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Abstract 

Titanium matrix composites (TMCs) have high specific strength and stiffness, and high-
temperature TMCs can reduce weight by up to 50% when compared with mono-
lithic super alloys while preserving equal stiffness and strength in jet engine systems 
for propulsion. The purpose of this work examines the use of mathematical models 
and learning approaches to optimize response such as porosity and control vari-
ables in synthesized hybrid titanium metal matrix composites (HTMMCs) reinforced 
by  B4C-SiC-MoS2-ZrO2. To further understand the impacts of process factors on porosity 
reduction, the study employs methodologies such as the response surface methodol-
ogy (RSM), integrated artificial neural networks (ANN), and genetic algorithm (GA). The 
findings indicate that these strategies have the potential to contribute to the indus-
try. The optimal combination of 7.5wt.% SiC, 7.5wt.%  B4C, 7.5wt.%  ZrO2, 4wt.%  MoS2, 
and 73.5wt.% Ti compositions was determined utilizing process factors such as mill-
ing period (6h), compaction pressure (50MPa), compact duration (50min), sintering 
temperature (1200°C), and sintering time (2h) as compared to pure Ti grade 5. The 
mechanical properties of the optimum combination of reinforcement weight per-
centage and process parameters resulted in a minimum porosity of 0.118%, density 
of 4.36gcm3, and micro-hardness of 63.4HRC boosted by 1.76%, and compressive 
strength of 2500MPa increased by 2.6%. In addition, these HTMMCs had a minimal 
wear rate of 0.176mm3/Nm and a corrosion resistance rate of 2.15×10-4mmpy. The 
investigation result analysis discovered that the RSM and combined ANN-GA models 
considerably enhanced the forecasting of multidimensional interaction difficulties 
in composite material production that were highly statistically connected, with R2 
values of 0.9552 and 0.97984. The ANN-GA model provided a 95% confidence range 
for porosity predictions, which increased the production use of titanium-based particle 
composites. Furthermore, HMMCs can be utilized in the automotive and aviation 
industries with enhanced corrosion and wear resistance.
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Introduction
The aerospace and automotive industries are currently experiencing a massive 
increase in demand for novel technological materials, particularly metal matrix com-
posites (MMCs). Titanium, a lightweight metal, is inappropriate owing to its low 
strength, wear resistance, and hardness. Efforts in research and development attempt 
for the enhancement of mechanical, physical, and other the characteristics of com-
posite for engineering materials [1].

Titanium and its alloys were formidable to produce because of their brittle nature, 
lower resistance wear, and high manufacturing costs. The researchers want to make 
titanium and its alloys more affordable and in great demand for the transportation, 
automotive, and aviation industries. They are looking for ways to lower production 
costs while improving performance through the use of low-cost and harder ceramic 
reinforcements. They are improving mechanical properties and lowering production 
costs by combining nanoparticles and conventional composites. This one-of-a-kind 
technology seeks to enhancement of durability and performance within titanium 
metal and alloys [2–4].

Manufacturing improvements in technology, material characterization, and the mor-
phology govern are critical for enhancing mechanical and thermal characteristics. 
Ti6Al4V, a prominent titanium matrix material, is limited in its applicability because of 
its poor wear resistance and surface hardness. Nonetheless, titanium alloys have poor 
tribological performance, with characteristics like an elevated and inconsistent coeffi-
cient of friction, excessive wear adhesive, and susceptibility to concerned wear rate that 
is viewed to be a serious drawback that limits their applicability [5].

MMCs have attracted the focus and consideration of researchers during the last 40 
years owing to their application and versatile properties like outstanding resistance to 
abrasion, specific strength, and thermal endurance, attracting a several scientists to be 
created and prepared to satisfy the industry’s demands regarding engineering material 
requirements. According to research, lowering the size of the reinforcement particles, 
notably from micrometers to nanometers, can greatly improve the mechanical charac-
teristics of MMCs, particularly in nanocomposites [6].

Hybrid titanium metal matrix composites (HTMMCs) are prominent because of their 
superior mechanical and physical qualities, which include increased strength, light-
weight, high stiffness, superior wear resistance, extremely greater strength-to-weight 
ratio, and an excellent elastic modulus. These composites are made by combining differ-
ent materials to improve various qualities such as enhanced structural and mechanical 
characteristics, tribological properties, chemical, thermal, wear, and corrosion resistance 
behavior [7].

Many whiskers, particulates, and fiber materials such as ceramics have been proposed 
for optimizing the properties of HTMMCs, incorporating SiC, rare earth oxides,  B4C, 
 Ti5Si3,  TiO2, TiC,  Y2O3, nanodiamonds, TiB, graphene nanoplatelets,  MoS2, WC, and 
 ZrO2. The type of reinforcement is decided according to the materials’ designed perfor-
mance purpose along with industrial requirements [8]. Because of their favorable inte-
gration with matrix alloys,  B4C, SiC,  MoS2, and  ZrO2 are appropriate reinforcements for 
titanium base metal, improving friction, corrosion and wear resistance, hardness, and 
durability.
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Preparing uniformly distributed nanoparticles remains difficult due to the enor-
mous van der Waals adhesive force, which causes spontaneous agglomeration and 
inconsistent microstructure. Traditional materials fabrication methods, consisting of 
as casting and high-pressure sintering, mimic this dispersion or spatial arrangement, 
maintaining nanoscale grains after the procedure [6, 9].

Powder metallurgy (PM) is a low-cost, high-precision, near-net form manufactur-
ing technique for making high-performance, complex-shaped components. Because 
of its homogeneity and minimal pores, it is a highly efficient approach of providing 
in situ material manufacture. PM uses milling, compaction, and sintering to generate, 
consolidate, and amalgamate engineered material components [10].

Multi-objective optimization is the systematic and simultaneous optimization mul-
tiple objective functions, with an emphasis on engineering applications. The funda-
mental purpose is to represent decision-makers’ preferences, and approaches are 
classified according to how they communicate these preferences. Multi-objective 
optimization issues are converted into single-objective optimization using a variety of 
optimization analysis approaches. This comprehensive overview examines approaches 
and their amendments [11–13]. Moreover, RSM optimizes the objective function and 
may mislead the results by yielding the local optimum value of the response variable 
whereas GA always yields the global optimum value of the response variable.

The numerous optimization strategies are employed to enhance and optimize effi-
ciency and effectiveness though various methods, such as Taguchi, GA, RSM, Grey 
Taguchi, and ANN [1].

Process factor optimization is critical for conserving resources, materials, and 
money in experimental activity. Advanced statistical methods, like the RSM, were 
required to analyze complicated processes with various input variables [14]. Mini-
mal experiments can be used to develop map domains adopting RSM. Despite exten-
sive optimization for robust processes, BOX BEHNKEN provides greater insight and 
necessitates a lesser amount runs of experiments [15].

ANN is computer programs that simulate nerve cell connections across the nerv-
ous system on a neuron-by-neuron and element-by-element basis. Researchers are 
using ANN to predict response behaviors in newly manufactured composites, which 
represent a significant boost in the usage of artificial intelligence within application 
of engineering. In modeling and addressing linear and nonlinear engineering issues, 
ANN can give complicated interactions between variables that are input and output, 
potentially substituting polynomial regression [16, 17].

For multi-objective optimizations, the GA was utilized, with non-linear regression 
and Buckingham’s pi theorem models demonstrating strong modeling abilities over 
the parameters of the process [18]. To improve the mechanical characteristics and 
responses of hybrid composite structures, a multi-objective GA and a resilient design 
technique were used [19].

Researchers can optimize control variables and response porosity in hybrid nano-
particles reinforced by  B4C-SiC-MoS2-ZrO2/Ti composites using mathematical mod-
els and learning approaches. To forecast control variables and response porosity, this 
study employs RSM and integrated ANN-GA. The study focuses on the interaction 
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impacts of process factors on porosity minimization, which is a rare comparison of 
various strategies.

The research investigation focuses to determine how reinforcing content and process 
factors affect Ti-SiC-B4C-ZrO2-MoS2 composite porosity. Empirical models include 
RSM and integrated ANN-GA predictive models, with ANN used to predict response. 
RSM examines dependability in complicated engineering, whereas GA optimizes using 
natural selection and genetics.

Methods
Raw material

Grade 5 titanium 80µm,  B4C 53nm, SiC 37 nm,  MoS2 97nm, and  ZrO2 85nm nanoparti-
cles with sizes and all composition purity >99% were obtained from SAVEER MATRIX 
NANO PVT. LTD, Uttar Pradesh, India. PM was used to make nanocomposites of 
Ti-B4C, SiC,  MoS2, and  ZrO2. Mechanical parameters of optimum specimen such as 
densification, porosity, the influence of sintered temperature, hardness, and reinforc-
ing dimensions dependency and dispersion were examined. The reinforcement (2.5, 5, 
7.5%) Wt.% of  B4C, SiC, and  ZrO2 developed experiment combination, 4%  MoS2, and 
titanium as balance. A homogenous blend of matrix and reinforcements in three-level 
combinations was developed for investigational purposes. PM was utilized to generate 
nanocomposites such as Ti-B4C, SiC,  MoS2, and  ZrO2, and mechanical features such 
as densification, microstructure, and reinforcement size dependence were investigated. 
Powder mixing, cold compression, and sintering are examples of traditional PM pro-
cesses. Tables 1 and 2 clearly show the composition of chemicals as well as the physical 
and mechanical properties of Ti grade 5, providing comparison of the current investiga-
tion’s results.

Table 1 Ti grade 5 chemical constituent/composition

Element Al V O N H Zr Fe Ti

Wt. % 6.2 4.35 0.55 0.5 0.3 0.03 0.02 Balance

Table 2 Physical and mechanical attributes of titanium grade five

S. No. Properties Measured 
value/amount

S. No. Properties Measured 
value/
amount

1 Density 4.43 g/cm3 11 Reduction of area 36%

2 Hardness, Rockwell C 36 12 Elongation at break 14%

3 Hardness, Brinell 334 13 Modulus of elasticity 113.8 GPa

4 Hardness, Vickers 349 14 Notched tensile strength 1450 MPa

5 Hardness, Knoop 363 15 Bearing yield strength 1480 MPa

6 Tensile strength, ultimate 950 MPa 16 Ultimate bearing strength 1860 MPa

7 Compressive yield strength 970 Mpa 17 Fatigue strength 510 MPa

8 Tensile strength, yield 880 MPa 18 Poisson’s ratio 0.342

9 Charpy impact 17 J 19 Fracture toughness 75 MPa-m½

10 Shear modulus 44 GPa 20 Shear strength 550 MPa
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Powder metallurgy method

A FRITSCH high ball mill from Germany was used to produce the distinct Wt.% (7.5, 
5, 2.5%) Wt.% of  B4C, SiC, and  ZrO2, as well as an additional 4%  MoS2-reinforced Ti 
composite powder. The rotating speed was 250rpm and the powder to ball ratio (PBR) 
was 1:10.

The combined particles were squeezed into 10 mm diameter and 12 mm length cyl-
inder-shaped pellets within a hydraulic pallet pressing under a compression pressure 
of 40, 45, and 50MPa using unidirectional, compression dies. The green body was sin-
tered within an appropriately controlled environment using an electric furnace con-
taining a flow regulator at temperatures of (800, 1000, and 1200°C) for (1, 1.5, and 2 
h), respectively. Sintering was carried out using a constant circulation of argon gas 
with an intake rate equal to 0.5  L/min to prevent manufactured composites speci-
men from oxidizing. Throughout the furnace, the sintered pellets underwent cooling 
to room temperature. As seen in Fig. 1, the method of fabricating HTMMCs consists 
of (a) powdered raw material particles and (b) sintered samples obtained through the 
powder metallurgy process.

Fig. 1 The process of fabricating HTMCs. a Powder raw material particles; b sintering samples; c experimental 
setup for the synthesis using powder metallurgy process and testing
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Testing and characterization

To explore the morphology of a material, the Jeol Japan SEM, Model JCM/6000PLUS 
BENCH TOP SEM, Musashino, Akishima, Tokyo 196-8558, Japan, was employed. For 
the purpose of determining the presence of reinforcing particles, X-ray diffractometer 
(XRD) was performed on fabricated synthesized composites using an XRD-7000 max-
ima (Shimadzu Corporation, Japan, Tokyo). CuKa radiation (k = 1.5406 A)0 combined 
40kV working voltages and 40 mA current was used for maintaining a diffractometer. 
Regarding thorough assessment of all existing phases, data from XRD was collected 
at a slow scanning rate of 0.02 steps/s. The scanning capability and frequencies were 
 100 to  850 in 0.020 step increments. Fourier transform infrared (FTIR) was obtained 
using the Bruker-alpha-FTIR spectrometer (Bruker Corporation, Billerica, MA, USA) 
in attenuation full reflection mode. A digital Rockwell micro-hardness type HRS-150, 
Beijing United Tester Co., LTD of Beijing, China, was also used for micro-hardness 
measuring device testing, with a weight of 150kgf and a holding time of 15 s. Dur-
ing the hardness test, the probable error due to experimentation was less than 5%. 
The test was performed at ambient temperature, the measurements of hardness were 
obtained four times per every specimen tested at various sites, and the average results 
were used to calculate micro-hardness. The sintered porosity of all manufactured 
composite samples was measured experimentally using the Archimedes’ principle 
and a standard test protocol (ASTM-B0311-93R02E01). An analytical balance was 
used to determine the sintered porosity of composites using Archimedes’ technique 
to test specimens to approximate their porosity. The sintered weight occurring into 
specimens were initially assessed with the support and aid of a precise digital weigh-
ing balance (HR-250AZ, A&D Company Limited, Korea) with a 0.0001gm accuracy.

Experimental design

For the model formation within RSM, the BOX BEHNKEN techniques were adopted 
to investigate the independent and the effects interaction within multivariable on the 
porosity of composite produced samples  (B4C, SiC,  MoS2, and  ZrO2) Wt.% concen-
trations and process parameter (sintering temperatures and time, compaction pres-
sure and time, milling time) circumstances. The goal of using BOX BEHNKEN to the 
parameters utilized throughout this study is to create the 2nd-order model effectively; 
BOX BEHNKEN designs are enhanced with additional center and axial locations 
to allow estimation of the governing factors of a second-order model. The provided 
input characteristics/factors were multifactorial (Wt.% of concentrations of  B4C, SiC, 
 MoS2, and  ZrO2) and process variable (sintering temperatures and time, compac-
tion pressure and time, milling time) circumstances; the process variables comprising 
lower and higher values have been indicated within Table  3. As presented through 
Table 4, the outcome factor/response variables were porosity. The explanations con-
cerning the matrices of arrangement of the elements in the various units employed in 
the RSM, as well as the porosity responses, have been reported within Table 4.
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Response surface methodology

The RSM was an effective method for analyzing robustness in complicated engi-
neering with explicit boundary function states. Utilizing factorial techniques and 
ANOVA, it optimizes multifactorial parameter sets to reach desirable values. RSM 

Table 3 Variables of input and DOE levels prescribed specifications

No. HTMMC optimization 
process parameters

Unit Parameters 
designation

Type Minimum Maximum

1 Milling duration Hrs. MD Numeric 4 6

2 Compaction pressure MPa CP Numeric 40 50

3 Compaction duration Minute CD Numeric 30 50

4 Sintering temperature 0C ST Numeric 800 1200

5 MoS2 Wt.% Wt.% MoS2 Numeric 4 4

6 SiC Wt.% Wt.% SiC Numeric 2.5 7.5

7 B4C Wt.% Wt.% B4C Numeric 2.5 7.5

8 ZrO2 Wt.% Wt.% ZrO2 Numeric 2.5 7.5

Table 4 Design matrix within runs of experimentation

Std Run Factor Response

Milling time 
(hrs.)

Compaction 
pressure (MPa)

Compaction 
time (Min.)

Sintering 
temperature (0C)

Porosity (%)

6 1 5 45 50 800 0.411

24 2 5 50 40 1200 0.531

5 3 5 45 30 800 0.432

16 4 5 50 50 1000 0.431

11 5 4 45 40 1200 0.265

7 6 5 45 30 1200 0.342

18 7 6 45 30 1000 0.341

25 8 5 45 40 1000 0.395

20 9 6 45 50 1000 0.384

13 10 5 40 30 1000 0.287

4 11 6 50 40 1000 0.139

2 12 6 40 40 1000 0.168

19 13 4 45 50 1000 0.391

23 14 5 40 40 1200 0.512

21 15 5 40 40 800 0.453

17 16 4 45 30 1000 0.167

10 17 6 45 40 800 0.357

27 18 5 45 40 1000 0.445

3 19 4 50 40 1000 0.374

8 20 5 45 50 1200 0.356

26 21 5 45 40 1000 0.444

14 22 5 50 30 1000 0.179

1 23 4 40 40 1000 0.323

22 24 5 50 40 800 0.267

15 25 5 40 50 1000 0.43

9 26 4 45 40 800 0.429

12 27 6 45 40 1200 0.471
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provides valuable data from small trials, which facilitates the analysis of principal out-
comes and the effect they have on response. RSM, also known as response surface 
modeling, is a technique for optimizing responses when several quantitative elements 
are present [20].

Factorial research designs use three-level variables that are independent to demon-
strate interaction between both independent and dependent variables. Homogeneously 
variation in choice parameters aids in understanding the impacts of variable levels on 
response, leading to optimum answers as shown in Fig. 2.

Integrated ANN‑GA optimization technique

ANN has since been used in human cognition studies, with predictive models being 
critical for determining output. This research used MATLAB’s ANN toolkit to develop 
neural network topologies, analyzing architecture, training technique, and activation 
function. Because of their ease of creation, efficiency, and simplicity, backpropagation 
neural networks are commonly used in applications involving engineering. Several mod-
els were created and evaluated to be capable of finding the major effective configura-
tion design, training method, and activation operation functioning. An optimization 
algorithm, in general, is a form of intelligent approach used to discover the ideal casting 
conditions [21].

Fig. 2 A schematic representation of RSM approaches
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Genetic algorithms (GAs) are search-based algorithms that use natural selection and 
genetics to solve optimization problems and alter solutions on a regular basis. They 
are iterative procedures that begin with a fixed-size population of candidate designs 
and progress through a fitness function for each member. GAs is noted for their clar-
ity, refinement, efficacy, and independence from language. The function of fitness facili-
tates in selecting individuals from the general population, whereas crossover approaches 
specify the offspring produced [22]. The GAs is the most extensively used evolution-
ary optimization tool. Many researches [21, 23] use a combined method of ANN and 
GAs as evolutionary strategies to achieve multi-objective optimization. The integrated 
ANN-GA flow diagram in Fig. 3 clearly depicts the procedures and techniques employed 
throughout the present investigation to obtain the best engineering material and the 
most cost-effective HTMMs’ developed samples.

Results and discussion
Porosity analysis

The optimum sample density of the produced composite material might vary depend-
ing upon the density associated with the reinforcement components, phase and dimen-
sion two-component combination, and production method and system. To approximate 
porosity, experimental density, and water absorption, Archimedes’ method was applied 
to sintered samples. Reduced density is associated with fewer reinforcing particles and 
spaces. The Archimedes technique has been utilized to compute the weight of sintered, 
wet, and submerged material. As shown in Table 4, the design matrix is within the runs 
of experimentation and the porosity response of the outcome of the computed porosity 
of synthesized HTMMCS.

Fig. 3 Integrated ANN-GA flow diagram
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Porosity rose in the composite fabrication as the mass fraction of SiC particles in the 
composition increased. The high relative density of sintered specimens (all optimum sam-
ples greater than 90% relative density) shows a strong/tough interface interacting between 
powder nanoparticles with little cavities/porosity. The void content of the synthesized 
HTMMCS was less than one in all samples, making this unique material appealing, and 
provides a broad spectrum of engineering requirements and purpose. This means that it 
was appropriate engineering materials for automotive and aeronautical applications. Fur-
thermore, the produced specimen density was lower than the theoretical density observed 
due to the inclusion of low density reinforced hard ceramic particles such as SiC and  B4C. 
The lowest experimental density and porosity with the composition of 7.5% SiC, 7.5%B4C, 
4%MoS2, 7.5%ZrO2, and 73.5%Ti with the composition of fabricated sample are 11 of the 
result provided 4.259 g/cm3 and 0.13%, respectively, as well as with 95.048% relative density.

RSM modeling

RSM models regarding porosity were developed combining experimental data and design 
experiments. A quadratic model including square, linear, and interaction terms for interac-
tion was created using design expert software, and responses to input variables.

Table 5 shows the ANOVA table for porosity, from which Eq. (1) is derived. As shown, 
the F-values of the models all demonstrate that the proposed model is significant, with 
the exception of milling time, sintering temperature, and the interaction of “Milling 

(1)Y(1) = 0.041X3 − 0.095X2
1 − 0.06X2

2 + 0.038X2
4

Table 5 ANOVA table for the porosity model

Source DF Seq SS Adj SS Adj MS F P

Regression 14 0.189332 0.189332 0.013524 18.29 0.000

Model 4 0.022883 0.022883 0.005721 7.74 0.003

Milling time 1 0.000008 0.000008 0.000008 0.01 0.917

Compaction pressure 1 0.001633 0.001633 0.001633 2.21 0.163

Compaction time 1 0.020833 0.020833 0.020833 28.17 0.000

Sintering temperature 1 0.000408 0.000408 0.000408 0.55 0.472

Square 4 0.090699 0.090699 0.022675 30.66 0.000

Milling time*milling time 1 0.045742 0.047712 0.047712 64.51 0.000

Compaction pressure*compaction pressure 1 0.0217 0.018148 0.018148 24.54 0.000

Compaction time*compaction time 1 0.015589 0.007837 0.007837 10.6 0.007

Sintering temperature*sintering temperature 1 0.007668 0.007668 0.007668 10.37 0.007

Interaction 6 0.07575 0.07575 0.012625 17.07 0.000

Milling time*compaction pressure 1 0.003025 0.003025 0.003025 4.09 0.066

Milling time*compaction time 1 0.0169 0.0169 0.0169 22.85 0.000

Milling time*sintering temperature 1 0.0289 0.0289 0.0289 39.08 0.000

Compaction pressure*compaction time 1 0.0049 0.0049 0.0049 6.63 0.024

Compaction pressure*sintering temperature 1 0.015625 0.015625 0.015625 21.13 0.001

Compaction time*sintering temperature 1 0.0064 0.0064 0.0064 8.65 0.012

Residual error 12 0.008875 0.008875 0.00074

Lack-of-fit 10 0.008875 0.008875 0.000888 * *

Pure error 2 0 0 0

Total 26 0.198207
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Time*Compaction Pressure” at 95% assurance level of P≤0.05. The milling time, sin-
tering temperature, and interaction of “Milling Time*Compaction Pressure” F-values 
of 0.917, 0.472, and 0.066, respectively, indicate that they are not significant. There is a 
91.7%, 47.2%, and 6.6% possibility of milling duration, sintering temperature, and inter-
action of “Milling Time*Compaction Pressure” F-value; this big might occur owing to 
noise. These findings are consistent with earlier studies [24].

All among the four models listed in Table 6, the bold numbers reflect the most via-
ble model indicated by the RSM tool, which is quadratic. The RSM was used for assess-
ing and analyzing the results of the experiment collected from the BOX BEHNKEN, as 
indicated within Table 4. The current work’s investigation was carried out using design 
expert software. Table 6  summarizes the porosity response model. Table 6 displays the 
adequacy metrics R2, adjusted R2, and anticipated R2. All indications of sufficiency are 
in acceptable agreement and show a significant link. Because the difference is smaller 
than 0.1609, its predicted R2 of 0.7421 correlates reasonable closely with the adjusted R2 
of 0.903. An analysis of variance result for the porosity model suggests that the primary 
influence of process variables (reinforcing particulate concentration and process param-
eter) as well as the interaction effect of the parameters are significant [24].

Implications of process parameter on porosity analysis

In recognition of conciseness, only the influence of process factors on porosity is dis-
cussed. Figures 4, 5, 6 and 7 depict the relationships between the porosity responsive-
ness and the variable in the method. Each figure within this research investigation 
extends and depicts the impact of process factors versus to another factor put and 
contributed the values at the central point. The response surface plot better illus-
trate each factor’s capacity to influence porosity. According to Fig. 5 (a–c) (3D plot of 
response surface), the process variable (ranked as 1 compression pressure, 2 milling 
duration and 3 sintering temperature) has the greatest influence on the porosity of 
composites, subsequent reinforcement Wt.% concentration; this result coincided with 
result of previous investigation [25]. Furthermore, as shown in Fig. 7(a–c), increasing 
the value of each process variable (such as compression pressure and time, milling 
duration, sintering temperature, and time) significantly improves the porosity level 
score and is desired to keep at a minimum for quality and high-performance engi-
neering material fabrication. The model reveals no sudden fluctuation in the continu-
ous variance. The genuine information/data points throughout the graph are almost 
identical to the projected ones; the optimization demonstrates that the quadratic 
model was an effective approach model for determining the reaction rate of a factor 
an independent variable. Porosity reduces at 7.5%SiC, 7.5%B4C, 4%MoS2, 7.5%ZrO2, 

Table 6 Summarizes the response (porosity) model

Source Std. Dev. R2 Adjusted R2 Predicted R2

Linear 2.27 0.3709 0.325 −0.4605

2FI 2.53 0.376 0.0547 −1.9243

Quadratic 0.10558 0.9552 0.903 0.7421
Cubic 1.51 0.8176 0.7022 0.7891
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and 73.5%Ti wt.% of the developed HTMMC composition. According to contour plot 
Fig.  6 (a–c), the process parameter has a greater impact on the response than the 
weight percentage of reinforcements. Additionally, as demonstrated in Fig.  6 (a–c), 
enhancing the amount of every process factor (for example, compression pressure 
and time, milling duration, sintering temperature, and time) considerably enhances 
the porosity level score and is recommended that they be kept to a minimum for 
high-quality and high-performance engineering material development. The plot of 
optimization in Fig. 7 illustrates that the relationship between process variables and 
response porosity is visible, suggesting that porosity is reliant on the mathematical 
model.

According to Figs. 4, 5, 6 and 7, bigger process parameter values comprised value for 
this experimentation developed are a highly significant source for minimizing and man-
aging the porosity of manufactured HTMMC technical material for aerospace and auto-
mobile applications. Figure 7  shows the optimized value of optimization using PM via 
RSM for experiment design of process variables (milling period, compaction pressure, 
compact duration, sintering temperature, and time) of 6, 50MPa, 50 min,1200°C, and 2h. 
This outcome was consistent with prior research [25].

Parametric optimization using ANN

ANN is made up of hidden, input, and output levels, with nodes that serve as inputs 
gathering user data and passing it through hidden layers that vary in size depending on 
the breadth of the data [26, 27]. The configuration for this inquiry is shown in Table 7 
ANN parameters for operation.

The porosity prediction model for this inquiry development strategy was the ANN 
(Fig. 8) setup (6-10-1 configuration).

Fig. 4 Residual plots for porosity analysis
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Testing and training networks

Training and testing are the two processes in the construction of an ANN model. The 
network’s weights are modified throughout the learning phase to close the gap between 
anticipated outputs and desired goals [28, 29]. The network was trained using an ANN 
model of feedback propagation. For learning and testing, the MATLAB 2019b software 
was utilized, along with data on porosity and density. The Levenberg-Marquardt (LM) 
method was chosen for reliability and processing time 30].

As a result, the model that was trained predicted with little error, and it can be utilized 
as well for predicting the unidentified quantity for the next set of data. As demonstrated 
in Fig. 9, the network was effectively trained with a near-unit determination coefficient 
(R = 0.99914), showing greater performance. The coefficient of regression (R) is closer 
to one, suggesting better performance. The ANN-predicted values are closer to the 
experimental values, indicating the modest deviation or very small margin of error. As a 
result, the proposed model can well anticipate the porosity and experimental density of 
HTMMC composites.

Fig. 5 Surface plot of porosity investigation utilizing PM Process variable RSM for experiment design (a–c)
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The graphic depicts the optimum outcome, shown by a dashed line, where outputs 
equal goals. A solid line is the best-fitting linear regression line, and the R value reflects 
the relationship between outputs and goals. If R = 1, the relationship is accurate; how-
ever, R close to 0 indicates that there is no linear relationship.

The data are all well-fitting, as shown by Fig. 9, which was verified by Jiang and Frie-
drich et al. [31]. As a result, the trained network system provides results with a minimal 
proportion of error and may be used to anticipate unknown future values. Input with 
high agreement between experimental and anticipated values is shown in Fig. 9. Addi-
tionally, it verifies that the data is well fitted as a result of proper training. Additionally, 
the network provides the lowest possible error rate and is utilized to predict future val-
ues that are unknown. The R2 value in the network is very near to 1, indicating that there 
is very little error [32].

Figure 9  differentiates experimental and anticipated data sets from training, valida-
tion, testing, and combined sets. All of the data sets are shown in the corresponding 

Fig. 6 Contour plot of porosity investigation utilizing PM Process variable RSM for experiment design (a–c)
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graph. The experimental and anticipated output systems are all in good agreement 
with each other.

The performance status of five input parameters is depicted in Fig. 10. Before the 
validation curve, the test curve grew noticeably, and it is conceivable that some over-
fitting had place. This is fixed by continuing the training for a few more iterations 
before ending. Better outcomes were obtained after retraining the network, which 
was terminated at the highest regression coefficient value. The obtained R values 
are 0.99914 and 0.95747 after successive training. In both times, the MSE value was 
rather low, and the scatter plot demonstrated better acceptable fits.

The R value of 0.99914 implies that there is a high relationship between network and 
experimental outcomes. For successful prediction models, adequate input parameters 
are required while training the network. The experimental and anticipated porosity 
values of the ANN model were exhibited, proving its accuracy in estimating experi-
mental findings. The use of fewer parameters might result in inefficient models.

Fig. 7 Porosity investigation optimization utilizing PM via RSM for experiment design of process variables 
(milling period, compaction pressure, compact duration, sintering temperature, and time)

Table 7 ANN parameters for operation

S. No. Composition source Type

1 Configuration of a network 6.10.1

3 The number of hidden neurons 10

2 The number of hidden layers 1

5 The number of patterns utilized for training 9

6 The number of patterns tested and validated 4

7 The number of epochs is 1000 1000

4 The transfer function was utilized Logsig/sigmoid



Page 16 of 34Gemeda et al. Journal of Engineering and Applied Science          (2024) 71:116 

Model verification

The 0.0001 expected error values were considered acceptable and appropriate for ANN 
training. Figure 10 displays the amount of repetition dependent variations of mistakes 
for an ANN selected for an optimal amount of reinforced particle. The most effective 
verification effectiveness and efficiency accuracy could be achieved with three epochs, 
and the network built attains coherence and reliability despite fewer epochs. During val-
idating the average ANN from all of the training and tested configurations, achievement 
error was 0.232%, 0.143%, and 0.304% for experimental density, porosity, and hardness, 
respectively. ANN is a useful technique for predicting the porousness and hardness of 
materials [30].

Parametric optimization using genetic algorithm

Genetic algorithms (GAs) are particularly advantageous for accomplishing the same, 
and a program was built to assist the method, as are search algorithms that replicate 
genomic evolution in biological systems, allowing them to deal with complicated issues 
that include discontinuous, multi-modal, non-differentiable objective functions. They 
employ a survival of the fittest strategy, evaluating all stages in the stage space and 
employing mutation, crossover, and selection procedures to discover optimal solutions 
for linear and nonlinear problems [21].

The parameters that follow have been chosen to produce best results with little com-
puting effort:

Population size = 50
Population type = double vector
Creation function = constrain dependent
Scaling function = rank
Selection operator = Roulette wheel

Fig. 8 Neural network architecture designs (6-10-1 configuration) employed as the porosity prediction 
model
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Elite count = 0.05 * population size
Cross over fraction = 0.8
Mutation function = constrain dependent
Number of generations 100

The study’s goal is to use genetic algorithms (GAs) to create a trustworthy approach 
to predicting powder metallurgy circumstances. GAs was searching algorithms that 
may solve complicated problems having inconsistent, multi-modal, and non-differen-
tiable purposes through mimicking the evolution of genomics in biological networks. 
Using the “survival of the fittest” technique, the program seeks to both preserve and 
utilize the solution population [33, 34]. According to Sheelwant et al. [21], apply GAs 
to produce a trustworthy strategy to forecast porosity conditions owing to global opti-
mal optimization concede with this optimum result conclusion as shown in Fig.  11 
GA analysis.

Fig. 9 Predictive analysis regression plots for the constructed network’s training, validation, and testing
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Experiment confirmation of optimal process variable circumstances

The validation test evaluated the HTMMCS’s experimental density, porosity, and 
Rockwell hardness. RSM was found to be useful for multi-output optimization in 

Fig. 10 The resulting performance of the model curves (mean squared error (MSE) vs. epoch number)

Fig. 11 GA analysis
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biomedical devices, vehicles, and aircraft components, predicting physic mechanical 
characteristics. This study verifies and aligns with prior findings [15]. Two further tri-
als were performed under the identical settings as solution to check the correctness 
of the optimal condition provided using response surface methods. Table  8 shows   
the results of several trials and projected that the response findings in solution car-
ried out three replications for optimal sample composition and process parameters 
are identical to the observed findings. A mean wt.% error occurred in experimental 
porosity; experimental density and the experimental Rockwell hardness are 0.004, 
0.04, and 1.19, respectively. These data show that the values for the reactions pro-
vided by experimentation and anticipated by RSM tool of Design-Expert software are 
equivalent. As a result, the precision of the optimum settings generated by the com-
puter algorithm is confirmed through actual laboratory experimentation.

The most favorable input variable circumstances have been figured out by comput-
ing the quadratic model projection equations based on experimentation data and 
analyzing the response surface graph. Table 9 shows the input factors and response 
with the greatest degree of accuracy, with desirability values of 0.78368, 0.76145, and 
0.73921, when the three best potential alternatives are considered and experiments 
are performed with optimal sample composition and process variable optimized 
result prediction conditions. Desirability scale span/range between 0 and 1, deter-
mined by the close proximity for the response to the goal desired outcome [24, 35]. 
The findings from the experiment were investigated further using ANN and GA with 
critical analysis and comparison with RSM.

Table 8 Results of the mathematical optimization procedure and composite desirability ratings

Composition of 
HTMMCs

Powder metallurgy 
process parameter 
optimal combination

Number 
of trial

Experimental 
density (gm/
cm3)

Porosity (%) Desirability

7.5% SiC, 7.5%  B4C, 4% 
 MoS2, 7.5%  ZrO2, 73.5% 
Ti wt.%

Process variables (milling 
period, compaction pres-
sure, compact duration, 
sintering temperature, 
and time) of 6hrs, 50MPa, 
50minute, 1200°C, and 
2hrs, respectively

1 4.39 0.0123 0.78368

2 4.46 0.0117 0.73921

3 4.24 0.0114 0.76145

Table 9 Experimental validation under optimum circumstances

Run Sintered sample density (g/cm3) Porosity of fabricated optimal Sample (%)

Experimental 
density (gm/cm3)

Predicted Error (%) Experimental 
porosity

Predicted Error (%)

1 4.39 4.43 0.04 0.0123 0.0135 0.007

2 4.46 4.49 0.03 0.0117 0.0123 0.004

3 4.24 4.29 0.05 0.0114 0.0116 0.002

Mean 0.04 0.004

Standard 
deviation

0.081 0.003
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Comparison of integrated ANN‑GA and RSM results for HTMMC composite

Integrated ANN-GA results with RSM results are constituted algorithms for predic-
tions that can solve multidimensional nonlinear and linear interaction issues. Previous 
investigation has shown that integrated ANN-GA results with RSM results are effec-
tive tools for estimating process parameters throughout the manufacture of composite 
materials [33, 36]. These mathematical frameworks have been employed to determine 
the influence of the input factors on the outcome variables as well as to define variable 
relationships.

According to Table 10, the R2 values of 0.9552 and 0.97984 for the RSM and integrated 
ANN-GA results, respectively, indicate that the RSM forecast has a greater divergence 
than the integrated ANN-GA projection, indicating that statistical analysis errors were 
analyzed to compare the projected data.

Its assessment of anticipated integrated ANN-GA and RSM results values is illustrated 
extensively through result. The outcomes demonstrated how the integrated ANN-GA 
model is superior than the RSM model for analyzing interaction factors and projections. 
With an interval of confidence of 95%, the contrast of the findings was shown to predict 
the porosity near to experimentally collected measurements.

Accordingly, Table 10 shows that the integrated ANN-GA model estimate is more reli-
able and accurate than the RSM model computation, indicating that ANN has superior 
capabilities for modeling. A few studies from recently published studies [17, 37] confirm 
this conclusion. The study used combined ANN-GA findings to forecast and optimize 
porosity in the production of titanium-based particulate MMCs. The global optimal 
findings demonstrated that the combined ANN-GA technique considerably improved 
the manufacturing usability of titanium-based particulate MMCs, indicating its useful-
ness in the sector.

Synthesized optimized HTMMC characterization

HTMMC XRD analysis

The phase identification and occurrence of reinforcement particles made of  B4C, SiC, 
 MoS2, and  ZrO2 in the synthesized sintered composites were investigated using an XRD. 
Figure 12 shows an XRD plot of produced composites with varying  B4C, SiC,  MoS2, and 
 ZrO2 concentrations. The appropriate peaks found on the XRD graph confirmed the 
occurrence of titanium and  B4C, SiC,  MoS2, and  ZrO2. Titanium had the largest inten-
sity, because of the highest concentration compared to  B4C, SiC,  MoS2, and  ZrO2. The 
result revealed a new TiC and TiB peak, showing that a new phase was produced during 
the sintering process due to the reaction between pure Ti and  B4C. High score plus and 

Table 10 RSM vs. integrated ANN-GA comparison

S. No. Prediction of errors Porosity of the response surface

RSM Integrated 
ANN‑GA

3 MAPE 0.59 0.05

2 RMSE 1.837 1.0689

1 R2 0.9552 0.97984
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origin software was used to perform the computations. The found results are compatible 
with the findings of previous studies [38–40].

The XRD pattern of HTMMCs after sintering is shown in Fig.  12. All specimens 
showed  TiO2 peaks at 2θ = 41.6°, 27.44°, 44.08°, 84.34°, and 79.9°, in accordance with 
(002), (110), (210), (400), and (212), Miller indices (JCPDS: 021-1276). TiB peaks were 
detected at 2θ=58.8°, associated to the (002) Miller index (JCPDS: 0044598). The SiC 
peaks were found at 2θ = 62.78°, 41.28°, and 76.6°, which match the (110), (200), and 
(103) Miller indices (JCPDS: 049-1623).  MoS2 peaks were found at 2θ= 66.48° and 
38.22°, which coincide with the (116) and (104) Miller indices (JCPDS: 0076370). The 
 B4C peak maxima fit crystallographic patterns with angles 2θ = 69.84°, which matches 
the (220) Miller indices (JCPDS:00-026-0233). The XRD pattern revealed TiC peaks at 
2θ = 36.3° and 41.27°, which coincide to the (111) and (200) Miller indexes (JCPDS: 
089-3828).  ZrO2 maxima may be detected at 2θ = 27.5° and 64.1° angles, which align 
with crystal orientation (111) and (211) Miller indices (JCPDS: 00-037-1484). While 
extremely rare circumstances, TiC,  TiB2, and  TiO2 appear as new phases while sintering 
synthetic HTMMC specimens detected by XRD analysis.

Fourier transform infrared spectrometry of fabricated HTMMCs

FTIR spectroscopy is a high-precision, user-friendly instrument for evaluating speci-
men development and quality, as well as ensuring material absorption and according to 
ASTM E168 and E1252 standard conformance. Figure 13 shows the FTIR of produced 
HTMMCs as a consequence of optimal sample experimentation.

The main peak significance for B4C is about 1100  cm−1 (more particularly, 1097  cm−1 
and 1107  cm−1 were allocated correctly after comparing with previously published infra-
red investigations of B-C chemical bonds) [40]. Romanos et al. [40] discovered that the 

Fig. 12 XRD analyses of optimum samples (OS)
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acquired peaks coincided with the infrared spectra of the boron-carbon bonds. The SiC 
platform is responsible for the highest points at 1022  cm−1, 1058  cm−1, 992  cm−1 (Si-O), 
and 700  cm−1 (Si-C), which is consistent with the findings of [41]. Prominent peaks were 
found about 500  cm−1 coinciding to the Zr-O stretching vibration of the  ZrO2 phase 
[42], confirming the development of  ZrO2 as crystallographic phases [43]. Based on 
the results of the inquiry, the peaks were provided together with the functional groups 
responsible for  TiO2 synthesis, which could be represented as 420  cm−1, 410  cm−1 intra-
molecular bonded (weak), and 425  cm−1 intramolecular bonded (strong). This investiga-
tion confirmed the conclusions of [44]. The Mo-S vibration peak is around 600  cm−1, 
which decreases as spectrum increases, indicating a weaker Mo-S bond [45].

As a result, the primary peak importance for B4C is around 1100  cm−1, which was 
accurately assigned, and it was discovered that the obtained peaks agreed with the B-C 
bonds’ infrared spectra. At 700  cm−1 (Si-C), the SiC platform had the highest scores. 
Significant peaks were discovered at 500  cm−1, which corresponded with the Zr-O 
stretching vibration of the  ZrO2 phase and verified the crystallographic phase formation 
of  ZrO2. As the spectrum widens, the peak of the Mo-S vibration decreases to around 
600  cm−1. The functional groups responsible for  TiO2 production, which might be rep-
resented as 425  cm−1 intramolecular bound (strong) of Ti-O, were offered together with 
the peaks based on the inquiry’s results.

Microstructure analysis

The morphology of the fabricated sample was studied utilizing SEM examining to ana-
lyze its SEM micrography that was determined to contain coarse lamellar and separation 
of phases throughout extreme temperature sintering and followed by slow cooling [46].

Fig. 13 FTIR of fabricated HTMMCs
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In Fig.  14, SEM micrographs revealed that increasing  ZrO2 and  B4C concentrations 
makes constant  MoS2 and decreasing SiC in the optimum sample (7.5%  ZrO2, 7.5%  B4C, 
4%  MoS2, 5% SiC, 76% Ti) reduced porousness and surface densification in HTMMCs. 
The production of this sophisticated microstructure in the observable micrographs 
from the created sample SEM morphological concepts has the promise to culminate in 
some unique properties. The insertion of course, columnar-shaped particles into a fine-
grained morphology is unlikely to increase mechanical strength; in fact, it is more likely 
to cause that region of the part to lose strength [47]. The phase bond was robust in the 
optimal sample, which had minimum porosity structure between the 76% Ti and 7.5% 
 ZrO2, 7.5%  B4C, 4%  MoS2, and 5% SiC reinforcement particles. As stated by Harish et al. 
[48, 49], the quantity of reinforcing particles increases the porousness of MMC mate-
rial in the morphology. The 1200°C heating temperature resulted in the production of 
secondary phases, whose presence was visible as darker patches surrounding matrix and 
reinforcement nanoparticles. The products of these interactions could be seen, but the 
boundaries of grains were challenging to identify due to the existence of intermetallic 
and a few pores existed around the particles. Visual analysis proved it difficult to dis-
tinguish between secondary phase formations. As a result, these small particles remain 
embedded throughout the matrix and are immediately identifiable through their dark 
gray color and angular form. The surface within the amalgamated sample showed fewer 
brittle cracks and fractures. This behavior was identical to one described and investi-
gated within a previous investigation [50, 51].

Density and porosity analysis The density of composite components is affected by rein-
forcing elements, phase and size, and manufacturing processes. The porosity investiga-
tion process follows the Archimedes principles and the approved mixing rule utilizing Eq. 
(3). A tumbler was used to submerge and soak the specimen in hot water at 70°C for 2h in 
order to determine the quantity of compacting and sintered material.

Fig. 14 SEM morphological concepts of developed HTMMC with the composition of 7.5%  ZrO2, 7.5%  B4C, 
4%  MoS2, 5% SiC, and 76% Ti through powder metallurgy
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Table 11 provides a clear and concise representation of the density and porosity of the 
optimized sample. However, in accordance with ASTM C 373-72, 1984, the densities of 
sintered materials are ascertained by applying the Archimedes principle. Using the sub-
sequent formula (2):

where P represents the porosity occurring in the material, ρ a represents its actual den-
sity, and ρ t represents its theoretical density.

Table 11 shows that the synthesized TMC’s low void content and high relative density 
which indicate strong interface bonding and minimum porosity make it appropriate for 
use in the automotive and aerospace engineering industries.

Micro‑hardness analysis In the industrial industry, Rockwell hardness tests are com-
monly performed using diamond indenters to get different ISO 6508-1 scales. More pre-
cise calibration methods for Rockwell hardness examination devices are yet required by 
the industry. The Rockwell hardness tester scale was utilized to calculate specimen hard-
ness numbers in accordance with ASTM E18 and 28 standard testing protocols as shown 
in table 12. A 150-kg Brale indenter was employed, and the load application duration was 
15 s.

(2)ρArch =
Wair

(Wair −Wliquid)
XρWater

(3)P =
1− ρt

ρa

Table 11 Optimal sample density and porosity analysis result

Composition of HTMMCs Number of trial Experimental density (gm/
cm3)

Porosity (%)

7.5% SiC, 7.5% B4C, 4% MoS2, 7.5% ZrO2, 
73.5% Ti wt.%

1 4.39 0.0123

2 4.46 0.0117

3 4.24 0.0114

Average 4.36 0.0118

Table 12 Optimal sample micro-hardness analysis result
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Table 5 demonstrates how the composition of  ZrO2,  MoS2,  B4C, and SiC nanoparticles 
considerably affects the hardness value of HTMC material. With an increase in sinter-
ing temperature or heat, the composition of reinforced  B4C,  MoS2, SiC, and  ZrO2 nano-
particles increases. At 7.5% SiC, 7.5%  B4C, 4%  MoS2, 7.5%  ZrO2, and 73.5% Ti weight 
percentage, the optimum sample exhibits the greatest hardness of 63.4HRC, showing 
outstanding mechanical characteristics and densification. Additionally, high-hardness 
ceramics reinforced and the phase development of TiC and TiB in the matrix are respon-
sible for this, which increases the load-bearing capacity.

Compression strength analysis

The results of the study demonstrate that compositions containing  B4C, SiC,  MoS2, and 
 ZrO2 hard ceramics have composite compressive strengths that are much greater due 
to characteristics such matrix structure, equal dispersion of reinforcement particles, 
higher reinforcement phase, and Orowan reinforcing mechanism. Stronger barriers to 
dislocation motion are produced by larger grain sizes and grain boundaries as a result of 
increased atomic diffusion brought on by higher sintering temperatures. In addition, the 
composites exhibit enhanced mechanical characteristics and high denitrification.

This work investigates the effects of sintering temperature and hard ceramic reinforce-
ment on the compressive strength of composites. Higher sintering temperatures result in 
stronger reinforcing phases, better matrix structures, and higher compressive strengths; 
grade 5 pure titanium, on the other hand, has lesser strength. The compressive strength 
rises to 2500MPa, a 2.6% improvement, when the optimal reinforcing particles 7.5% SiC, 
7.5%  B4C, 4%  MoS2, 7.5%  ZrO2, and 73.5% Ti are utilized.

Wear rate analysis

The study investigated the consolidation of composites in dry, room-temperature con-
ditions utilizing Ti-B4C-SiC-MoS2-ZrO2. According to ASTM-G-99 requirements, 
sample size Ø6X12 mm was tested against Ø120 mm EN31 steel disc with a 65HRC 
hardness after being exposed to 10N stresses and a 300 rev/min sliding velocity at 1800 
m sliding distance. The results have shown that under normal load conditions, a larger 
indenter dispersion raises the sliding wear rate in Ti alloy. To enhance wear rate resist-
ance, strong ceramic was included into the Ti matrix. Surface modification was caused 
by an increase in sliding wear rates with an increase in sliding velocity frequency. Tita-
nium was shielded from wear and attrition by the robust ceramic armored plate, and 
wear loss in the Ti alloy decreased as the concentration of  B4C-SiC-MoS2-ZrO2 rose.

The wear rate was significantly improved to 0.176mm3/N.m when the proper reinforc-
ing particles were utilized. HTMMCs are used in 7.5% SiC, 7.5%  B4C, 4%  MoS2, 7.5% 
 ZrO2, and 73.5% of these samples; the results are in line with the hardness of the opti-
mally produced samples as shown in table 13. Wear rate investigations found that  TiB2 

Table 13 Optimal sample wear rate analysis result

S. No. Validation examination 
outcomes

Measured responses data

Trial‑1 Trial‑2 Trial‑3 Average response value Sliding distance

1 Wear rate (WR)  mm3/N.m 0.178 0.175 0.176 0.176 1800m
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concentration increased wear rate, but the coefficient of friction showed an opposite 
trend. Similarly, when the sliding speed of the counter plate rotation increased, the wear 
rate decreased and the coefficient of friction (COF) increased [52].

The important factor influencing the wear rate amount was load. Based on the results 
of an optimal sample of SEM micrograph, the wear rate mechanism deformation analy-
sis is displayed in Fig. 15.

Hybrid TMC nanocomposite corrosion behavior analysis

The behavior of electrochemical corrosion Electrochemical impedance spectroscopy 
(EIS) is a high-performance method used to study material characteristics and elec-
trochemical systems by perturbing the electric potential with a variable frequency sine 
wave and monitoring the current response within the electrochemical cell. It investigates 
the interfacial properties of metallic alloy surfaces and advantages from being a steady 
state approach, sensing tiny signals and probing from 100 mHz to 100 KHz. Electro-
chemical measurements were carried out in a standard three electrode electrochemical 
cell (modified from ASTM: G3-89) comprising 3.5 wt% NaCl solution at the temperature 
of the body (37 ± 2 °C) as one of the key elements of physiological solutions [53].

The potentiodynamic polarization Potentiodynamic polarization experiments and 
electrochemical impedance spectroscopy (EIS) in 3.5%NaCl aqueous solutions were used 
to assess the corrosion resistance of synthesized HTMMCs. The corrosion properties of 

Fig. 15 Wear rate morphology analysis
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pure titanium grade 5 base metal matrixes were also compared in the study. An AC cur-
rent potential was used to set the corrosion potential of the operational electrode after 
the sample had been stabilized at the corrosion potential  (Ecorr) for 2h. The frequency 
range for which impedance spectra were gathered was 100 kHz up to 0.01Hz. The exper-
iments were conducted to investigate the corrosion capability of synthesized HTMMCs 
using an electrochemical analysis machine (BioLogic, Model-SP-200, France).

The retrieved values from the schemes are the corrosion rate (CR), polarization resistance 
(RP), corrosion potential (Ecorr), and corrosion current density (Icorr). The investigation 
discovered that greater corrosion resistance resulted from higher corrosion potential and 
lower current density, with high Ecorr and low Icorr indicating low corrosion rate and con-
firming the potential for advancement with different scholars.

According to Table 14 that has shown best results, because of its smaller average pore 
size, fewer cracks, and relatively dense surface microstructure of Ti and HTMMCs, the 
pure Ti sample has the highest corrosion potential of −0.85V and the lowest corrosion cur-
rent density of 4.9 ×10−7  Acm−2. For the HTMMCs, on the other hand, the highest corro-
sion potential of −0.64V and the lowest corrosion current density of 4.8 ×  10−10  Acm−2 are 
obtained. The formation of oxide layer and ceramics may reduce the Icorr of pure titanium 
from 4.9 ×  10−7 to 4.8 ×  10−10  Acm−2 for HTMC optimal sample. This is about 999 times 
lower than that of titanium metal matrix.

According to Verma et al. [54], the polarization resistance (RP) of the specimens was also 
established using the Stern-Geary Eq. (4):

When the anodic and cathodic slopes of the polarization curves are represented by βa 
and βc, respectively, the potential for corrosion can be increased while the current density 
is decreased to predict enhanced corrosion resistance. In addition to more uniform cor-
rosion and a strong corrosion resistance function, high Ecorr and low Icorr suggest a low 
corrosion rate. The inhibitory efficiency (IE%) of the HTMMC was determined using the 
following formula (5):

where Imcorr is corrosion current density values of pure Ti and Icorr corrosion current 
density values of HTMMCs.

The maximum inhibitory efficacy of 99.9% is displayed by the optimal sample. This is 
among the benefits of powder metallurgy fabrication process. Additionally consistent with 
XRD, Rockwell hardness, compressive strength, and wear rate are these results.

(4)Rp =
βaβc

2.303Icorr(βa+ βc)

(5)InhibitorEfficiency =

{

Imcorr − Icorr

Imcorr

}

× 100

Table 14 Corrosion extrapolation of HTMMC specimens

Samples Ecor (mV) Icorr (µA/cm2) βc (mV) βa (mV) RP (Ω) CR (mm/y) (IE%)

Pure titanium −0.85 4.9 ×10−7 213.3 18.9 1.54×104 1.7×10−2 0

Optimum sample −0.64 4.8 ×  10−10 120.98 141.58 5.9 ×  107 2.15×10−4 99.9
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The physical barriers of  B4C,  MoS2, SiC, and  ZrO2 nanoparticle reinforcements are 
significant and contribute significantly to the enhanced and prevent rate of corrosion of 
HTMMCs.

Since there are no pores and complete densification, the nano-composites with the 
optimum sample composition exhibit the lowest corrosion rate. Due to the ceramic par-
ticles’ reduced reactivity and their homogeneous distribution throughout the Ti matrix, 
which functions as an internal passive material to lower the corrosion rate, the addition 
of  B4C, SiC,  MoS2, and  ZrO2 greatly increases the corrosion resistance of hybrid TMC 
nano-composites with the composition of 7.5%  ZrO2, 7.5%  B4C, 4%  MoS2, 5% SiC, and 
76% Ti optimum samples.

The maximum potential and polarization resistance of optimal samples  was due  to 
the homogeneous distribution of hybrid reinforcements, as well as the high hardness 
and compressive strength of HTMMCs at the specified fraction. According to Katkar 
et al. [55]’s mixed potential hypothesis, when the reinforcement content in the HMMCs 
grows, the HMMC’s potential changes in the noble direction.

Electrochemical impedance spectroscopy analysis method Nyquist strategies were pro-
duced 2h after submerging Ti and HTMMC sample electrodes in 3.5% NaCl solutions. 
Because of their larger semicircle diameter, the spectra showed that the base metal is less 
resistant to corrosion than HTMMCs. Higher reinforcing content in HTMMCs results in 
lower corrosion current possess. According to Shafqat et al. [56], constant phase elements 
(Q, CPEs) with α value close to 1.0 indicate low porosity double-layer capacitors in all 
samples. The reason for this is that CPE might resemble Warburg impedance at α = 0.5, 
capacitance at α = 1, resistance at Z(CPE) = R, and so on, depending on α according to 
the investigation of Sherif [57]. The characteristics of the equivalent circuit model shown 
in Fig. 16 can be provided as follows, in accordance with usual practice: Solution resist-
ance is denoted by RS, polarization resistances by Rpa and Rpc, and constant phase ele-
ments (CPEs) by Qa and Qc. This suggests that, compared to pure Ti grade 5, HTMMCs 
have greater corrosion resistance. Due to the higher corrosion resistance of the HTMMC 
surface over the Ti surface, Table 15  shows that the RS, Rpa, and Rpc values for HTM-
MCs are larger than those for pure Ti. The admittance and impedance of a CPE are given 
by the following Eqs. (6) and (7), respectively.

Fig. 16 The equivalent circuit model used to fit the EIS experimental data [53]
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where  Y0-modulus, ω-angular frequency, and α-phase values are ranging from 0 to 1.
Furthermore, the CPE for Ti were higher than those for HTMMCs. By increasing 

the weight % of secondary reinforcements up to a certain point, more reductions were 
achieved before it increased once again. Through grain refinement and the creation of a 
smooth, homogenous HTMMCs, further reinforcements of  B4C, SiC,  MoS2, and  ZrO2 
into the Ti matrix increase the anti-corrosion efficiency of HTMMCs. This prevents 
rusting by serving as a physical barrier layer. The HTMMCs were a stronger and more 
resilient to matrix disintegration because of the uniform dispersion of nano-reinforce-
ment particles.

Comparing the OS HTMMC sample to other HTMMCs and Ti, EIS tests reveal that 
it has greater surface passivation and improved corrosion resistance. Potentiodynamic 
polarization experiments yielded results that are in excellent agreement with the EIS 
data. In 3.5% NaCl solutions, hybrid reinforced HTMMCs are less prone to uniform 
and pitting corrosion than the basic material, pure Ti. The degree to which chloride ions 
inhibit corrosion is lessened when hybrid reinforcements are increased.

The EIS results for pure Ti and optimum sample are listed in Table 15. The results for 
HTMMCs are Rs = 8.94×102 Ω  cm2, Rpa = 7.5×106  cm2, and Rpc = 3.15×107 Ω  cm2, 
whereas the figures for pure Ti substrate are Rs = 5.21×102 Ω  cm2, Rpa = 1.53×103 Ω 
 cm2, and Rpc = 562.35 Ω  cm2. Since the Rpc values are significantly higher, the results 
show that the synthesized HTMMCs have a greater corrosion resistance. Investigations 
of the corrosion properties of Ti and its HTMCs utilizing potentiodynamic polarization 
and impedance show that the degree of resistance to corrosion of the HTMCs is higher 
than that of the Ti base metal.

Morphological characterization of after corrosion

As Fig. 17 has shown, the research investigation focuses at the bonding of matrix and 
 B4C, SiC,  MoS2, and  ZrO2 with the matrix on the uncorroded and corroded surfaces 
of the optimal sample of HTMMCs. The porous nature of the uncorroded surface cor-
responds to density and porosity results. The optimum HTMMC sample is less damaged 
than the pure titanium sample. The inclusion of optimal reinforcing particles (7.5%  ZrO2, 
7.5%  B4C, 4%  MoS2, 5% SiC, 76% Ti) results in reduced surface deterioration. Pitting cor-
rosion was reported on pure titanium samples. The joint action of hybrid reinforcement 

(6)YCPE = Y0[jω]
α

(7)ZCPE = ⌈
1

Y0
⌉
(

jω
)

−α

Table 15 EIS data combined with the equivalent circuit diagram

Sample Rs (Ω cm2) Qa (μF/cm2) Phase (α1) Rpa (Ω cm2) Qc (μF/cm2) Phase (α2) Rpc (Ω cm2)

Pure titanium 5.21×102 7.5×10−5 0.884 1.53×103 6.1083 0.85 562.35

Optimum 
sample

8.94×102 1.6×10−6 0.965 7.5×106 1.96 ×  10−6 0.989 3.15×107
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minimizes pitting susceptibility. Morphological study of SEM micrographs demonstrates 
that HTMMCs have less damage than the Ti matrix.

The research findings find that hybrid reinforcement particles significantly improved 
HTMMC corrosion resistance, therefore rendering them acceptable for potential utiliza-
tion in a variety of industries.

Fractography analysis

A fracture map of the samples’ surface morphology is shown in Fig.  18, which shows 
brittle cracking in the HTMMCs. Pore size changes brought about by agglomeration 
during powder mixing resulted in a reduction in mechanical properties and a large 
number of indentations on the micrograph. Small cracks propagated when a force was 
applied perpendicular to the sample; in certain places, cleavage cracking also occurred, 
which increased the fracture of composite samples because of their brittle nature. SEM 
was used to investigate the fracture processes and investigate the micrographs’ structure.

The severe failure mode of brittle fracture in titanium alloy, which is used in critical 
structures, can result in catastrophic incidents when it is caused by a combination of 
factors such as room temperature creep, hydrogen embrittlement, coupling processes, 

Fig. 17 SEM micrograph of after corrosion test (a) 100% pure Ti and (b) HTMMC optimum samples (OS)

Fig. 18 Fractography analysis of compressed optimal sample. a Analysis of the fracture morphology analysis. 
b Surface fracture at low magnification
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oxygen embrittlement, and liquid metal embrittlement. Brittle fractures can begin under 
the surface or at the surface due to stress levels beyond the threshold value [58]. Com-
pression testing exhibits experience contact surface cracking and eventually succumbs 
to overstress concentration, emphasizing the need of managing materials properly and 
preventing failures. The composites’ fracture behavior was characterized by dimples, 
which are typical of ductile fracture, as well as a significant quantity of cleavage planes 
and grain cracks [13]. SEM examination of the cracked surfaces indicated that unrein-
forced material fractures simply ductility, whereas reinforced material fractures through 
crack nucleation and plastic deformation [59].

Figure  18 depicts the fracture as having three regions: region I, which shows small 
fractures along grain boundaries; region II, which occupies about half of the fracture 
surface and has cleavage morphological; and region III, which has dimple structure 
morphological. The fracture has dimple morphology in the margin, axial cracking and 
cleavage characteristics in the center, and grain boundary cracking surrounding the axial 
crack. According to the investigation, stress levels over the threshold value can cause 
brittle fractures to begin under the surface or at the surface. Contact surface cracking 
during compression testing concentrates the overstress, underscoring the need of effec-
tive material management and failure prevention.

Conclusions
The present research investigation focuses at the synthesis, microstructural properties, 
and porosity behavior of a (2.5, 5, 7.5%) Wt.%  B4C, SiC, and  ZrO2 powder, as well as a 4% 
 MoS2 fortified Ti composite powder. Powder metallurgy technology used to create sin-
tered composites. The RSM method was utilized for development and designing experi-
ments, modeling and process factor optimization. Furthermore, ANN-GA prediction 
of porosity for Ti/B4C-MoS2-SiC-ZrO2 composites was done, and the findings matched 
those obtained by RSM approaches. The following key findings have been made from 
this analysis.

1. XRD confirmed that the  B4C-MoS2-SiC-ZrO2 nanoparticles were contained and 
identically dispersed in the Ti matrix. The inclusion of  B4C-MoS2-SiC-ZrO2 to the 
produced composites increases the Rockwell microhardness owing to hard ceramics 
particles. In all compositions, the hardness of the composites was greater than that of 
the basic Ti.

2. The mechanical properties of optimum combination of 7.5%SiC, 7.5%B4C, 4%MoS2, 
7.5%  ZrO2, and 73.5%Ti wt.% was achieved using process variables (milling period, 
compaction pressure, compact duration, sintering temperature, and time) of 6h, 
50MPa, 50min, 1200°C, and 2h with achieved minimum porosity of 0.118 %, den-
sity of 4.36g/cm3, and microhardness of 63.4HRC enhanced with 1.76%; compressive 
strength 2500MPa achieved was enhanced with 2.6% when compared with pure Ti. 
Additionally, the minimum wear rate 0.176mm3/N.m and corrosion resistance rate 
2.15×10-4mmpy achieved these HTMMCs.

3. A quadratic model was created using RSM experimental design to predict the Ti/
B4C-MoS2-SiC-ZrO2 composite porosity  in terms of  B4C-MoS2-SiC-ZrO2 content, 
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compressive pressure, milling time, and sintering temperature. The model equation 
response is in great consistent with the observed data.

4. To predict the porosity of the manufactured Ti/B4C-MoS2-SiC-ZrO2 composites, an 
integrated ANN-GA model was created. The combined ANN-GA model predicts 
porosity values that are close to the data obtained from experiments.

5. R-square values of 0.9552 and 0.97984 (closer to 1) show that the RSM and combined 
ANN-GA models are substantially linked. This data clearly shows that the RSM pre-
diction deviates more than the ANN-GA forecast combined. The MAPE and RMSE 
for RSM were 0.59 and 1.837, respectively, whereas the MAPE and RMSE for inte-
grated ANN-GA were 0.050 and 1.0689, respectively. When it comes to examining 
interactions, variables, and projection, the results reveal that the combined ANN-
GA model surpasses RSM.

As a result, when the outcomes predicted by the ANN model were compared to the 
results of the experiment, they were shown to be accurate. GA is the most accurate 
global evolutionary optimization approach for fitting experimental findings. In terms of 
predicting porosity, the created model worked well, and the results presented demon-
strate the importance of the combined ANN-GA technique in widening the industrial 
usage of Ti-based particulate MMCs.
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