022) 69:69 	

name. A total of five parameters were used to judge the performance of the algorithms 
qualitatively along with the visual validation on the test view frames. They are intersec-
tion-over-union (IoU), mean average precision (mAP), mean False Identification (mFI), 

Fig. 5  Datasets for TRSE used for experimentation

Fig. 6  Defective bogie parts induced into the original video frames through photoshop
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and mean non-identification (mNI). The IoU is generally used for understanding the 
performance of the UNet segmentation module and its role in the judgment of the clas-
sifier. The range of IoU is between 0 and 1, with the latter being the desired value for 
a good segmentation algorithm. Similarly, the mAP gives the precision with which the 
classifier identifies the given bogie object. The mFI is a parameter that indicates the false 
identification of a bogie object, and mNI gives the inability of the classifier to identify the 
bogie object.

Training and testing the B‑MHAC

The training dataset is limited to only one sequence of 200 video frames per sample. 
Elaborately, only 200 video frames per train bogie are applied for training the model 
along with the defect-induced sequences. Our train video dataset consists of 7 video 
sequences, out of which six are normal and one is with defective bogie parts respectively. 
The total training video frames applied are 7 × 200 = 1.4K. Consequently, the remain-
ing video frames are used for testing the trained model. The two networks in B-MHAC 
are trained and tested separately due to different hyperparameter initializations. The 
weight and bias initializations for B-MHAC has been through zero mean unit variance 
Gaussian distribution function. The learning rate in UNet was fixed across all datasets as 
0.000001. This high learning rate enables the UNet to learn slowly over the entire object 
range. The bogie object masks were created using the annotation tool, ImageJ. The UNet 
is trained on stochastic gradient descent (sgd) optimizer and dice loss function. Specifi-
cally, the dice loss defines the overlap between the predicted and ground truth samples. 
To standardize the training process, the UNet across all datasets were trained for 100 
epochs.

Consequently, the multi head classifier uses a dynamic learning rate initialized at 
0.0001 which reduces by 10% when the error becomes constant for 10 continuous 
epochs. The momentum factor is 0.8. Here, we used the Adam optimizer for weight 
adaptations and cross entropy loss function for error calculations. The output of the 
classifier is a probability distribution function with maximum probability pointing 
towards the predicted class label. Additionally, inferencing on the test video sequences 

Fig. 7  Bogie parts being identified through the proposed algorithm
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is accomplished by mapping the bounding box locations from the annotating data. The 
biggest advantage of the B-MHAC lies in the tiny training set that is sufficient for achiev-
ing robust performance over the entire test samples.

Results and discussion
The proposed segmentation followed by multi head recognition of train bogie parts from 
high-speed video frames is being experimented with multiple datasets and variational 
hyperparameter combinations of the network during training. Subsequently, the results 
of the experiments were validated against the previous models on different test inputs. 
The following subsections provide a detailed analysis of the results obtained on multiple 
datasets.

Quantitative validation of B‑MHAC

First, we show the output of the UNet segmentation module on bogie train video 
sequences. Second, we present the three outcomes of the multi head classifier to show 
the confidence of the trained model in identifying a bogie object during inferencing. 
Figure 8 shows the results of the UNet on the axle bogie part. Simultaneously, the seg-
mented axle bogie part is juxtaposed with ground truth sequences in Fig. 9.

The figures show only 15 frames of the video sequence in data B-1 when the train is 
moving from right to left of the screen. Subsequently, the results obtained for all other 

Fig. 8  UNet segmentation output for bogie part Axel across frames

Fig. 9  Ground truth (GT) masks of the axle l in the dataset B-1
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17 bogie parts were found to be similar to Fig. 8. The first few frames in the output of 
segmentation have shown to have weak edges as the size of the object is small and its 
deformation is rapid between frames. However, with the increased object pixel density 
and reduced intra frame object deformations, the segmentation process is relatively sta-
ble and provides exceptional quality of bogie parts for classification.

The trained B-MHAC is tested on the segmentation outputs of UNet, and the 
results are projected onto the actual video frames through bounding boxes. First, 
we show the results obtained on the databases in Fig. 6. The inferencing results are 
shown in Fig. 10 on six different train videos captured under various circumstances. 
The overall bogie part retrieval is found to be around 90% in video sequences where 
the camera lens was perpendicular to the train movement. The relative position of 
the bogie parts in the frames does not affect the recognition accuracies due to the 

Fig. 10  Inferencing on test video frames from the dataset using the trained B-MHAC. Figure showing 
randomly selected frames during the inferencing process. The order of the frames matches the order of the 
datasets in Fig.5 (Zoom for better visibility)
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presence of the segmentation module and the multi head attention network. The 
multi head attention network takes input from three sets of bogie parts at different 
time steps and generalizes on the location of the objects in the continuous video 
sequence. This has guaranteed greater accurate mapping of bounding box informa-
tion onto the video sequence.

Consequently, the effectiveness of B-MHAC bogie part identification model is to be 
ascertained by comparing the results against popular image object detection models 
such as SSD, R-CNN, Fast R-CNN, Faster R-CNN, and our previous method with dif-
ferent Yolo versions. The visual results are presented in Fig. 11 on B-4 dataset. The pro-
posed method outperformed other models due to the presence of multi head attention 
network that was learned in time steps on bogie object deformations.

This type of learning involves instances of both spatial and temporal information for 
classification making it robust to object deformations in the video sequences of moving 
trains. Finally, the B-MHAC is tested for defective parts identification on modified video 
sequences. The video frames with defective parts are fabricated with two defects on the 
spring suspension and binding screw.

These defective part frames are induced into the video sequence, and the model was 
trained from scratch to identify defects by using the existing hyperparameters from the 
previous training. The results are projected onto the video sequence with a red bound-
ing box for defective parts as shown in Fig. 12. The ability to identify defective parts by 
the proposed B-MHAC is found to be impressive. This is due to fact that the bogie part 
is segmented, and it passes through an attention span of multiple time steps which gives 
the network to learn distinct features across classes. Subsequently, the next subsection 
highlights the qualitative results on all the datasets with the calculated parameters as 
indicated above.

Qualitative evaluation of B‑MHAC model

This subsection evaluates the proposed B-MHAC deep learning model on the six TRSE 
datasets. The IoU is calculated only for segmented bogie parts with UNet, and the 
remaining represents the classifier performance. The results are tabulated in Table 1. The 
values are averaged over the entire test sample. The average IoU across all datasets and 
bogie parts is 0.9162. This shows that the difference in predicted bogie segments and the 
GT has been narrowed extensively. We found a lower IoU for parts that are positioned at 
the end of the frames than that are in the middle. Additionally, the camera angle and the 
light intensities during recording also influenced the lower IoU scores on the datasets 
B-3 and B-6, respectively. Consequently, the average recognition mAP is 0.90115 across 
all datasets. Critical analysis showed that the bogie parts such as wheels and spring sus-
pensions have recorded the lowest mAP values across all datasets. However, their scores 
were better than the previous models as shown in Table 2.

The models in Table 2 are trained from scratch on all datasets by keeping the hyperpa-
rameters constant. The other two parameters mFI and mNI indicate the B-MHAC fail-
ure to identify a part correctly and does not identify at all in the video frame. These two 
parameters are important in understanding the reason for the failure of the B-MHAC 
model. These parametric comparisons are presented in Tables 3 and 4. Analysis of these 
tables showcases that the bogie parts in the neighborhood of the camera focal length 
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Fig. 11  Comparison of approaches for bogie part identification with the proposed B-MHAC (Zoom for better 
visibility). a B-7: spring defects identification in frame 5596. a SSD. b R-CNN. c Fast R-CNN. d faster R-CNN. e 
Yolo v2 with skip. h Yolo v2 bifold skip. i UNe + VGG 16. j B-MHAC
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have better identification potential than those that are away from it. In practice, it 
becomes extremely rigid to adjust the camera sensor position with respect to the mov-
ing train. Despite the above constraints, the B-MHAC has shown robust performance in 
instances where the camera sensor is randomly positioned. Overall, the B-MHAC has 
shown capabilities to sense bogie parts with exceptionally high accuracy when compared 

Fig. 12  Defective parts identification through inferencing on trained B-MHAC (Zoom for better visibility). 
a B-7: spring defects identification in frame 5596. b B-7: spring defects identification in frame 6152. c B-7: 
binding screw defects identification in frame 7531. d B-7: binding screw defects identification in frame 7697. 
e B-7: spring defects identification in frame 12589. f B-7: spring defects identification in frame 12785

Table 1  Performance of B-MHAC on TRSE video datasets

Datasets IoU mAP mFI mNI

B-1 0.9952 0.9639 0.1225 0.142

B-2 0.9057 0.8972 0.2004 0.2222

B-3 0.8987 0.883 0.2554 0.2365

B-4 0.9189 0.9503 0.1509 0.1489

B-5 0.9125 0.9177 0.1838 0.2053

B-6 0.8665 0.7948 0.4325 0.342

Average scores 0.91625 0.90115 0.22425 0.21615
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to other models. This is due to its multiple networks used for segmentation and recogni-
tion simultaneously.

Defect detection through B‑MHAC and comparison

The primary objective of TRSE is to identify defective parts during transit. Therefore, 
any automated TRSE algorithm should have capabilities to detect defective parts in 
the vicinity of the normal bogie parts. This experiment is performed to test the ability 

Table 2  Evaluation of B-MHAC against state-of-the-art methods on perfromance parameter mAP

Baseline 
methods/
datasets

SSD R-CNN Fast 
R-CNN

Faster 
R-CNN

Yolo v1 Yolo v2 Yolo v2 
with skip

Yolo v2 
bifold skip

B-MHAC

B-1 0.6843 0.6952 0.6856 0.7125 0.7752 0.7856 0.8152 0.9214 0.9587

B-2 0.6239 0.6531 0.6598 0.6859 0.7431 0.7658 0.7895 0.8152 0.9025

B-3 0.6151 0.6194 0.6252 0.6657 0.6894 0.7252 0.7594 0.8047 0.8956

B-4 0.6547 0.6773 0.6654 0.6913 0.6973 0.7754 0.7973 0.8478 0.9385

B-5 0.5955 0.6115 0.6175 0.6323 0.6615 0.7025 0.7415 0.8523 0.9122

B-6 0.5759 0.5936 0.5948 0.6189 0.6436 0.6868 0.7236 0.7321 0.8473

Average 
mAP

0.6249 0.6416 0.6413 0.6677 0.7016 0.7402 0.7710 0.8289 0.9091

Table 3  Evaluation of the proposed method using mFI

Baseline 
ethods/
datasets

SSD R-CNN Fast 
R-CNN

Faster 
R-CNN

Yolo v1 Yolo v2 Yolo v2 
with skip

Yolo v2 
bifold 
skip

B-MHAC

B-1 0.4215 0.4125 0.3785 0.3329 0.2882 0.2663 0.2156 0.1752 0.1124

B-2 0.4862 0.4598 0.4296 0.3889 0.3389 0.3025 0.2856 0.2531 0.1853

B-3 0.4621 0.4479 0.4129 0.3609 0.3268 0.2939 0.2556 0.2365 0.1722

B-4 0.4468 0.4352 0.4017 0.3569 0.3075 0.2701 0.2356 0.2036 0.1486

B-5 0.5374 0.5206 0.5251 0.5249 0.5161 0.5177 0.5056 0.4852 0.1672

B-6 0.5827 0.5933 0.5873 0.5789 0.5654 0.5215 0.5206 0.4952 0.2379

Average 
mFI

0.48945 0.4782 0.4558 0.4239 0.3904 0.362 0.3364 0.3081 0.1706

Table 4  Evaluation of the proposed method using mNI

Baseline 
methods/
datasets

SSD R-CNN Fast 
R-CNN

Faster 
R-CNN

Yolo v1 Yolo v2 Yolo v2 
with skip

Yolo v2 
bifold skip

B-MHAC

D-1 0.5563 0.5125 0.4569 0.4236 0.3896 0.3456 0.3179 0.1856 0.1243

D-2 0.5936 0.5469 0.4856 0.4598 0.4189 0.3823 0.3495 0.2658 0.1975

D-3 0.6044 0.6093 0.5908 0.5815 0.5517 0.5355 0.5231 0.3856 0.2235

D-4 0.5459 0.4781 0.4282 0.3874 0.3603 0.3089 0.2863 0.1925 0.1385

D-5 0.5017 0.5037 0.4895 0.4312 0.3931 0.3622 0.3147 0.2489 0.1596

D-6 0.6271 0.6149 0.6121 0.6088 0.5924 0.5894 0.5515 0.4023 0.2578

Average 
mNI

0.5715 0.5442 0.5105 0.482 0.451 0.42 0.39 0.2801 0.1835
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of the algorithms to determine defective parts. Accordingly, the one set of training 
samples was selected as defective parts. In this work, only two defects were induced 
manually on the spring suspension and binding screw. A total of 200 frames were cre-
ated with the two defects and were inducted into the video sequence of B-1. These are 
called broken part defects where the width and location of the cut are varied every 
20 frames. The testing is performed with a 4000-frame video where 40 continuous 
frames were inducted into the original B-1 dataset at 5 randomly selected locations. 
The results of the experiment are shown in Table 5. Markedly, the proposed method 
shows robust defect identification capabilities over other methods by taking advan-
tage of the multi head attention network. However, the model also suffers from incon-
sistency in defect dimensions which have gone undetected in the video sequence.

B‑MHAC vs similar works

Previous works largely focused on the segmentation process of the bogie parts from 
the TRSE video sequences. These models aim to segment the bogie parts with preci-
sion rather than generating discriminative features for classification. Different from 
these approaches, we added an extra deep learning classifier at the end of segmen-
tation processes for the recognition of bogie parts. This experiment will provide an 
insight into the behavior of the B-MHAC model over the existing models. Instead 
of including different CNN architectures along with the segmentation module, we 
applied our multi head attention classifier to the segmented outputs of these meth-
ods. The training the testing processes were in line with the original B-MHAC model. 
The results obtained are presented in Table 6. Only mAP was computed for a single 

Table 5  Experimental results showing defect identification abilities of TRSE automation models 
with mAP as the performance indicator

Baseline 
methods/
parameters

SSD R-CNN Fast 
R-CNN

Faster 
R-CNN

Yolo v1 Yolo v2 Yolo v2 
with skip

Yolo v2 
bifold 
skip

B-MHAC

mPA 0.4852 0.5325 0.5289 0.5475 0.6125 0.6589 0.6895 0.8745 0.9135

mFI 0.5987 0.5847 0.5245 0.5125 0.4528 0.4753 0.4236 0.2698 0.2258

mNI 0.5463 0.5126 0.5247 0.5169 0.4863 0.4236 0.4198 0.2891 0.2122

Table 6  B-MHAC vs similar models on mAP

Baseline 
methods/
datasets

Block 
matching 
[1]

Active 
contours 
[2]

Shape 
prior 
active 
contours 
[3]

Shape 
invariance 
active 
contours 
[4]

Region-
based 
active 
contours 
[5]

Unified 
active 
contour 
model [6]

Yolo v2 
bifold 
skip

B-MHAC

B-1 0.8258 0.8525 0.8965 0.9145 0.9369 0.9522 0.9214 0.9627

B-2 0.7963 0.8256 0.8698 0.8963 0.9245 0.9289 0.8547 0.8963

B-3 0.7058 0.7256 0.7485 0.7458 0.7698 0.7852 0.7523 0.8425

B-4 0.8025 0.8266 0.8785 0.8989 0.9299 0.9369 0.9078 0.9457

B-5 0.7989 0.8158 0.8698 0.8858 0.9158 0.9195 0.8752 0.9025

B-6 0.6854 0.7125 0.7258 0.7458 0.7698 0.7896 0.7321 0.8147
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training run of these models. Apparently, the learning-based models have performed 
exceedingly better than the instance-based methods. Here, exclusively active con-
tours have been used for segmentation of bogie parts with prior knowledge about the 
bogie part characteristics. Although it is evident that the active contours have been 
shown to possess superior segmentation quality, they have poor generalization capa-
bilities on the test inputs. Hence, on video sequences with different camera angles, 
these models have performed weakly.

Conclusions
An attempt has been made to apply deep learning approaches to automate TRSE. Ini-
tially, high-speed video sequences were recorded, and the dataset is created with high 
sparsity and resolution. A hybrid segmentation-classification method has been pro-
posed to simultaneously segment and classify train bogie parts from video sequences. 
Contrasting the regular CNN models, we propose a multi stream multi head bogie 
part classifier (B-MHAC) on the segmented parts. Through extensive experimenta-
tion, it has been found that the proposed method resulted in an average recognition 
of 90.11%. The success of B-MHAC is credited to the attention mechanism at multi-
ple time steps in the video sequence that helped the classifier to generalize better on 
the bogie part deformations on the running trains during recording. Furthermore, the 
approach has allowed for an automated interface environment where the TRSE can be 
performed remotely with high accuracy.
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