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Abstract

Human activity recognition (HAR) is a very challenging problem that requires
identifying an activity performed by a single individual or a group of people observed
from spatiotemporal data. Many computer vision applications require a solution to
HAR. To name a few, surveillance systems, medical and health care monitoring
applications, and smart home assistant devices. The rapid development of machine
learning leads to a great advance in HAR solutions. One of these solutions is using
ConvLSTM architecture. ConvLSTM architectures have recently been used in many
spatiotemporal computer vision applications.
In this paper, we introduce a new layer, residual inception convolutional recurrent
layer, ResIncConvLSTM, a variation of ConvLSTM layer. Also, a novel architecture to
solve HAR using the introduced layer is proposed. Our proposed architecture resulted
in an accuracy improvement by 7% from ConvLSTM baseline architecture. The
comparisons are held in terms of classification accuracy. The architectures are trained
using KTH dataset and tested against both KTH and Weizmann datasets. The
architectures are also trained and tested against a subset of UCF Sports Action dataset.
Also, experimental results show the effectiveness of our proposed architecture
compared to other state-of-the-art architectures.
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Introduction
Machine learning overlaps with many science fields. One of these fields is computer
vision [1]. Machine learning methods provide computer vision with techniques that
offer a great leap in many of its applications, for instance, object recognition, track-
ing, classification, 3D modeling, and many other applications. These applications have
witnessed great improvement with the emergence of new machine learning techniques.
One of these applications is HAR. HAR is the basis for many other computer vision
applications, for example augmented reality, robotics, automatic monitoring for medical,
industrial, or surveillance purposes, etc. [2]. HAR aims at recognizing an action from data
acquired by sensors, images, videos, etc. Proposed HAR systems face many limitations
that narrow their applicability on domain-specific applications: limitations like (i) lighting
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variation, (ii) camera perspective change, (iii) scale variation, (iv) occlusion resulting from
same human body parts or even from surrounding objects, (v) background confusion by
undefined static or moving objects, and (vi) class confusion whether from intra-class sim-
ilarities or inter-class variation [3]. Also another limitation that may rise with training of
domain-specific applications is the lack of descriptive datasets. Also, proposed HAR sys-
tems face many challenges such as the following: (i) Reliability: HAR systems are required
to make continuous real-time decisions based on what the system yields in surveillance
applications. (ii) Social acceptance: as in smart home assistant devices, these devices
closely monitor users behaviors at home, so this invades the users privacy, which raises
the disclosure challenge. (iii) Disclosure: the data is required to be processed on the same
device and not to be shared with any other parties for processing or advertisement. Due
to the multidisciplinary nature of HAR [2], HAR requires continuous examination and
exploration of new solutions to tackle these limitations and challenges.
To overcome the limitations and challenges of solving HAR problems, new techniques

must be investigated. One of the most successful and recent technique is ConvLSTM
[4]; ConvLSTM is a convolution LSTM layer used in many computer vision applications
that require processing of spatiotemporal data. ConvLSTMuses convolution operation on
an LSTM unit to perform input-to-state transformation or state-to-state transformation.
ConvLSTM accepts a set of data over time to perform some prediction task. ConvLSTM
has been widely used in many computer vision applications, for example, object tracking
[5], scene segmentation [6], activity recognition [7], and video enhancement, like video
rain removal [8]. In this paper, we propose a modification to conventional ConvLSTM
layer, inspired by [9]. The novelty of our approach lies in the following points:

1 The introduction of residual inception convolutional recurrent layer,
ResIncConvLSTM, a variation of conventional ConvLSTM layer that incorporates
both the concepts of residual and inception with ConvLSTM layer

2 Solving Human activity recognition problem by designing an architecture using the
newly introduced ResIncConvLSTM layer

Our proposed approach is found to outperform state of the art architecture [4] by 7%
when tested on KTH dataset [10] and 11% when tested on Weizmann dataset [11]. We
trained and tested our approach on a subset of UCF Sports Action dataset [12, 13] and
it is found to outperform state of the art architecture [4] by 21%. Also, our proposed
architecture shows efficiency improvement compared to some state-of-the-art architec-
tures. The fact that the effectiveness of our proposed architecture is better than both the
ConvLSTM baseline architecture and some state-of-the-art architectures promises bet-
ter results by replacing some of the conventional ConvLSTM layers with the proposed
ResIncConvLSTM layer in deeper ConvLSTM-based architectures.

Related work
HAR is a core component in various computer vision applications, so an extensive amount
of research is done to tackle HAR problem. In this section, we briefly review the most
remarkable and related work done to solve HAR problem. And since in this paper, we
only examine visual data, we are only concerned with vision-based HAR methods. HAR
approaches can be classified according to the following perspectives.
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Feature extraction process

One perspective to classify HAR approaches is the process by which the features are
extracted. The process of extracting features is either manually crafting features, or by
using classical machine learning for automatically learning these features. Manually craft-
ing features can either use the external seen features of the object just like body parts
or motion [14–16] or a hybrid between these features [17, 18]. Many feature extraction-
based methods are recently used to solve HAR. Nazir et al. [19] proposed a novel feature
representation, 3D Harris space-time interest point detector and 3D Scale-Invariant Fea-
ture Transform (3DSIFT) descriptor. The features are then extracted and arranged for
each frame sequence using Bag-of-features (BOF)method. Then amulticlass support vec-
tor machine (SVM) model is trained and tested using the extracted BOF. Nadeem et al.
[20] proposed a HAR method based on training an artificial neural network with multi-
dimensional features. These multidimensional features are estimated for twelve different
body parts using body models. On the other hand, automatic learning of features can
be done using a non-deep learning approaches like Bayesian network [21] or dictionary
learning [22], or using deep learning. CNN [23], RNN [24], ConvLSTM, and CNN-RNN
[25, 26] are examples of deep learning approaches. Since the introduction of ConvL-
STM layer, many ConvLSTM-based architectures are introduced to solve HAR problem.
In 2018, Yuki et al. [27] proposed dual-ConvLSTM to extract global and local features
and use them in the recognition process. In 2019, Majd and Safabakhsh [7] introduced
motion-aware ConvLSTM architecture that captures not only spatial and temporal cor-
relations but also motion correlations between successive frames. In 2020, Kwon et al.
[28] introduced hierarchical deep ConvLSTM architecture to capture different complex
features.

Feature representation

One perspective to classify HAR approaches is how features are represented. Features
can be arranged to preserve spatial, temporal, color, or dimensional information. The fea-
tures can be flattened as in BOF method losing its spatial information. Aly and Sayed
[29] proposed a HAR method that exploits both global and local features to differenti-
ate between similar actions, like walking and running. The method first extracts from the
input sequence of frames both global and local ZernikeMoment features. Theses features
are then combined and represented using BOF method. Then multiclass SVM algorithm
is trained to recognize different actions. Another example of feature representation is sil-
houette frames. The input undergo silhouette extraction. Silhouette image or frame is an
image that shows only the outline or the shape of the object of interest. The most impor-
tant characteristic in silhouette representation is recognizing moving objects. Ramya and
Rajeswari proposed, in [30], a HAR method based on silhouette frames. The method
consists of three consecutive stages. First, the method preforms background subtraction
to extract silhouette frames. Second, distance transform based features and entropy fea-
tures are extracted from the silhouette frames. Third, a neural network is trained using
these extracted features to recognize various actions. Another feature representation is
bit maps, for example, features can be arranged to be a bit map of the moving object of
interest. In [31], the authors proposed a solution to HAR problem using 3D CNN net-
work receiving as an input a 3D motion cuboid. Input binarization is also one type of
feature representation. Another famous feature representation is training the model with
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a sequence of sampled frames, where each pixel in each frame is considered a feature
value. [23, 24, 32, 33] are examples for approaches that use a sequence of sampled frames
as the input features.

Supervision Level

Another perspective to classify HAR approaches is whether the approach is supervised,
unsupervised, or semi-supervised learning. Supervised learning approaches relies on
training the model using massive well-labeled data. [34, 35] are examples of HAR super-
vised approaches. In [34], Han et al. proposed a two streamCNNmodel to perform action
recognition. The authors proposed an augmentation strategy to overcome the overfitting
problem that arises from the absence of massive labeled datasets. The proposed aug-
mentation strategy is based on remodeling the dataset using a transfer learning model.
In [35], Zhang et al. proposed a feature extraction approach that decouples spatial and
temporal features. The proposed approach is based on a dual channel feedforward net-
work to extract static spatial features from a single frame and dynamic temporal features
from consecutive frame differences. Both decoupled spatial and temporal features are
then fed to a multiclass SVM model for action recognition. On the other hand, unsuper-
vised learning do not need labeled data. Discrimintive features are learned by the model
from unlabeled data. [36–42] are examples of work done to solve HAR problem based on
unsupervised learning. Abdelbaky and Aly [36–39] presented several solutions to HAR
based on unsupervised deep convolution network PCANet, a simple PCANet [36], and
an extended solution in which spatiotemporal features are learned from three orthogonal
planes (TOP), PCANet-TOP [38]. In [40, 41], Rodriguez et al. solved HAR problem using
one-shot learning in which a class representation is built from a few or a single train-
ing sequence. The authors proposed a model based on Simplex Hidden Markov Model
(SHMM) and an optimized Fast Simplex Hidden Markov Model (Fast-SHMM). In [42],
Haddad et al. presented a method to solve HAR problem using one-shot learning model
using Gunner Farneback’s dense optical flow (GF-OF), Gaussian mixture models, and
information divergence. Semi-supervised learning is a hybrid approach that benefits from
the ability of supervised learning to learn features and the ability of unsupervised learning
to learn hidden non-visual patterns. In semi-supervised learning, the training is done with
partially labeled data. Also, not all the classes are essentially known. [43, 44] are examples
of work done to solve HAR problem based on semi-supervised learning approach.

Essential background
In this paper, a new layer is proposed by integrating residual and inception concepts into
ConvLSTM layer. In this section, a brief introduction about ConvLSTM, residual, and
inception architectures are explained.

ConvLSTM architecture

ConvLSTM is first introduced in [4]. ConvLSTM overcomes the shortcoming of fully
connected LSTM in handling spatial data. Fully connected LSTM handles temporal cor-
relation leaving out encoding spatial data. ConvLSTM addresses this problem by applying
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Fig. 1 ConvLSTM unfolded structure

convolution to input-to-state and state-to-state transformations. Figure 1 illustrates Con-

vLSTM unfolded structure and its main tensors, the inputs X1, ...,Xt , cell current states
C1, ...,Ct , and hidden states H1,..., Ht , which are also considered cell output.
(1)–(5) are the fundamental equations of ConvLSTM. Gates it , ft , ot are 3D tensors.

“σ ” is nonlinear activation function, “∗” is convolution operator, and “◦” is the Hadamard
product. The transformation from one state to another occurs as illustrated in (1)–(5).
The next value of each cell in the grid is determined by both the input and the current
value of the neighboring cells. This can be achieved by applying convolution to input-to-
state and state-to-state transformations.

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (1)

ft = σ(Wxf ∗ Xt + Whf ∗ Ht−1 + Wcf ◦ Ct−1 + bf ) (2)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (3)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (4)

Ht = ot ◦ tanh(Ct) (5)

Padding is used to make sure that both hidden states and inputs have the same dimen-
sions. Padding of hidden states on the borders is viewed as using the state of the outside
world in calculation. Hidden states are initialized with zeros to indicate total ambiguity of
the future.
ConvLSTM-based architecture is first applied on next frame prediction using artificially

generated moving MNIST [45] dataset in [4]. Since the introduction of ConvLSTM layer
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in 2015, many modifications were proposed to improve the layer architecture. The same
exact year, Liang and Hu [46] introduced simple recurrent convolutional unit, RCNN,
and applied it on objet recognition using SVHN [47], CIFAR-100 [48], and MNIST [49]
datasets. In 2017, Alom et al. [50] proposed inception recurrent convolutional unit,
IRCNN. In 2018, Wei et al. [51] introduced residual ConvLSTM and applied it on tweet
count prediction. In 2020, Alom et al. [9] proposed residual inception recurrent unit,
IRRCNN. IRCNN and IRRCNN are tested against CIFAR-100.

Inception architecture

Inception architecture is first introduced in [52]. Inception module is designed as shown
in Fig. 2. It combines output from 3 different layers (1× 1 conv, 3× 3 conv, and 5× 5
conv) and concatenates them to form the input to the next layer. Different filter sizes help
detecting features that may come in different sizes. The 1× 1 conv that precedes 3× 3
conv and 5× 5 is used to compute reductions before the computationally expensive layers
3× 3 conv and 5× 5 conv. Inception modules are recommended to be used in higher
layers to extract complex features, while using conventional convolutional layers as lower
layers.

Residual architecture

Residual architectures are introduced in [53]. Theoretically, as a neural network goes
deeper, a more complex nonlinear function is learned. This complex function becomes

Fig. 2 Inception architecture
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able to discriminate between different classes easily. For applying this practically, suffi-
cient dataset should be used in training this network. Training takes place by updating
the current weights with values proportional to the gradient of the loss function. Also, as
a neural network goes deeper a problem with gradient flow arises. The gradient becomes
vanishingly small. This prevents the neural network from any further change to the net-
work weights, so eventually the network does not learn anything new. This problem is
called the vanishing gradient problem. Residual architectures are motivated by this prob-
lem. A residual neural network is based on the idea of shortcuts to skip some layers,
typically two or three layers, as shown in Fig. 3. This helps with the vanishing gradient
problem by reusing activation from previous layers until the adjacent layers learn and
adjust their weights. This allows an alternative way for the gradient to flow.

Methods
In this section, the proposed ResIncConvLSTM layer is explained in more details.
The proposed layer incorporates residual and inception concepts into the conventional
ConvLSTM.

ResIncConvLSTM layer design

Figure 4 shows the design of ResIncConvLSTM layer. The input from the previous layer,
X, is fed to the ResIncConvLSTM layer. ResIncConvLSTM consists of two main parts.
The first part is the inception part. The inception part consists of four parallel branches:

1 A ConvLSTM layer with kernel size 1× 1 and number of filters fa1x1 , Ha(X)

2 A ConvLSTM layer with kernel size 1× 1 and number of filters fb1x1, followed by a
ConvLSTM layer with kernel size 3× 3 and number of filters fb3x3, Hb(X)

3 A ConvLSTM layer with kernel size 1× 1 and number of filters fc1x1, followed by a
ConvLSTM layer with kernel size 5× 5 and number of filters fc5x5, , Hc(X)

4 A Maxpooling layer with kernel size 3× 3, stride of 1 and “same” padding, followed
by a ConvLSTM layer with kernel size 1× 1 and number of filters fd1x1, Hd(X)

These four branches produce intermediate outputs Ha(X), Hb(X), Hc(X), and Hd(X),
considering that all the branches receive the same input, X.

Fig. 3 Residual architecture
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Fig. 4 Proposed ResIncConvLSTM structure labeled with data tensor dimensions and corresponding
equations notation

These intermediate outputs are then concatenated to form the output to this part,G(X).
The second part, residual part, adds both the original input, X, with the output from
inception part, G(X), to produce the final output, Y.
The design in Fig. 4 can be described using (6) and (7). “

⊙
” is concatenation operator.

“+” is addition operator.

G(X) = Ha(X)
⊙

Hb(X)
⊙

Hc(X)
⊙

Hd(X) (6)

Y = G(X) + X (7)

Solving HAR using ResIncConvLSTM layer

Figure 5 shows the proposed architecture. The architecture uses ResIncConvLSTM layer
as its fundamental module. The architecture is arranged as follows:

1 A conventional ConvLSTM layer was used as the lower layer to capture low level
features, it also transforms the input shape tensor dimensions from (20, 40, 40, 1)
to (20, 40, 40, 24), this dimension expansion improves the process of extracting and
learning of new features in subsequent layers, and this expansion cannot be done

Fig. 5 Proposed model using ResIncConvLSTM layer
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using ResIncConvLSTM layer as in residual layers the input and the output tensor
dimensions should conform,

2 Followed by ResIncConvLSTM, to capture higher level features, then
3 Another conventional ConvLSTM layer, this layer reduces the dimensions from

(20, 40, 40, 24) to (40, 40, 1); in other words, it returns a single reduced tensor for
every input sequence, and finally

4 A stack of dense fully connected layers with drop out.

This design is trained against ConvLSTM baseline architecture which is a stack of con-
ventional ConvLSTM layers followed by a stack of dense fully connected layers with
dropout proposed in [4]. ConvLSTM baseline architecture is adequate in comparisons
because it is simple to make the evaluation of our proposed work unbiased and not
affected by any assisting factors.
Both models are trained for 20 epochs using the same dataset. Our model has

52,108 trainable parameters. ConvLSTM baseline model has 70,492 trainable parameters.
Tables 1 and 2 show the detailed description of the proposed architecture andConvLSTM
baseline architecture, respectively. The tables describe each layer with its input, input ten-
sor size, and output tensor size. The tables show also whether a ConvLSTM layer returns
the whole sequence or not.

Data description

The input is arranged in a 5D tensor form: (B,T ,W ,H , ch), where B is the batch size,
T is the number of frames per sequence, in other words the number of timesteps, W is
the width of the frame, H is the height of the frame, and ch is the number of channels.
The output is either a 5D tensor with dimensions (B,T ,W ,H , f ) or a 4D tensor with
dimensions (B,W ,H , f ), where f is the number of filters and B, T,W, and H as illustrated
before. The 5D tensor case is when there is an output for each timestep. The 4D tensor
case is when a single output is returned for the whole sequence. The dimensions of the
output depends on the nature of the application. In case of HAR, only one final output,
single label, is required for the whole sequence, so the output is either a 4D tensor, or a

Table 1 Proposed model detailed description

Layer ID Layer name Input size Output size Number of
parameters

Input ID Return
sequence

system_input Input (16, 20, 40,
40, 1)

(16, 20, 40,
40, 1)

0 - -

convlstm_m_1 ConvLSTM (16, 20, 40,
40, 1)

(16, 20, 40,
40, 24)

21,696 system_input Yes

batch_norm_1 Batch
Normalization

(16, 20, 40,
40, 24)

(16, 20, 40,
40, 24)

96 convlstm_m_1 -

resincconvlstm ResIncConvLSTM (16, 20, 40,
40, 24)

(16, 20, 40,
40, 24)

19,760 batch_norm_1 No

convlstm_m_2 ConvLSTM (16, 20, 40,
40, 24)

(16, 40, 40, 1) 904 resincconvlstm No

batch_norm_2 Batch
Normalization

(16, 40, 40, 1) (16, 40, 40, 1) 4 convlstm_m_2 -

reshape Reshape (16, 40, 40, 1) (16, 1, 1600) 0 batch_norm_2 -

dense_1 Dense (16, 1, 1600) (16, 1, 6) 9606 reshape -

dropout Dropout (16, 1, 6) (16, 1, 6) 0 dense_1 -

dense_1 Dense (16, 1, 6) (16, 1, 6) 42 dropout -
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Table 2 ConvLSTM baseline architecture detailed description

Layer ID Layer
name

Input size Output size Number of
parameters

Input ID Return
sequence

system_input Input (16, 20, 40,
40, 1)

(16, 20, 40,
40, 1)

0 - -

convlstm_1_3x3 ConvLSTM (16, 20, 40,
40, 1)

(16, 20, 40,
40, 40)

59,200 system_input Yes

batch_norm_1 Batch Nor-
malization

(16, 20, 40,
40, 40)

(16, 20, 40,
40, 40)

160 convlstm_1_3x3 -

convlstm_2_3x3 ConvLSTM (16, 20, 40,
40, 40)

(16, 40, 40, 1) 1480 batch_norm_1 No

batch_norm_2 Batch Nor-
malization

(16, 40, 40, 1) (16, 40, 40, 1) 4 convlstm_2_3x3 -

reshape Reshape (16, 40, 40, 1) (16, 1, 1600) 0 batch_norm_2 -

dense_1 Dense (16, 1, 1600) (16, 1, 6) 9606 reshape -

dropout Dropout (16, 1, 6) (16, 1, 6) 0 dense_1 -

dense_1 Dense (16, 1, 6) (16, 1, 6) 42 dropout -

5D tensor reduced to a 4D tensor in a subsequent layer. In our proposed model, we chose
the latter choice. In other applications, like next frame prediction or object tracking, the
output is a 5D tensor because an output is required for each time step.

Results and discussion
This section discusses the setup and the results of the experiments held to show the signif-
icance of the proposed work. The experiments are run on a computer with quad-core Intel
Core i7 processor running at 2.3 GHz using RAM of 8GB of 1600MHz DDR3 memory.

Datasets

The benchmark used to train our model is KTH dataset [10]. The KTH dataset is a human
action video database of six human actions (walking, jogging, running, boxing, two hands
waving, and hand clapping). We used KTH in the training and evaluation process because
it is one of the biggest human activity dataset. The dataset contains 2391 sequences of
around 4 s on average, filmed with a static camera over a homogeneous background,
indoor and outdoor settings. The model is tested against both KTH and Weizmann
[11] datasets. Weizmann is a human action dataset of 90 sequences of nine actors with
ten human actions (walking, running, jumping, galloping sideways, bending, one-hand
waving, two-hands waving, jumping in place, jumping jack, and skipping). Only actions
similar to the KTH dataset are considered in the evaluation process (walking, running,
and two-hands waving). Also, 10% of the KTH dataset is set aside and never used during
training to be used in the evaluation process. Also, we trained and tested our approach
against a subset of UCF Sports Action dataset. UCF Sports Action dataset is a public
dataset collecting a set of 10 actions from different sports that are originally broadcasted
on television. The actions included in the dataset are diving, golf swing, kicking, lift-
ing, riding horse, running, skateboarding, swing-bench, swing-side, and walking. We only
considered the following actions in the evaluation process: diving, lifting, riding horse,
swing-side, and walking. The dataset contains 150 sequence of duration from around 2
to 14 s. Table 3 concludes KTH, Weizmann, and UCF Sports Action datasets description.
The training data are sampled at 20 frames per video, resized to grayscale 40× 40 pixels.
The training data is preprocessed, resized, and converted to grayscale frames, to reduce
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Table 3 KTH, Weizmann, and UCF Sports Action datasets’ description

Number of actions Number of videos Average video length

KTH 6 2391 4 s

Weizmann 10 90 1.5 s

UCF Sports Action 10 150 2.20 to 14.40 s

the number of trainable parameters due to our hardware computational limitations. Data
augmentation methods are used to expand the dataset. The following data augmenta-
tion methods are used: addition of Gaussian noise, flip, shifting, zooming, and rotation
by angles between 2 and 12◦. Our model is trained and tested on single individual action
detection. The model accepts a sequence of frames and outputs a single output for the
whole sequence labeling the human activity recognized from the sequence.

Experiments

This section discusses the results of the experiments held on both ResIncConvLSTM-
based and ConvLSTM baseline models. Bothmodels are trained for 20 epochs using KTH
dataset. Figure 6 shows training and validation losses of our proposed architecture. The
figure shows that loss in both training and validation decrease gradually in a similar man-
ner with the successive epochs. This shows that the architecture does not overfit to the
training data and actually does learn distinctive features.
Validation accuracy can be shown in Fig. 7. The figure shows how accuracy of ResInc-

ConvLSTM architecture is lower than ConvLSTM baseline model in the early epochs and
then ResIncConvLSTM architecture gradually exceeds ConvLSTM baseline architecture.
Tables 4 and 5 show the confusion matrices of both ResIncConvLSTM and ConvL-

STM baseline architectures on KTH dataset. The tables show that both architectures
performwell in recognizing boxing, clapping, and waving activities with accuracies 99.9%,
99.5%, and 99.7%, respectively, for ResIncConvLSTM architecture, and 98.1%, 98.4%, and
98.9%, respectively, for ConvLSTM baseline architecture. ResIncConvLSTM performs

Fig. 6 Training and validation losses
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Fig. 7 Validation accuracy vs. epochs

slightly better in recognizing boxing, clapping, and waving. Performing well for both
architectures is quite expected because each of these activities has distinctive features.
ResIncConvLSTM performs better by 10.4%, 14.7%, and 12% in recognizing jogging, run-
ning, and walking activities, respectively, with accuracies 79.9%, 82.9%, and 98.1% versus
69.5%, 68.2%, and 86.1%, respectively. The confusion matrix shows how ResIncConvL-
STM performance decreases, compared to boxing, clapping, and waving, with activities
jogging and running. Both activities are confused with each other and with walking
because those activities have similar features. Overall, ResIncConvLSTM performs better
than ConvLSTM baseline architecture by 7% with classification accuracies 94.08% versus
87% when tested against KTH dataset. ResIncConvLSTM performs better than ConvL-
STM baseline architecture by 11% with classification accuracies 79% versus 68% when
tested against Weizmann dataset for the common action classes, walking, running, and
two-hands waving. Also, ResIncConvLSTM-based architecture is found to outperform
ConvLSTM baseline architecture by 21% when tested against a subset of UCF Sports
Action dataset with accuracies 68.8% versus 47.66%. The experiment objective is to prove
that the proposed layer, ResIncConvLSTM, still outperforms conventional ConvLSTM.
Although, our ResIncConvLSTM-based architecture performed better than ConvLSTM-
based architecture in classifying the selected actions, this experiment provide us with the
following insight for future research: bigger datasets require deeper networks and bigger
input size.

Table 4 ResIncConvLSTM architecture confusion matrix on KTH dataset

Boxing Clapping Waving Jogging Running Walking

Boxing 0.999 0.004 0.001 0 0 0

Clapping 0 0.995 0.002 0 0 0

Waving 0.001 0.001 0.997 0 0 0

Jogging 0 0.001 0 0.799 0.17 0.019

Running 0 0 0 0.083 0.829 0

Walking 0 0 0 0.118 0.001 0.981
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Table 5 ConvLSTM baseline architecture confusion matrix on KTH dataset

Boxing Clapping Waving Jogging Running Walking

Boxing 0.981 0.001 0.007 0 0.004 0

Clapping 0.006 0.984 0.004 0 0.026 0

Waving 0.012 0.014 0.989 0 0 0

Jogging 0 0 0 0.695 0.204 0.085

Running 0.001 0.001 0 0.171 0.682 0.054

Walking 0 0 0 0.134 0.084 0.861

Comparison with existing approaches

Table 6 shows a comparison between different state-of-the-art approaches used to solve
HAR problem, including our proposed approach, evaluated on KTH dataset. The com-
parison is held in terms of classification accuracy. Based on the presented comparison,
our proposed approach outperforms [19, 20, 29, 30, 34–39, 41, 42] and shows a compara-
ble classification accuracy with [31, 32]. Although classification accuracy of our proposed
approach is less than [31, 32], by less than 1%, our proposed approach yields good results
using a relatively small number of parameters.

Conclusions
In this paper, a novel layer based on residual and inception is introduced, ResIncConvL-
STM layer. The proposed layer is used for solving HAR problem. A ResIncConvLSTM-
based architeture is designed and trained on KTH dataset. The designed architecture is
tested on KTH, Weizmann, and UCF Sports Action datasets. ResIncConvLSTM-based
architecture is found to perform better than ConvLSTM baseline architecture by 7%,
11%, and 21% on KTH, Weizmann, and UCF Sports Action datasets, respectively. Also,
experimental results show the effectiveness of our proposed architecture compared to
other state-of-the-art architectures. Our future work will concentrate on applying ResInc-
ConvLSTM on different computer vision applications like segmentation, next frame
prediction, object tracking, and scene summarization.Wemay also investigate dual model
approach to solve multiple individual HAR with ResIncConvLSTM.

Table 6 Comparison with existing approaches on KTH dataset

Reference Method Publication year Accuracy(%)

Haddad et al. [42] GF-OF and GMM 2021 73.1%

Abdelbaky and Aly [36–39] PCANet 2020-2021 85.5%-93.3%

Ramya and Rajeswar [30] Distance Transform + Entropy
Features + ANN

2021 91.4%

Nadeem et al. [20] SVM + ANN 2020 87.57%

Aly and Sayed [29] Zernike Moment + BOF + SVM 2019 81.03%

Han [34] Two-stream CNN 2018 93.1%

Nazir et al. [19] 3DHarris + 3DSIFT + BOF + SVM 2018 91.82%

Zhang et al. [35] Dual-channel Deep Network 2018 92.8%

Rodriguez et al. [41] Fast-SHMM 2017 74%

Abdekkaoui and Douik [32] DBN 2020 94.83%

Arunnehru et al. [31] 3D CNN + 3D motion cuboid 2018 94.9%

Proposed approach ResIncConvLSTM 2021 94.08%
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