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Abstract

Distance and similarity measures are very important in clustering, pattern recognition,
decision-making and other scientific fields. For the existing hesitant fuzzy distance,
most of them do not consider the hesitance degree. Even if the hesitance degree is
considered, only the degree of dispersion or the number of hesitant fuzzy values are
considered. Aiming at these shortages, a new hesitance degree is defined, which has
better accuracy and applicability. Then, some hesitant fuzzy distance measures based
on the proposed hesitance degree are proposed, which can overcome some
shortcomings of the existing distance measures. Finally, the new hesitant fuzzy
distance is applied to the hierarchical hesitant fuzzy k-means clustering algorithm, and
an illustration example is given to illustrate the effectiveness of the proposed method.
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Introduction
The theory of fuzzy sets proposed by Zadeh [1] has achieved a great success in various
fields. Afterwards, many new theories and approaches about uncertainty and imprecision
have been proposed by scholars, such as intuitionistic fuzzy sets(IFS) [2], interval-valued
intuitionistic fuzzy sets [3], linguistic variables [4], type-2 fuzzy sets [5], fuzzy multiset
[6], picture fuzzy sets(PFS) [7], etc. With the growing complexity and uncertainty of the
real-life problems, it is hard to establish the degree of membership of fuzzy set. To do this,
Torra [8] introduced the concept of hesitant fuzzy set(HFS) which permitted the mem-
bership having a set of possible values. As an extended form of the fuzzy set, hesitant
fuzzy set can better simulate the hesitation preference of decision makers to deal with the
actual situation of people hesitating between several possible values. Since the hesitation
fuzzy set came out, it has received extensive attention and obtained rich research results.
For example, Zhang [9] proposed the hesitant fuzzy power average operator, it is charac-
terized by the weight of hesitation fuzzy information depends on the degree of support
for it with other hesitation fuzzy information. Considering that attributes may be related
to each other in realistic decision-making problems, Zhu [10, 11] proposed the hesitant
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fuzzy Bonferroni mean operator and hesitant fuzzy Bonferroni geometric operator. Wei
[12] considered the priority relationship between attributes and proposed the hesitant
fuzzy prioritized operator. Xu et al. [13] introduced a hesitant fuzzy TOPSIS method
based on the principle of maximum deviation and applied it to multi-attribute decision-
making problems. Liao et al. [14] presented the hesitant fuzzy VIKOR multi-attribute
decision-making method considering the psychological preference of decision-makers.
Wang et al. [15] introduced the prospect value function of hesitant fuzzy elements based
on prospect theory and distance measure, and then proposed a multi-attribute decision-
making method according to the TOPSIS method that considers the risk preference
of decision maker. Hesitant fuzzy sets also have been applied to the other fields such
as cluster analysis [16–19], decision analysis [20–23] and pattern recognition [24–27]
and so on.
Distance measure is one of the important direction in the theory of hesitant fuzzy set.

So far, many research results on hesitant fuzzy distance have been obtained. For instance,
Xu and Xia [28] first proposed a variety of hesitant fuzzy distance measures and dis-
cussed their properties. On the basis of hesitant fuzzy distance measure by Xu, Tong [29]
introduced a hybrid hesitant fuzzy distance measure considering the preference of deci-
sion makers. And Peng [30] presented a generalized hesitant fuzzy cooperative weighted
distance measure. Although the above hesitant fuzzy distance measures have many mer-
its, they require that each corresponding hesitant fuzzy element has the same length.
When the length of hesitant fuzzy elements is not equal, it is necessary to add elements
to meet the requirements. However, this is bound to change the original information of
hesitant fuzzy elements. That is to change the real expression of experts. To overcome the
shortcoming, Tang et al. [31] proposed a distance measure without considering the length
of the hesitant fuzzy element. But except for the length of the hesitant fuzzy element is
1, the distance between two identical hesitant fuzzy elements is not equal to 0, which is
contrary to the fact. Later, some researchers further consider the hesitance degree of hes-
itant fuzzy element in distance measure. Zhang and Xu [18] proposed the concept of
hesitation index which determined by the degree of dispersion of hesitant fuzzy values
in the hesitant fuzzy element, and proposed a series of distance and similarity measures
that consider hesitation index of hesitant fuzzy sets. Li et al. [32] proposed the concept
of hesitance degree which determined by the number of hesitant fuzzy values in the hesi-
tant fuzzy element, and proposed a series of hesitant fuzzy distance measures containing
hesitance degree. However, it needs to be pointed out that the hesitance degree men-
tioned above only considers the degree of dispersion or the number of hesitant fuzzy
values in the hesitant fuzzy element, which is imperfect and has the defect of insufficient
discrimination.

Methods
According to the above analysis, the existing hesitant fuzzy distance measures have dif-
ferent shortcomings. To overcome the shortcomings, we first define a new hesitance
degree by considering the degree of dispersion and the number of hesitant fuzzy val-
ues in hesitant fuzzy element, and put forward some distance measures based on the
proposed hesitance degree. The distance is divided into two cases of equal length and
unequal length between two hesitant fuzzy elements, which can solve the problem of
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original information distortion caused by supplementary elements in the case of inconsis-
tent lengths. Further, we apply the new hesitant fuzzy distance to the hierarchical hesitant
fuzzy K-means clustering.
The paper is organized as follows. In Methods section, some concepts related to hesi-

tant fuzzy sets are introduced. In Preliminaries section, a new hesitance degree and some
new hesitant fuzzy distance measures are proposed, and their properties are discussed. In
Some New hesitant fuzzy distance measures section, we applied the new distance mea-
sure to the hierarchical hesitant fuzzy K-means clustering algorithm. The fifth section is
the conclusion of this paper.

Preliminaries
Definition 1 [8] Given a fixed set X, then a hesitant fuzzy set (HFS) on X is in terms of a

function that when applied to X returns a subset of [0, 1].
For convenience, Xia and Xu [33] usually express HFS simply as a mathematical symbol:

E = {< x, hE(x) >| x ∈ X} (1)

where hE(x) is a set of some different values in [0,1], representing the possible membership
degrees of the element x ∈ X to E. For convenience, we call h = hE(x) a hesitant fuzzy
element (HFE) and H the set of all HFEs.
For the convenience of comparison,We arrange the elements in hE(xi) in increasing order,

and let hσ(j)
E (xi) be the jth largest value in hE(xi).

Li [32] put forward the axiomatic definition of distance measure for hesitant fuzzy sets
(HFSs).

Definition 2 [32]. Let A, B and C be three HFSs on X. Then, d is called a hesitant fuzzy
distance measure for HFSs, which satisfies the following properties:

(1) 0 ≤ d(A,B) ≤ 1;
(2) d(A,B) = 0 if and only if A = B;
(3) d(A,B) = d(B,A);
(4) d(A,B) + d(B,C) ≥ d(A,C).

It is noted that the number of values in different HFEs may be different, Xu and Xia
extend the shorter one by adding the same value until both of them have the same
length when we compare them. Let l(hE(xi)) be the number of values in hE(xi), and
lxi = max{l(hA(xi)), l(hB(xi))}. Xu and Xia [28] proposed a series of hesitant fuzzy set
distances as follows:

Definition 3 [28]. Let A and B be two HFSs on X = {x1, x2, . . . , xn}. Then, the hesitant
normalized Hamming distance as follows:

dxh(A,B)= 1
n

n∑

i=1

⎡

⎣ 1
lxi

lxi∑

j=1

∣∣∣hσ(j)
A (xi)−hσ(j)

B (xi)
∣∣∣

⎤

⎦ (2)
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the hesitant normalized Euclidean distance as follows:

dxe(A,B) =
⎡

⎣1
n

n∑

i=1

⎛

⎝ 1
lxi

lxi∑

j=1

∣∣∣hσ(j)
A (xi)−hσ(j)

B (xi)
∣∣∣
2
⎞

⎠

⎤

⎦

1
2

(3)

the generalized hesitant normalized distance:

dxg(A,B) =
⎡

⎣1
n

n∑

i=1

⎛

⎝ 1
lxi

lxi∑

j=1

∣∣∣hσ(j)
A (xi)−hσ(j)

B (xi)
∣∣∣
λ

⎞

⎠

⎤

⎦

1
λ

(4)

where λ > 0.

In order to measure the deviation of each HFE in each HFS, Zhang and Xu [18] et al.
proposed the concept of hesitance degree of HFS.

Definition 4 [18]. Let H be an HFS in a reference set X, denoted by H =
{< x, hH(x) >| x ∈ X} and hH(xi) =

{
hσ(j)
H (xi) | j = 1, 2, . . . , lh

}
. Then, the hesitance

degree of x in H can be defined as follows:

hZ (hH(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

√√√√ 2
lx∑

k>j=1

(
hσ(k)
H (xi)−hσ(j)

H (xi)
)2

lh×(lh−1) , lh > 1

0, lh = 1

(5)

where lh is the number of the elements in hH(xi).

In general, the bigger the range among the possible values in each HFE is, the larger
the hesitance degree of the HFE is. By considering the impact of the hesitance degree of
HFEs, Xu and Zhang proposed a new method for measuring the distance between HFSs:

Definition 5 [18]. Let A and B be two HFSs on X. Then, the hesitant normalized
Hamming distance including hesitance degree between A and B is defined as:

dhzh(A,B) = 1
n

n∑

i=1

⎛

⎝ α

lxi

lxi∑

j=1

∣∣∣hσ(j)
A (xi) − hσ(j)

B (xi)
∣∣∣ + β |hZ (hA (xi)) − hZ (hB (xi))|

⎞

⎠ (6)

the hesitant normalized Euclidean distance including hesitance degree is defined as:

dhze(A,B)=
⎡

⎣1
n

n∑

i=1

⎛

⎝ α

lxi

lxi∑

j=1

∣∣∣hσ(j)
A (xi) − hσ(j)

B (xi)
∣∣∣
2 + β |hZ (hA (xi)) − hZ (hB (xi))|2

⎞

⎠

⎤

⎦

1
2

(7)

the generalized hesitant normalized distance including hesitance degree is defined as:

dhzg(A,B)=
⎡

⎣1
n

n∑

i=1

⎛

⎝ α

lxi

lxi∑

j=1

∣∣∣hσ(j)
A (xi) − hσ(j)

B (xi)
∣∣∣
λ + β |hZ (hA (xi)) − hZ (hB (xi))|λ

⎞

⎠

⎤

⎦

1
λ

(8)

where λ>0, α,β ∈[ 0, 1] ,α + β =1, hσ(j)
A (xi) and hσ(j)

B (xi) are the jth values in hA(xi) and
hB(xi), respectively. hZ (hA (xi)) and hZ (hB (xi)) are referred to the hesitance degree of two
HFEs hA(xi) and hB(xi), respectively.
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Li [32] defined a hesitance degree based on the number of hesitant fuzzy values in
hesitant fuzzy elements, and proposed a series of hesitant fuzzy distance measures.

Definition 6 [32]. Let H be an HFS on X = {x1, x2, . . . , xn}. Then, the hesitance degree
of x in H can be defined as follows:

hL (hH (xi)) = 1 − 1
l (hH (xi))

(9)

where l (hH (xi)) be the length of hH (xi).
Therefore, the hesitance degree of the HFS H is defined as:

hL(H) = 1
n

n∑

i=1
hL (hH (xi)) (10)

Definition 7 Let M1,M2, . . . ,Mm and B be a set of HFS on X = {x1, x2, . . . , xn},then for
any Mk and Mt , k, t = 1, 2, . . . ,m, the normalized Hamming distance including hesitance
degree between Mk and Mt is defined as follows:

dhlh (Mk ,Mt) = 1
2n

n∑

i=1

⎡

⎣∣∣hL
(
hMk (xi)

) − hL
(
hMt (xi)

)∣∣ + 1
l (xi)

l(xi)∑

j=1
|hσ(j)

Mk
(xi) − hσ(j)

Mt
(xi) |

⎤

⎦

(11)

the normalized Euclidean distance including hesitance degree between Mk and Mt is
defined as follows:

dhle (Mk ,Mt)=
⎡

⎣ 1
2n

n∑

i=1

⎛

⎝∣∣hL
(
hMk (xi)

) − hL
(
hMt (xi)

)∣∣2+ 1
l (xi)

l(xi)∑

j=1

∣∣∣hσ(j)
Mk

(xi)−hσ(j)
Mt

(xi)
∣∣∣
2
⎞

⎠

⎤

⎦

1
2

(12)

the normalized generalized distance including hesitance degree between Mk and Mt is
defined as follows:

dhlg (Mk ,Mt)=
⎡

⎣ 1
2n

n∑

i=1

⎛

⎝∣∣hL
(
hMk (xi)

)−hL
(
hMt (xi)

)∣∣λ+ 1
l (xi)

l(xi)∑

j=1

∣∣∣hσ(j)
Mk

(xi)−hσ(j)
Mt

(xi)
∣∣∣
λ

⎞

⎠

⎤

⎦

1
λ

(13)

where λ ≥ 1, l(xi) = max{l(hMk (xi)), l(hMt (xi)))}, hσ(j)
Mk

(xi) and hσ(j)
Mt

(xi) are the jth
values in hMk (xi) and hMt (xi), respectively.

In order to relax the limitation that the corresponding hesitant fuzzy elements have the
same length. Tang et al. [31] proposed a series of distance measures.

Definition 8 Let A and B be two HFSs on X. Then, the hesitant normalized Hamming
distance between A and B is defined as:

dlth(A,B) = 1
n

n∑

i=1

∑lA(xi)
j=1

∑lB(xi)
k=1 |hσ(j)

A (xi) − hσ(k)
B (xi) |

lA (xi) lB (xi)
(14)
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the normalized Euclidean distance between A and B is defined as follows:

dlte(A,B) =
⎡

⎣1
n

n∑

i=1

∑lA(xi)
j=1

∑lB(xi)
k=1 (hσ(j)

A (xi)− hσ(k)
B (xi))2

lA (xi) lB (xi)

⎤

⎦

1
2

(15)

the normalized generalized distance between A and B is defined as follows:

dltg(A,B) =
⎡

⎣1
n

n∑

i=1

∑lA(xi)
j=1

∑lB(xi)
k=1 |hσ(j)

A (xi)− hσ(k)
B (xi) |λ

lA (xi) lB (xi)

⎤

⎦

1
λ

(16)

where λ > 0, hσ(j)
A (xi) are the jth values in hA (xi) and hσ(k)

B (xi) are the kth values in
hB (xi), lA (xi) and lB (xi) are the lengths of hA (xi) and hB (xi), respectively.

Some New hesitant fuzzy distancemeasures
According to analysis, the existing method only considers the number or the degree of
dispersion, which is obviously one-sided. Therefore, by simultaneously considering them,
we propose a new hesitance degree as follows.

Definition 9 Let A be an HFS in a reference set X = {x1, x2, . . . , xn}, denoted by A =
{< xi, hA(xi) >| xi ∈ X} and hA(xi) =

{
hσ(j)
A (xi) | j = 1, 2, . . . , lhA

}
. Then, the hesitance

degree of x in A can be defined as follows:

h(hA(xi)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2θ
lhA×(lhA−1)

lhA∑
k>j=1

∣∣∣hσ(k)
A (xi) lhA > 1

−hσ(j)
A (xi)

∣∣∣ + μg
(
lhA − 1

)

0
lhA = 1

(17)

where lhA is the length of hA(xi), g is the minimum accuracy of values in the hesitant fuzzy
element hA(xi), θ ,μ ∈[ 0, 1] , θ + μ = 1 .

Therefore, the hesitance degree of the HFS A is defined as:

h(A) = 1
n

n∑

i=1
h (hA (xi)) (18)

Remark 1 n is the number of digits after the decimal point of the hesitant fuzzy element,
then g = 1/10n. For example, let h = {0.2, 0.3} be a hesitant fuzzy element, then the
minimum accuracy g = 1/10 = 0.1. If h = {0.25, 0.36}, then the minimum accuracy
g = 1/102 = 0.01.

Next, we use a numerical example to illustrate the advantages of the proposed hesitance
degree in processing hesitation fuzzy information.

Example 1 Let h1 = {03, 0.5}, h2 = {05, 0.6} and h3 = {0.3, 0.5, 0.6} be three hesitant
fuzzy elements, g = 0.1, θ = μ = 0.5. Then, their hesitance degrees are calculated by the
different formulas respectively.
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the result calculated by formula (5) is as follows:

hZ(h1) = 0.2, hZ(h2) = 0.1, hZ(h3) = 0.2

the result calculated by formula (9) is as follows:

hL(h1) = 0.5, hL(h2) = 0.5, hL(h3) = 0.66

the result calculated by formula (17) is as follows:

h(h1) = 0.15, h(h2) = 0.1, h(h3) = 0.2

From the above results, we can find that hZ({03, 0.5}) = hZ(h1) = hZ(h3) =
hZ({0.3, 0.5, 0.6}) and hL({03, 0.5}) = hL(h1) = hL(h2) = hL({05, 0.6}). Obviously, the
results calculated by formula (5) and formula (9) are unreasonable. However, h(h1) �=
h(h2) �= h(h3). That is to say the proposed hesitance degree can clearly distinguish the
hesitance degrees of hesitant fuzzy elements h1, h2 and h3, which is consistent with peo-
ple’s intuitive feeling. Therefore, the proposed hesitance degree is more reasonable than
the existing hesitance degree mentioned above.
Based on the proposed hesitance degree, we proposes some new distance measures,

which can compare HFEs of equal or unequal length, so we can avoid destroying the
original information by adding elements when the length is unequal.

Definition 10 Let hA (xi) and hB
(
xj
)
be two HFEs. Then, the normalized Hamming

distance between hA (xi) and hB
(
xj
)
is defined as:

dhllh(hA, hB) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
lhA lhB

lhB∑
j=1

lhA∑
i=1

|hA (xi) − hB
(
xj
) |

lhA �= lhB
+β |h(hA) − h(hB)|

α
lhA

lhA∑
i=1

∣∣∣hσ(j)
A (xi) − hσ(j)

B (xi)
∣∣∣ lhA = lhB

+β |h(hA) − h(hB)|

(19)

The normalized Euclidean distance between hA (xi) and hB
(
xj
)
is defined as:

dhlle(hA, hB) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
α

lhA lhB

lhB∑
j=1

lhA∑
i=1

(
hA (xi) − hB

(
xj
))2

lhA �= lhB
+β (h(hA) − h(hB))2

]1/2
[

α
lhA

lhA∑
i=1

(
hσ(j)
A (xi) − hσ(j)

B (xi)
)2

lhA = lhB
+β (h(hA) − h(hB))2

]1/2

(20)

The Hausdorff metric distance between hA (xi) and hB
(
xj
)
is defined as:
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dhllh(hA, hB) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
i,j

(
α|hA (xi) − hB

(
xj
) |

lhA �= lhB
+β |h(hA) − h(hB)|)
max

i

(
α|hσ(j)

A (xi) − hσ(j)
B (xi) |

lhA = lhB+β|h(hA) − h(hB)|)

(21)

The normalized generalized distance between hA (xi) and hB
(
xj
)
is defined as:

dhllg(hA, hB) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
α

lhA lhB

lhB∑
j=1

lhA∑
i=1

|hA (xi) − hB
(
xj
) |λ

lhA �= lhB
+β|h(hA) − h(hB)|λ]1/λ
[

α
lhA

lhA∑
i=1

|hσ(j)
A (xi) − hσ(j)

B (xi) |λ
lhA = lhB

+β|h(hA) − h(hB)|λ]1/λ

(22)

where λ > 0, α,β ∈[ 0, 1] ,α + β = 1, lhA and lhB are the lengths of HFEs hA (xi) and
hB

(
xj
)
, respectively.

Especially, if λ = 1, then formula (22) degenerates to formula (21). If λ = 2, then formula
(22) degenerates to formula (20). If λ → ∞, then formula (22) degenerates to formula (21).

Example 2 Let h1 = {03, 0.5}, h2 = {05, 0.6} and h3 = {0.3, 0.5, 0.6} be three hesitant
fuzzy elements, g = 0.1, θ = μ = 0.5. Then, the process of calculating the Hamming
distance between HFEs is as follows

d(h1, h2) = α

2
(|0.3 − 0.5| + |0.5 − 0.6|) + β|0.15 − 0.1|

d(h2, h3) = α

2 × 3
(|0.5 − 0.3| + |0.5 − 0.5| + |0.5 − 0.6| + |0.6 − 0.3|

+ |0.6 − 0.5| + |0.6 − 0.6|) + β|0.1 − 0.2|

Lemma 1 (Minkowski’s inequality [34]). Let (a1,a2, . . . an) , (b1, b2, . . . , bn) ∈ Rn, and
1 ≤ p < ∞. Then

( n∑

k=1
|ak + bk|p

) 1
p

�
( n∑

k=1
|ak|p

) 1
p

+
( n∑

k=1
|bk|p

) 1
p

(23)

Theorem 1 Let {A1,A2, . . . ,Am} be a set of HFS on X = {x1, x2, . . . , xn}, I =
{1, 2, . . . ,m}, k, t ∈ I. Then, dhllh(Ak ,At), dhlle(Ak ,At), and dhllg(Ak ,At) are hesitant fuzzy
distances.

Proof As dhllh, dhlle and dhd are the special cases of dhllg , here we only prove that dhllg
is a distance measure. According to Definition 10, it can be obtained easily that Property
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(1) and Property (2) in Definition 2 hold. In the following, we prove that Property (3) and
Property (4) hold.

(1) By Definition 10, We have

dhllg(hA, hB)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
α

lhA lhB

lhB∑
j=1

lhA∑
i=1

|hA (xi) − hB
(
xj
) |λ + β|h(hA) − h(hB)|λ

]1/λ

lhA �= lhB

[
α
lhA

lhA∑
i=1

|hσ(j)
A (xi) − hσ(j)

B (xi) |λ + β|h(hA) − h(hB)|λ
]1/λ

lhA = lhB

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
α

lhA lhB

lhA∑
i=1

lhB∑
j=1

|hB
(
xj
) − hA (xi) |λ + β|h(hB) − h(hA)|λ

]1/λ

lhA �= lhB

[
α
lhA

lhA∑
j=1

|hσ(j)
B (xi) − hσ(j)

A (xi) |λ + β|h(hB) − h(hA)|λ
]1/λ

lhA = lhB

=dhllg(hB, hA)

Thus, dhllg(hA, hB) = dhllg(hB, hA), i.e., Property (3) holds.
(2) Property (4) is d(A,B) + d(B,C) ≥ d(A,C), By Definition 10, it can be equivalently
transformed into the following inequality:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
α

lhA lhB

lhB∑
j=1

lhA∑
i=1

|hA (xi) − hB
(
xj
) |λ + β|h(hA) − h(hB)|λ

]1/λ

lhA �= lhB

[
α
lhA

lhA∑
i=1

|hσ(j)
A (xi) − hσ(j)

B (xi) |λ + β|h(hA) − h(hB)|λ
]1/λ

lhA = lhB

+

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
α

lhB lhC

lhC∑
k=1

lhB∑
j=1

|hB
(
xj
) − hC (xk) |λ + β|h(hB) − h(hC)|λ

]1/λ

lhB �= lhC

[
α
lhB

lhB∑
j=1

|hσ(j)
B (xi) − hσ(j)

C (xi) |λ + β|h(hB) − h(hC)|λ
]1/λ

lhB = lhC

≥

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
α

lhA lhC

lhC∑
k=1

lhA∑
i=1

|hA (xi) − hC (xk) |λ + β|h(hA) − h(hC)|λ
]1/λ

lhA �= lhC

[
α
lhA

lhA∑
i=1

|hσ(j)
A (xi) − hσ(j)

C (xi) |λ + β|h(hA) − h(hC)|λ
]1/λ

lhA = lhC
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which can be further converted into:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
αlhC

lhA lhB lhC

lhB∑
j=1

lhA∑
i=1

|hA (xi) − hB
(
xj
) |λ + β|h(hA) − h(hB)|λ

]1/λ

lhA �= lhB

[
α
lhA

lhA∑
i=1

|hσ(j)
A (xi) − hσ(j)

B (xi) |λ + β|h(hA) − h(hB)|λ
]1/λ

lhA = lhB

+

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
αlhA

lhA lhB lhC

lhC∑
k=1

lhB∑
j=1

|hB
(
xj
) − hC (xk) |λ + β|h(hB) − h(hC)|λ

]1/λ

lhB �= lhC

[
α
lhB

lhB∑
j=1

|hσ(j)
B (xi) − hσ(j)

C (xi) |λ + β|h(hB) − h(hC)|λ
]1/λ

lhA = lhC

≥

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
αlhB

lhA lhB lhC

lhC∑
k=1

lhA∑
i=1

|hA (xi) − hC (xk) |λ + β|h(hA) − h(hC)|λ
]1/λ

lhA �= lhC

[
α
lhA

lhA∑
i=1

|hσ(j)
A (xi) − hσ(j)

C (xi) |λ + β|h(hA) − h(hC)|λ
]1/λ

lhA = lhC

i.e.,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
α

lhA lhB lhC

lhC∑
k=1

lhB∑
j=1

lhA∑
i=1

|hA (xi) − hB
(
xj
) |λ + β|h(hA) − h(hB)|λ

]1/λ

lhA �= lhB

[
α
lhA

lhA∑
i=1

|hσ(j)
A (xi) − hσ(j)

B (xi) |λ + β|h(hA) − h(hB)|λ
]1/λ

lhA = lhB

+

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
α

lhA lhB lhC

lhC∑
k=1

lhB∑
j=1

lhA∑
i=1

|hB
(
xj
) − hC (xk) |λ + β|h(hB) − h(hC)|λ

]1/λ

lhB �= lhC

[
α
lhB

lhB∑
j=1

|hσ(j)
B (xi) − hσ(j)

C (xi) |λ + β|h(hB) − h(hC)|λ
]1/λ

lhB = lhC

≥

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
α

lhA lhB lhC

lxk∑
k=1

lhC∑
j=1

lhA∑
i=1

|hA (xi) − hC (xk) |λ + β|h(hA) − h(hC)|λ
]1/λ

lhA �= lhC

[
α
lhA

lhA∑
i=1

|hσ(j)
A (xi) − hσ(j)

C (xi) |λ + β|h(hA) − h(hC)|λ
]1/λ

lhA = lhC

Since the following equation holds:

|hA (xi)− hC (xk)| = ∣∣hA (xi) − hB
(
xj
) + hB

(
xj
) − hC (xk)

∣∣ (24)

On the condition that 1 ≤ λ ≤ +∞, we can reason from Lemma 1 that dhllg(A,C) ≤
dhllg(A,B) + dhllg(B,C). Therefore, Property (4) is verified.
Thus, we complete the proof of Theorem 1.
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Example 3 Let h1 = {0.1, 0.5}, h2 = {0.3, 0.8}, h3 = {0.5, 0.6} , h4 = {0.3, 0.5} and
h5 = {0.3, 0.5, 0.6} be five hesitant fuzzy elements, g = 0.1, θ = μ = 0.5, α = β = 0.5.
Then use different formulas to calculate the distance measures. The results are shown in
Table 1.
From Table 1, it can be seen that dhllh (h1, h1) = 0 and dhllh (h1, h2) �= dhllh (h1, h3) �=

dhllh (h1, h4) �= dhllh (h1, h5), which is consistent with people’s intuitive feeling. That means
the results based on proposed distance measure is more reasonable than those of the above
mentioned distance measures.

On the other hand, we compare the characteristics of the proposed distance measure
with those of the existing distance measures. The results are shown in Table 2.
From Table 2, it can be seen that the proposed distance measure has all listed character-

istics, but the mentioned distance measures do not have all of them. This means that the
proposed distance measure is superior to the existing distance measures above in many
complex situations.

Hesitant fuzzy clustering based on new distancemeasure
The description of clustering Algorithm

Recently, many studies focus on the clustering analysis of HFSs. Chen and Xu [35] focused
on studied the clustering for hesitant fuzzy sets based on the K-means clustering algo-
rithm, which uses the result of hierarchical clustering as the initial clusters. Zhang and
Xu [36] proposed a novel hesitant fuzzy agglomerative hierarchical clustering algorithm.
The algorithm considers each of the given HFSs as a unique cluster, and then compares
each pair of the HFSs by using the weighted Hamming distance or the weighted Euclidean
distance. The two clusters with smaller distance are jointed. Repeat the process until the
desired number of clusters is achieved.
We focused on studied the hierarchical hesitant fuzzy K-means clustering algorithm,

and using the new distance measure to calculate the distance between hesitant fuzzy sets.
The specific steps of the hierarchical hesitant fuzzy K-means clustering algorithm are as
follows:
step1. (Hierarchical clustering) Consider each hesitant fuzzy set Ai(i = 1, 2, . . . , n) as an
independent cluster {A1}, {A2}, . . . , {An}. Then calculate the distance between Ai and Aj,
which is denoted by dij = d(Ai,Aj). The two clusters with smaller distance are jointed by
average function, which is given as follows:

f (A1,A2)= 1
2

(A1 ⊕ A2)=
{
<xi,∪r1∈hA1 (x1),r2∈hA2 (xi)

{
1−[(1−r1) (1 − r2)]1/2

}
>| xi ∈ X

}

(25)

This iterative process is repeated until all clusters are aggregated into one cluster.

Table 1 Comparison of different distance measures

(h1, h1) (h1, h2) (h1, h3) (h1, h4) (h1, h5)

dxh 0 0.25 0.25 0.1 0.1

dhlh 0 0.125 0.125 0.05 0.135

dhzh 0 0.175 0.275 0.15 0.15

dlth 0.2 0.35 0.25 0.2 0.23

dhllh 0 0.15 0.2 0.1 0.0575
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Table 2 The characteristic comparisons with existing distance measures

Distance measure Whether to consider
hesitance degree

Whether to relax the limitation of
lengths of HFEs

Xu and Xia [28] × ×
Li et al. [32] � ×
Zhang and Xu [18] � ×
Tang et al. [31] × �
The proposed distance � �

step2. According to the given number of clusters, select the corresponding result in step
1 as the initial cluster, then calculate the distance between the hesitant fuzzy set Ai(i =
1, 2, . . . , n) and the center of each cluster. Finally classify Ai to the cluster with the closest
cluster center.
step3. Recalculate the new cluster center through the average function of the hesitant
fuzzy set.
step4. Repeat steps 2 and 3 until all cluster centers are stable.

Illustrative example

A specific example (adapted from Ref. [35]) is given below to illustrate the above algo-
rithm. The proposed hesitant fuzzy distance is applied to the hierarchical hesitant fuzzy
K-means clustering algorithm.
There are five tourism resources need to be evaluated and classified. Experts give cor-

responding evaluation information (g = 0.1, θ = μ = 0.5,α = β = 0.5) to tourism
resources from six aspects, namely: scale, environmental conditions, integrity, service,
tourist routes and convenient transportation, which is expressed as X = {x1, x2, . . . , x6, },
the evaluation information of the five tourism resources is represented by hesitant fuzzy
sets Ai = (i = 1, 2, 3, 4, 5), which are listed in Table 3:
step1. Consider each hesitating fuzzy set Ai(i = 1, 2, 3, 4, 5) as an independent cluster:
{A1}, {A2}, {A3}, {A4} and {A5}.Using the formula 21 calculate the distance between each
hesitant fuzzy set and the other four hesitant fuzzy sets:

d (A1,A2) = 0.3326, d (A1,A3) = 0.2473
d (A1,A4) = 0.2256, d (A1,A5) = 0.4590
d (A2,A3) = 0.1797, d (A2,A4) = 0.3444
d (A2,A5) = 0.1955, d (A3,A4) = 0.1845
d (A3,A5) = 0.2293, d (A4,A5) = 0.3052

Obviously, {A2} and {A3} are the two closest clusters, then calculate the new cluster
{A2,A3} by formula (25). Therefore, the hesitant fuzzy set Ai(i = 1, 2, 3, 4, 5) is divided

Table 3 Hesitance fuzzy assessment information

x1 x2 x3 x4 x5 x6

A1 {0.8, 1} {0.3, 0.4} {0.4, 0.5, 0.6} {0.1, 0.3} {1} {0.9, 1}
A2 {0.2, 0.3} {0.2, 0.4} {0.2, 0.3} {0.3, 0.4} {0.1, 0.3, 0.5} {0.2, 0.3}
A3 {0.4, 0.5, 0.6} {0.4, 0.6} {0.5, 0.6} {0.4, 0.5, 0.6} {0.5} {0.4, 0.5}
A4 {0.7, 0.9} {0.6, 0.8} {0.7, 0.8} {0.6, 0.8} {0.6, 0.7, 0.8} {0.7, 0.8}
A5 {0.1, 0.4} {0.7, 0.8, 0.9} {0.1, 0.2} {0.8, 1} {0.2, 0.3} {0.2, 0.4}
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into the following four clusters: {A1}, {A2,A3}, {A4} and {A5}. Continue to calculate the
distance between each cluster and the other three clusters:

d ({A2,A3} ,A1) = 0.2881
d ({A2,A3} ,A4) = 0.2644
d ({A2,A3} ,A5) = 0.2097

d (A1,A4) = 0.2256, d (A1,A5) = 0.4950
d (A4,A5) = 0.3052

Because of {A2,A3} and {A5} are the two closest clusters, then the hesitant fuzzy sets are
divided into the following three clusters: {A2,A3,A5}, {A1} and {A4}. Calculate the new
cluster and the distances between each cluster and the other clusters:

d (A1, {A2,A3,A5}) = 0.4341
d (A4, {A2,A3,A5}) = 0.3085

d (A4,A1) = 0.2256

Where {A1} and {A4} are the two closest clusters, then the hesitant fuzzy sets are divided
into two clusters: {A2,A3,A5} and {A1,A4}.
In the end, the two clusters merged into one cluster: {A1,A2,A3,A4,A5}.

step2. Assuming number of clusters c = 3 is given, according to the result of step1, then
c1 = {A1}, c2 = {A2,A3,A5} and c3 = {A4} are selected as the initial clusters. Next,
calculate the distances of each hesitant fuzzy set Ai(i = 1, 2, . . . , 5) between each initial
cluster cj(j = 1, 2, 3) as follows:

d (A1, c1) = 0, d (A1, c2) = 0.4310
d (A1, c3) = 0.2806, d (A2, c1) = 0.4149
d (A2, c2) = 0.2122, d (A2, c3) = 0.4500
d (A3, c1) = 0.3139, d (A3, c2) = 0.1792,
d (A3, c3) = 0.2222, d (A4, c1) = 0.2806

d (A4, c2) = 0.2948, d (A4, c3) = 0
d (A5, c1) = 0.5972, d (A5, c2) = 0.1365

d (A5, c3) = 0.4000

According to the above calculation results, the clustering result is c1 = {A1}, c2 =
{A2,A3,A5} and c3 = {A4}.
step3. The cluster center remains unchanged and the iteration ends.

Comparative analysis

In order to illustrate the performance of the proposed method, we make a comparative
analysis with the hierarchical hesitant fuzzy k-means clustering algorithm introduced by
Chen et al [35].
Consider each hesitating fuzzy set Ai(i = 1, 2, 3, 4, 5) as an independent cluster:

{A1}, {A2}, {A3}, {A4} and {A5}. Calculating the distance between each hesitant fuzzy set
and the other four hesitant fuzzy sets:

d (A1,A2) = 0.4194, d (A1,A3) = 0.3139
d (A1,A4) = 0.2806, d (A1,A5) = 0.5972
d (A2,A3) = 0.2222, d (A2,A4) = 0.4500
d (A2,A5) = 0.2444, d (A3,A4) = 0.2222
d (A3,A5) = 0.3000, d (A4,A5) = 0.4000
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We can find d (A2,A3) = d (A3,A4) = min
{
d
(
Ai,Aj

) | i, j = 1, 2, 3, 4, 5(i �= j)
} =

0.2222, there are two options whenmerging the two clusters into a new cluster. Therefore,
the following two cases are considered.
case1: Hesitant fuzzy sets Ai(i = 1, 2, 3, 4, 5) are divided into the following four clus-

ters: {A1}{A2,A3}{A4} and {A5}. Calculate the distances between each cluster and the
other three clusters. We have d ({A2,A3} ,A5) is the shortest distance. Merging {A2,A3}
and {A5} into a new cluster, the hesitant fuzzy sets are divided into three clusters:
{A2,A3,A5}{A1} and {A4}. Calculate the new cluster and the distances between each clus-
ter and the other clusters. We have d (A1,A4) is the shortest distance. Therefore, hesitant
fuzzy sets are divided into the following two clusters: {A2,A3,A5} and {A1,A4}. In the end,
the two clusters are merged into one cluster: {A1,A2,A3,A4,A5}.
case2: Hesitant fuzzy sets Ai(i = 1, 2, 3, 4, 5) are divided into the following four clus-

ters: {A1} {A2} {A3,A4} and {A5}. Calculate the distance between each cluster and the
other three clusters. We have d (A2,A5) is the shortest distance. Merging {A2} and {A5}
into a new cluster, the hesitant fuzzy set is divided into three clusters: {A1}, {A3,A4} and
{A2,A5}. Calculate the new cluster and the distances between each cluster and the other
clusters. We have d ({A3,A4} , {A2,A5}) is the shortest distance. Therefore, hesitant fuzzy
sets are divided into two clusters: {A1} and {A2,A3,A4,A5}. In the end, the two clusters
are merged into one cluster: {A1,A2,A3,A4,A5}.
Obviously, the clustering results obtained in different cases are different. Next, we ana-

lyze the quality of the clustering results of the two cases. Generally, the average distance
dρ is an indicator to measure the quality of clustering results. The smaller the dρ , the
better the clustering result. The calculation process is as follows:

d({A2,A3},A2)=0.1531, d({A2,A3},A3)=0.0714

dρ ({A2,A3}) = 0.1531 + 0.0714
2

= 0.1123

d({A3,A4},A3)=0.1750, d ({A3,A4},A4)=0.1069

dρ ({A3,A4}) = 0.1750 + 0.1.69
2

= 0.1410

It can be seen that dρ ({A2,A3}) is smaller than dρ ({A3,A4}). Therefore, the clustering
result of case1 is better than case2.

Results and Discussion
According to the above analysis, the comparison result is shown in Table 4.
From Table 4, we can find that there are two different clustering results using Chen’s

method introduced in [35]. It is very difficult to decide which one to choose in the cluster-
ing process. And even if it can be selected correctly, it will increase the complexity of the
algorithm. However, a unique clustering result can be obtained by the proposed method.

Table 4 Comparison of hierarchical clustering results

Category
Ref [35]

The proposedmethod
case1 case2

1 {A1, A2, A3, A4, A5} {A1, A2, A3, A4, A5} {A1, A2, A3, A4, A5}
2 {A2, A3, A5} , {A1, A4} {A1} , {A2, A3, A4, A5} {A2, A3, A5} , {A1, A4}
3 {A1} , {A4} , {A2, A3, A5} {A1} , {A3, A4} , {A2, A5} {A1} , {A4} , {A2, A3, A5}
4 {A1} , {A2, A3} , {A4} , {A5} {A1} , {A2} , {A3, A4} , {A5} {A1} , {A2, A3} , {A4} , {A5}
5 {A1} , {A2} , {A3} , {A4} , {A5} {A1} , {A2} , {A3} , {A4} , {A5} {A1} , {A2} , {A3} , {A4} , {A5}
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And the result is same as the best one obtained by Chen’s method. Therefore, the hierar-
chical hesitant fuzzy k-means clustering method based on the proposed distance measure
is more reasonable and effective.

Conclusions
Considering the existing hesitance degrees does not take into account both degree of dis-
persion and number of the hesitant fuzzy values in the hesitant fuzzy element, a new
hesitance degree is defined in this paper, which has better accuracy and applicability. We
have elaborated the important role of hesitance degree in hesitant fuzzy distancemeasure.
Further, we proposed some hesitant fuzzy distance measures based on the new hesi-
tance degree, which can overcome the shortcomings of the existing distance measures.
Moreover, we applied the new hesitant fuzzy distance to the hierarchical hesitant fuzzy
k-means clustering algorithm, and presented an example to illustrate the effectiveness of
the proposed method. In addition, we have compared and analyzed with the existing hier-
archical hesitant fuzzy k-means clustering algorithm. It has been found that the clustering
algorithm based on new distance measure is more reasonable. The proposed distance
measure can avoid the original information distortion and have higher resolution. There-
fore, it can help decision-makers get the only ideal results in practical problems. In the
future, We will apply the proposed distance measure to multi-attribute group decision-
making. We will extend this approach to interval valued environment. We will develop
the knowledge measure [37] for hesitant fuzzy set.
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